
 

 

  
Abstract—Internal fluid pressure of fluids may cause non-

uniform distribution of stresses in thick pipes. In this work, a novel 
matrix free Unstructured Finite Volume Method based on Galerkin 
approach is introduced for solution of weak form of two dimensional 
Cauchy equilibrium equations of plane strain solid state problems on 
linear triangular element meshes. The developed shape function free 
Galerkin Finite Volume structural solver explicitly computes stresses 
and displacements in Cartezian coordinate directions for the two 
dimensional solid mechanic problems under either static or dynamic 
loads. The accuracy of the introduced algorithm is assessed by 
comparison of computed results of a thick pipe under internal fluid 
pressure load with analytical solutions. The performance of the 
solver is presented in terms of stress and strain contours as well as 
convergence behavior of the method. 
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I. INTRODUCTION 
Over the last decades a wide variety of numerical methods 

have been proposed for the numerical solution of partial 
differential equations. Among them the Finite Element 
Method (FEM) has firmly established itself as the standard 
approach for problems in Computational Solid Mechanics 
(CSM), especially with regard to deformation problems 
involving non-linear material analysis [1,2]. 

It is well known that numerical analysis of solids in 
incompressible limit could lead to difficulties. For example, 
fully integrated displacement based lower-order finite 
elements suffer from volumetric locking, which usually 
accompanies pressure oscillation in incompressible limit [3]. 
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Also there are some difficulties for producing stiffness matrix 
and shape function in order to increase the convergence rate.  

Although certain restrictions on mesh configuration had to 
be imposed to avoid locking, these restrictions were less 
severe than those of the equivalent FEM meshes.  

The FVM developed from early finite difference techniques 
and has similarly established itself within the field of 
computational fluid dynamics (CFD) [4,1]. However, similar 
to the FEM, the FVM integrates governing equation(s) over 
pre-defined control volumes [2], which are associated with the 
elements making up the domain of interest and therefore, 
preserve the conservation properties of the equations. 
Although, the Finite Volume Method (FVM) was originally 
developed for fluid flow and heat and mass transfer 
calculations [6], recently, it is generalized for stress analysis in 
isotropic linear and non-linear solid bodies. Therefore, the 
interest for FVM application to the structural analysis 
problems involving incompressible materials has grown 
during the recent years. From the results of several benchmark 
solutions, the FVM appeared to offer a number of advantages 
over equivalent finite element models. For instant it can be 
stated that, unlike the FDM solution, FVM solution is 
conservative and incompressibility is satisfied exactly for each 
discretized sub-domain (control volume) of the computational 
domain [5].  

In principle, because of the local conservation properties 
the FVMs should be in a good position to solve such problems 
effectively. Furthermore, numerical calculation with meshes 
consisting of triangular cells showed excellent agreement with 
analytical results. Meshes consisting of quadrilateral FVM 
cells displayed too stiff behavior, indicating a locking 
phenomenon [4]. Therefore, a number of researchers have 
applied FVMs to problems in CSM over the last decade [6,7] 
and it is now possible to classify these methods into two 
approaches, cell-centered and vertex-based ones.  

In this paper, the explicit approach introduced is based on 
Galerkin approach with a kind of matrix free vertex base FVM 
on meshes of linear triangular elements. The accuracy of the 
introduced method is assessed by comparison of computed 
stresses and displacements for a thick pipe with internal fluid 
pressure load with analytical solutions and the performance of 
the solver is demonstrated in terms of stress and strain 
contours as well as convergence behavior of the method to the 
steady state condition. 
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II. MATHEMATICAL MODEL 
The universal law governing any continuum undergoing 

motion is given by general form of Cauchy’s equilibrium 
equations: 

 
bSu T += σρ                                                  (1) 

 
Where σ  is the stress tensor, b is the body force, ρ  is the 

material density and u  is the acceleration. 
For two dimensional problems, T

yx uuu ),(=  is the 

displacement vector and T
xyyyxx ),,( σσσσ =  is tensor 

vector. The operator TS  for two-dimensional problems is 
defined as, 
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So, the matrix form of Cauchy equations for two-

dimensional problems is: 
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For stress-strain relationship, the common Hook equation 

can be used as, 
 

εσ D=                                                                 (3) 
 
Where D is the constitutive property matrix and for plane 

strain problems is: 
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Here, υ  is the Poison ratio and E  is the Young modules 

of elasticity. So the Cauchy’s equilibrium equations in two 
Cartesian coordinate directions can be written as: 
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Where for plane strain problems: 
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III. NUMERICAL FORMULATION 
In order to obtain the discrete form of the Cauchy’s 

equation in i direction, the following form is used: 
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In which the stresses are defined as: 
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By application of the Variational Method, after multiplying 

the residual of the above equation by the test function ω  and 
integrating over a sub-domain Ω  (Figure 1), in the absence of 
body forces we have, 
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Where, i direction stress vector is defined 

as jiF iii
ˆˆ

21 σσ += .  
The terms containing spatial derivatives can be integrated 

by part over the sub-domain Ω  and then equation 6 may be 
written as, 
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According to the Galerkin method, the weighting function 

ω  can be chosen equal to the interpolation functionφ . In 
finite element methods this function is systematically 
computed for desired element type and called the shape 
function. For a triangular type element (with three nodes), the 
linear shape functions, kφ , takes the value of unity at desired 
node n, and zero at other neighboring nodes k of each 
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triangular element (Figure 2): 
 

 
Fig.1 Sub-domain with area nΩ  

  

 
Fig.2. A linear triangular element 

 
Therefore, the summation of the term γω ].[ iF  over the 

boundary of the sub-domain nΩ  is zero.  
The right hand side (RHS) of the equation (7) can be 

discretized as: 
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Where klΔ  is normal vector of the side k opposite to the 

node n and iF~  is the i direction piece wise constant stress 
vector at the centre of element associated with the boundary 
side k (inside the sub-domain nΩ  with N boundary sides) 

For a sub-domain formed by linear triangular elements 
sharing node n, the left hand side (LHS) of the equation (7) 
can be written in discrete form as:    
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A finite difference approach is applied for discretizaton of 

the time derivative of i direction displacement, iu . Hence, the 
LHS of equation (7) can be written as, 
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The final discrete form the equation (7) is obtained as, 
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Considering direction i=1 as x an i=2 as y, the stresses 1i

~σ  , 

2i
~σ  are computed as, 
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Where kA  is the area of triangular element (with m=3 

sides) associate with boundary side k of the sub-domain 
nΩ (Figure 3): 
 

 
Fig.3: Triangular element with area kA  within the sub-

domain nΩ  

IV. COMPUTATIONAL STEPPING 

The time step ntΔ for each control volume can be 
computed as: 

 

c
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Where c is wave velocity. According to the wave velocity, 

gained by equation (14): 
 

)1( 2υρ −
=

Ec                                                (14) 

 
Here, nr  is the average radius of equivalent circle that 

matches with the desired control volume ( nnn Pr /Ω= ).  For 
any control volume n this radius can be computed using area 
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Due to the variations in sizes unstructured control volumes 
calculations, the allowable time step for computation of 
dynamic problems for the entire mesh is limited to the 
minimum associated with the smallest control volume of the 
domain. However, the large variation in grid size for the 
unstructured mesh will slow down the computations. 

 In present work, the local time step of each control volume 
is used for computation of static problems. In this technique to 
accelerate the convergence to steady state conditions, the 
computation of each control volume can advance using a 
pseudo time step which is calculated for its own control 
volume. The use of local time stepping greatly enhances the 
convergence rate. 

V. COMPUTATIONAL RESULTS 
In this section, the computational results of stress and strain 

analysis of a thick pipe under internal fluid pressure is  
presented. The numerical solution is performed by application 
of Galerkin finite volume method on an unstructured 
triangular mesh. The analytical solution is used to verify the 
results and satisfaction equality obtained. The model 
specifications are illustrated in Table.1.  

The perpendicular normal vectors are computed on the 
nodes of the boundaries in order to impose the pressure load 
properly. 

 
Table.1 Specification of a thick pipe 

Parameters Value 
Young’s modulus, E 21 MPa 

Density, ρ  7850 kg/m3 
Poison ratio, υ  0.25 
Interior radius 0.5 
Outer radius 0.6 

Interior Pressure 12000 Pa 
 

Fig.4 shows the schematic view of the thick steel pipe with 
12 kPa interior fluid pressure and zero outer pressure. 

 
Fig.4 Thick Steel Cylinder under Pressure 

 
In present computation, it is assumed that the cylinder is 

considerably long, and thus, the plain strain assumption is 
valid. For such a conditions radius stresses and tangential 
stresses from analytical solution are computed by (15), (16) 
equations from [8]: 
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Where r is the radius and 1C , 2C  are two coefficients which 

can be calculated by (17) and (18) equations: 
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Here ip , ir  are the interior pressure and interior radius 

respectively and op , or  are the outer pressure and outer 
radius. 

 
Fig.5 Unstructured Triangular Mesh 
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a) Vertical displacement 
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b) Horizontal displacement 

Fig.6 Color coded maps of computed displacements  
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The unstructured triangular mesh utilized for the 

computation is presented in Fig.11. The unstructured 
triangular mesh is used for this purpose (Fig.5) with 2032 
nodes and 3450 elements. 

The displacement and stress contours are demonstrated in 
Fig. 6 and  Fig.7. 
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c) xyσ  stress 

Fig.7 Color coded maps of computed stresses (Pa) 
 

Section A-A which is used for comparison of computed 
results with the analytical solution is shown in Fig.8. The 
comparison of the computed radial stress with analytical 
solution along the thickness of the pipe is plotted in Fig.9. 
Convergence of the maximum strains to a constant value is 
plotted in Fig.10. 

 
Fig.8 Location of section A-A 
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Fig.9 Horizontal displacement on section A-A 
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Fig.10 Converged results of displacement  

(on maximum point value) 

VI. CONCLUSION 
For analyzing the stresses and strains due to internal fluid 

pressure in thick pipes, a vertex base Galerkin Finite Volume 
method for explicit matrix free solution of two dimensional 
Cauchy equations is introduced in this paper. This 
computational model solves stress and deformation of solid 
mechanics under static and dynamic loads. The performance 
of described the computational solid mechanic algorithm is 
examined for various size of the meshes for a cantilever beam 
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under a point load. Since there is no interpolation function in 
the numerical formulation of the present solver, the fine 
meshes provide more accurate results than the coarse meshes.  

The present model is examined for some stress-strain in a 
thick pipe under fluid pressure. The comparison of the 
computed results with analytical solution presents promising 
agreements.    

The new finite volume structural solver with light 
computational work load can easily be extended to three 
dimensions and be applied for solving large deformations of 
real world solid mechanics problems with arbitrarily curved 
geometries. 
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