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Abstract—We analyze the unsteady flow of an incom-
pressible generalized second-order fluid in a straight rigid tube,
with circular cross-section of constant radius, where the nor-
mal stress coefficients depend on the shear rate by using a
power law model. The full 3D unsteady model is simplified
using a one-dimensional hierarchical approach based on the
Cosserat theory related to fluid dynamics, which reduces the
exact three-dimensional equations to a system depending only
on time and on a single spatial variable. From this new system
we obtain the relationship between mean pressure gradient and
volume flow rate over a finite section of the tube. Attention
is focused on some numerical simulation for unsteady/steady
mean pressure gradient and on the analysis of perturbed flows.

Keywords—Cosserat theory, axisymmetric motion, mean
pressure gradient, volume flow rate, perturbed flows, power
law viscoelastic function.

I. INTRODUCTION

Let us consider the Cauchy stress tensor for viscoelas-
tic fluids of differential type (also called Rivlin-Ericksen
fluids) with complexity n = 2, given by (see Colemann
and Noll [11])

T = −pI + µA1 + α1A2 + α2A
2
1 (1)

where p is the pressure, −pI is the spherical part of the
stress due to the constraint of incompressibility, µ is the
coefficient of viscosity, and α1, α2 are material moduli
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which are usually referred to as the normal stress coeffi-
cients. The kinematical first two Rivlin-Ericksen tensors
A1 and A2 are defined through (see Rivlin and Ericksen
[12])

A1 = ∇ϑ +
(
∇ϑ

)T (2)

and
A2 =

d

dt
A1 + A1∇ϑ +

(
∇ϑ

)T
A1 (3)

where ϑ is the velocity of the fluid and d
dt(·) denotes the

material time derivative. In equation (3) the material
time derivative of the tensor A1 is given by

d

dt
A1 =

∂

∂t
A1 + ϑ · ∇A1.

The classical constitutive equation related with Newto-
nian fluids is recovered with α1 = α2 = 0 at equation (1).
The thermodynamics and stability of the fluids related
with the Cauchy stress tensor (1) have been studied in
detail by Dunn and Fosdick (see [13]) who showed that
if the fluid is to be compatible with thermodynamics in
the sense that all motions of the fluid meet the Clausius-
Duhem inequality and the assumption that the specific
Helmholtz free energy of the fluid is a minimum in equi-
librium, then

µ > 0, α1 > 0, α1 + α2 = 0. (4)

Fosdick and Rajagopal (see [14]), based on the ex-
perimental observation, showed that for many non-
Newtonian fluids of current rheological interest the re-
ported values for α1 and α2 do not satisfy the restriction
(4)2,3, relaxed that assumption. Also, they showed that
for arbitrary values of α1 + α2, with α1 < 0, a fluid fill-
ing a compact domain and adhering to the boundary of
the domain exhibits an anomalous behavior not expected
on real fluids. The condition (4)3 simplifies substantially
the mathematical model and the corresponding analy-
sis. The fluids characterized by (4) are known as second-
grade fluids as opposed to the general second-order flu-
ids. The terminology ”grade” is used in the place of ”or-
der” to convey the notion of ”exactness” rather than the
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notion of ”approximation” wherein the model is not re-
quired to be compatible with thermodynamics. It should
also be added that the use of Clausius-Duheim inequal-
ity is the subject matter of much controversy (see e.g.
Coscia and Galdi [15]). Experimental studies with poly-
mers (see e.g. Beracea et al. [3]), suspensions (see e.g.
Mall-Gleissle et al. [2]) and liquid crytals (see e.g. Tao
et al. [16]) seem to indicate that for several fluids, one
does observe a substancial variation in normal stress ef-
fects with the shear rate. In fact, Harris (see [1]) even
argues that this dependence for specific flow regimes is
of a power law nature. Therefore, we consider an exten-
sion of the Rivlin-Ericksen fluid model of second-order
by introducing a shear-dependent function of power law
related with the normal stress coefficients. With this in
mind, the constitutive equation (1), becomes

T = −pI + µA1 + α
(
|γ̇|

)(
α1A2 + α2A

2
1

)
(5)

where
α
(
|γ̇|

)
: R+ → R+

is the shear-dependent normal stress coefficients function
and γ̇ is a scalar measure of the rate of shear defined by
|γ̇| =

√
2D : D with

D :=
1
2
(
∇ϑ +

(
∇ϑ

)T)

being the rate of deformation tensor. The particular
functional dependence of the normal stress coefficients
on shear rate is generally chosen in order to fit experi-
mental data and, in the case of a power law fluid model,
is given by

α(|γ̇|) = k|γ̇|n−1 (6)

where the parameters k and n are positive constants
called the consistency and the flow index related with
the normal stress coefficients. If n = 1 in (6), the Cauchy
stress tensor (5) corresponds to the constitutive equation
(1) with k = 1. If n < 1 at (6) then

lim
|γ̇|→+∞

α(|γ̇|) = 0, lim
|γ̇|→0

α(|γ̇|) = +∞,

and we have a shear-thinning fluid behaviour (viscoelas-
tic decreases monotonically with shear rate). For n > 1
at (6), we get

lim
|γ̇|→+∞

α(|γ̇|) = +∞, lim
|γ̇|→0

α(|γ̇|) = 0,

and the fluid shows a shear-thickening behaviour (vis-
coelastic increases with shear rate). This theoretical

model has limited applications to real fluids due to the
unboundedness of the viscoelastic function, but is widely
used and can be accurate for specific flow regimes. The
theoretical study of the model associated to the constitu-
tive equation (5), namely existence, uniqueness and regu-
larity of classical and weak solutions with any α1, α2 ∈ R
still poses some difficulties. In this paper we are inter-
ested in the numerical study of the model associated
to equation (5) with condition (6), using for that the
director approach (also called Cosserat Theory) related
to fluid dynamics, developed by Caulk and Naghdi [4].
The relevance of using this theory is not in regarding
it as an approximation to three-dimensional equations,
but rather in their use as independent theories to pre-
dict some of the main properties of the three-dimensional
problems. Advantages of the director theory include: (i)
the theory incorporates all components of the linear mo-
mentum; (ii) it is a hierarchical theory, making it possible
to increase the accuracy of the model; (iii) the flow is not
assumed to be uni-directional; (iv) it is unnecessary to
make assumptions about the form of the nonlinear and
(v) the wall shear stress enters directly in the formulation
as a dependent variable.

Recently, this theory approach has been applied to
haemodynamics by Robertson et al. [5] and Carapau
et al. [6]. Also by Carapau and Sequeira [7], [8], [9],
and by Carapau [10] considering non-Newtonian fluids.
This theory it was validated on the special case of a uni-
form tube of constant radius for Newtonian fluid (see
[4]), and also for non-Newtonian fluids (see [6], [7]).
Using the director theory (see [4]) the velocity field1

ϑ = ϑ(x1, x2, z, t), can be approximated by the following
finite series2:

ϑ = v +
k∑

N=1

xα1 . . .xαN
W α1...αN

, (7)

with

v = vi(z, t)ei, W α1...αN
= W i

α1...αN
(z, t)ei. (8)

Here, v represents the velocity along the axis of sym-
metry z at time t, xα1 . . . xαN

are polynomial weighting
functions with order k (the number k identifies the order
of the hierarchical theory and is related to the number of

1Here, we consider xi(i = 1, 2, 3) the rectangular cartesian coor-
denates and for convenience set x3 = z.

2Latin indices subscript take the values 1, 2, 3, Greek indices
subscript 1, 2. Summation convention is employed over a repeated
index.
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directors), the vectors W α1...αN
are the director veloci-

ties which are completely symmetric with respect to their
indices and ei are the associated unit basis vectors. From
this velocity field approach that we use to predict some of
the main properties of the three-dimensional problem, we
obtain the axisymmetric unsteady relationship between
mean pressure gradient and volume flow rate over a finite
section of a straight tube with circular cross-section and
constant radius.

II. GOVERNING EQUATIONS

Let us consider the axisymmetric motion, about the
z axis, of an incompressible fluid, without body forces,
inside a straight and impermeable tube Ω with circular
cross-section contained in R3 (see Figure 1). Also, let
us consider the surface scalar function φ(z, t), that is re-
lated with the cross-section of the tube by the following
relationship

φ2(z, t) = x2
1 + x2

2. (9)

The boundary ∂Ω is composed by Γ1 (proximal cross-
section), Γ2 (distal cross-section) and by Γw the lateral
wall of the tube. The equations of motion, stating the

Pe

τ2

τ1

Z

Γ2

Γ1

X1

X2

Γw

φ(z,t)

Fig. 1: Fluid domain Ω with the tangential components of the
surface traction vector τ1, τ2 and pe, where φ(z, t) denote the radius
of the domain surface along the axis of symmetry z at time t.

conservation of linear momentum and mass are given in
Ω × (0, T ) by





ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ · ϑ = 0,

T = −pI + σ, tW = T · η,

(10)

with the initial condition

ϑ(x, 0) = ϑ0(x) in Ω, (11)

and the homogeneous Dirichlet boundary condition

ϑ(x, t) = 0 on Γw × (0, T ), (12)

where ϑ = ϑiei is the velocity field and ρ is the constant
fluid density. Equation (10)1 represents the balance of
linear momentum and (10)2 is the incompressibility con-
dition. In equation (10)3, tW denotes the stress vector
on a surface whose outward unit normal is η = ηiei, and
σ is the extra stress tensor given by

σ = µA1 + α
(
|γ̇|

)(
α1A2 + α2A

2
1

)
(13)

where the shear-dependent normal stress coefficients is
giving by (6). The kinematical first two Rivlin-Ericksen
tensors A1 and A2 are given by (2) and (3), respectively.
The components of the outward unit normal to the sur-
face φ(z, t) are

η1 =
x1

φ
√

1 + φ2
z

, η2 =
x2

φ
√

1 + φ2
z

, η3 = − φz√
1 + φ2

z

, (14)

where the subscript variable denotes partial differentia-
tion. Since equation (9) defines a material surface, the
velocity field ϑ must satisfy the kinematic condition

d

dt

(
φ2(z, t) − x2

1 − x2
2

)
= 0,

i.e.
φφt + φφzϑ3 − x1ϑ1 − x2ϑ2 = 0 (15)

on the boundary (9). Averaged quantities such as flow
rate and average pressure are needed to study 1D models.
Consider S(z, t) as a generic axial section of the tube at
time t defined by the spatial variable z and bounded by
the circle defined in (9) and let A(z, t) be the area of this
section S(z, t). Then, the volume flow rate Q is defined
by

Q(z, t) =
∫

S(z,t)

ϑ3(x1, x2, z, t)dx, (16)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫

S(z,t)

p(x1, x2, z, t)dx. (17)

Now, starting with representation (7), with k = 3, it
follows (see [4]) that the approximation of the velocity
field ϑ = ϑi(x1, x2, z, t)ei using nine directors, is given
by

ϑ =
[
x1(ξ + λ(x2

1 + x2
2))

]
e1

+
[
x2(ξ + λ(x2

1 + x2
2))

]
e2

+
[
v3 + θ(x2

1 + x2
2)

]
e3 (18)
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where ξ, θ, λ are scalar functions of the spatial variable z
and time t. The physical significance of these scalar func-
tions in (18) is the following: θ is related to transverse
shearing motion, while ξ and λ are related to transverse
elongation.

Let us consider a flow in a rigid tube, i.e.

φ = φ(z), (19)

From (19), (16), (18), (10)2 and (12) the volume flow
rate Q is just a function of time t, given by

Q(t) =
π

2
φ2(z)v3(z, t). (20)

Then, for a flow in a rigid tube, with volume flow rate
(20) and conditions (12) and (10)2, the velocity field (18)
becomes (see [4])

ϑ =
[
x1

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e1

+
[
x2

(
1 − x2

1 + x2
2

φ2

)2φzQ(t)
πφ3

]
e2

+
[2Q(t)

πφ2

(
1 − x2

1 + x2
2

φ2

)]
e3. (21)

The stress vector on the lateral surface Γw (see [4]) in
terms of the outward unit normal and tangential compo-
nents τ1, τ2 and pe (see Figure 1) is given by

tW =
[ 1

φ
√

1 + φ2
z

(
τ1x1φz − pex1 − τ2x2(1 + φ2

z)
1/2

)]
e1

+
[ 1

φ
√

1 + φ2
z

(
τ1x2φz − pex2 + τ2x1(1 + φ2

z)
1/2

)]
e2

+
[ 1√

1 + φ2
z

(
τ1 + peφz

)]
e3. (22)

Instead of satisfying the momentum equation (10)1 point-
wise in the fluid, we impose the following integral condi-
tions:

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
dx = 0, (23)

∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xα1 . . . xαN dx = 0, (24)

where N = 1, 2, 3.
Using the divergence theorem and integration by parts,

equations (23) − (24) can be reduced to the four vector
equations:

∂n

∂z
+ f = a, (25)

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (26)

where n, kα1...αN , mα1...αN are resultant forces defined
by

n =
∫

S

T 3dx, kα =
∫

S

T αdx, (27)

kαβ =
∫

S

(
T αxβ + T βxα

)
dx, (28)

kαβγ =
∫

S

(
T αxβxγ + T βxαxγ + T γxαxβ

)
dx, (29)

mα1...αN =
∫

S
T 3xα1 . . .xαN

dx. (30)

The quantities a and bα1...αN are inertia terms defined
by

a =
∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
dx, (31)

bα1...αN =
∫

S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
xα1 . . . xαN

dx, (32)

and f , lα1...αN , which arise due to surface traction on the
lateral boundary, are defined by

f =
∫

∂S

√
1 + φ2

z tW dx, (33)

lα1...αN =
∫

∂S

√
1 + φ2

z tW xα1 . . .xαN
dx. (34)

The equation for the mean pressure gradient as a func-
tion of the volume flow rate will be obtained using the
results quantities (27)− (34) on equations (25)− (26).

III. SOME NUMERICAL RESULTS

Let us consider the system (10)−(13)where the normal
stress coefficients α1 and α2 do not satisfy the restriction
(4)2,3. We consider the case of a straight circular rigid
tube with constant radius, i.e. φ = cts. Now, taking
into account the velocity approach (21), we obtain the
quantities (27)−(34). Using that quantities on equations
(25)− (26), we get the following unsteady relationship

p̄z(z, t) = − 8µ

πφ4
Q(t) − 4ρ

3πφ2

[
1 + (35)

+
3kα1

4ρ

2
5n+5

2

(n + 3)πn−1φ3n−1
Qn−1(t)

]
Q̇(t),

where the notation Q̇(t) is used for time differentiation.
Integrating equation (35), over a finite section of the tube
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(with z1 < z2), we obtain the mean pressure gradient
G(t) as a function of the volume flow rate:

G(t) =
8µ

πφ4
Q(t) +

4ρ

3πφ2

[
1 + (36)

+
3kα1

4ρ

2
5n+5

2

(n + 3)πn−1φ3n−1
Qn−1(t)

]
Q̇(t),

where
G(t) =

p̄(z1, t) − p̄(z2, t)
z2 − z1

.

Setting α1 = 0 in (36), we recover the solution for Newto-
nian viscous fluid obtain by Caulk and Naghdi (see [4]).
Also, considering n = k = 1 in (36), we recover the solu-
tion for second-order viscoelastic fluid obtain by Carapau
and Sequeira (see [7]). Now, let us consider the following
dimensionless variables

t̂ = ω0t, Q̂ =
2ρ

πφµ
Q, Ĝ =

ρφ3

µ2
G (37)

where φ is the characteristic radius of the tube and ω0

is the characteristic frequency for unsteady flows. In the
case where a steady flow rate is specified, the nondimen-
sional flow rate Q̂ is identical to the classical Reynolds
number (see e.g. [5]). Now, substituting the dimension-
less variables (37) into equation (36), we obtain

Ĝ(t̂) = 4Q̂(t̂) +
2
3

[
1 + 3We

2
3n+3

2

n + 3
Q̂n−1(t̂)

]
W2

0
˙̂
Q(t̂)

(38)
where W0 = φ

√
ρω0/µ is the Womersley number and

We =
|α1|kn−1

φ2nρn

is a viscoelastic parameter, also called the Weissenberg
number (see e.g. Galdi et al. [17]). The dimensionless
number W0 is the most commonly used parameter to
reflect the pulsatility of the flow, which is an unsteady
phenomenon. Solving equation (38), we can compute the
volume flow rate Q̂(t̂) in terms of the mean pressure gra-
dient Ĝ(t̂) for different values of the Womersley number,
Weissenberg number and flow index n. Also, we can give
some considerations about perturbed flows.

Flow under constant mean pressure gradient

Considering a constant mean pressure gradient Ĝ(t̂) =
Ĝ0 the system converges toward a steady state solution.
In Figure 2 this steady state volume flow rate is ob-
tained solving the time dependent problem but, if we

Fig. 2: Time evolution of the volume flow rate (38), with fixed
Weissenberg number (We = 0.25), for different values of the Wom-
ersley number (W0 = (0.25, 0.75)) and different values of the flow
index (n = (0.25, 1, 3)). Here we consider Ĝ0 = 1.

are not interested in the behavior during the initial tran-
sient phase, the steady (asymptotic) value of the volume
flow rate can be obtained directly from (38) setting

˙̂
Q(t̂) = 0,

since at constant pressure gradient, ˙̂
Q(t) converges to

zero as t̂ goes to infinity, i.e.

lim
t̂→+∞

˙̂
Q(t̂) = 0.

Therefore the nondimensional steady solution is charac-
terized by

Q̂ = Ĝ0/4, (39)

which is in excellent agreement with the numerical re-
sults illustrated in Figure 2. There is a linear relation
between quantities Q̂ and Ĝ0 in (39). From Figure 2, we
can realize that there is no qualitative difference between
solutions for different values of flow index. Considering
other values for Womersley and Weissenberg numbers we
get the same solution behavior shown in Figure 2.

Flow under time dependent mean pressure
gradient

Now, we consider the general situation of imposing a
time dependent mean pressure gradient on relation (38).
We will only briefly show same numerical results for spe-
cific mean pressure gradient. Considering the following
mean pressure gradient

Ĝ(t̂) = 1 + |sin(t̂)|+ |cos(2t̂)|, (40)

we can observe in Figure 3 how the volume flow rate Q̂

change with the time for different values of flow index,
Womersley and Weissenberg numbers. From these re-
sults we can realize that there is no qualitative different
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between solutions, after initial transient phase, for fixed
Womersley number. However, the behavior of the sinu-
soidal solution start to decrease the values on the peacks
when we increase the flow index and the Weissenberg
number.

Fig. 3: Time evolution of the volume flow rate given by (38)
with mean pressure gradient (40), with fixed Womersley number
(W0 = 0.75), for different values of the Weissenberg number (We =
(0.75, 1.25, 1.75, 2.75)) and different values of the flow index (n =
(0.25, 1, 1.75)).

Considering other values for Womersley and Weis-
senberg numbers we get the same solution behavior
shown in Figure 3 for different values of flow index.

IV. PERTURBED FLOWS

It is important to determine the changes in flow charac-
teristics induced by perturbations in the initial or bound-
ary data, body forces or pressure drop. In fact, since it
is virtually impossible to maintain an exactly constant
pressure drop, one should be able to predict how much
a perturbation of given magnitude in pressure drop will
affect the volume flow rate. We will consider a uniform
perturbation of magnitude ε. For each ε > 0, defining
the quantities,

Ĝ±
ε (t̂) = (1±ε)Ĝ(t̂), (41)

we denote by Q̂+
ε and Q̂−

ε the perturbed volume flow
rates corresponding to the perturbation quantities Ĝ+

ε

and G−
ε , respectively.

Flow under constant mean pressure gradient

Considering the perburbation

Ĝ±
ε = (1 ± ε)Ĝ0,

where Ĝ0 is a constant mean pressure gradient, for suffi-
ciently large t̂, after the transient period, we can use the
characterization of the steady solution deduced in (39),
and explicitly compute the perturbed volume flow rates,
using (41), as follows:

Q̂±
ε =

1
4
Ĝ±

ε =
1
4
(1 ± ε)Ĝ0

= Q̂(1± ε). (42)

Normalizing the above perturbeded volume flow rate Q̂±
ε

by the unperturbed volume flow rate Q̂, we get

Q̂±
ε

Q̂
= (1 ± ε), (43)

which means that in the steady case, this kind of multi-
plicative perturbation acts linearly. Changing the mean
pressure gradient by a factor of (1±ε) changes the unper-
turbed volume flow rate by a factor of (1± ε). In partic-
ular this shows that the steady state solution is linearly
stable. Perturbations will be negligible if (1 ± ε) ' 1,
which happens when ε → 0, i.e. for small changes in the
pressure gradient.

Flow under time dependent mean pressure
gradient

In the case of time dependent mean pressure gradient
the same ideas hold, apart from the fact that it is no
longer possible to deduce exact expressions for the per-
turbed volume flow rate. However, we can compute the
time evolution of the perburbation volume flow rate Q̂+

ε

and Q̂−
ε . In Figure 4 we represent the time evolution of

Fig. 4: Time evolution of the unperturbed volume flow rate Q̂,
and perturbeded volume flow rates Q̂±

ε , with We = 0.5, W0 = 0.75
and flow index n = (0.25, 2.5).

the volume flow rate using

Ĝ(t̂) = 1 + | sin(t̂)|+ | cos(2t̂)| (44)

together with the perturbed flow rates of magnitude
ε = 0.1, forming a strip around Q̂(t̂) containing all per-
turbations of magnitude less or equal to ε. Figure 5 shows
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Fig. 5: Time evolution of perburbation (45) for different values of
flow index n, with We = 0.5 and W0 = (0.5, 0.75, 1.25, 1.75).

the amplitude of this strip for several values of n, show-
ing that increasing the flow index and the Womersley
number reduces sensitivity to perturbations

|Q̂+
ε − Q̂−

ε | (45)

with fixed Weissenberg number. Considering other val-
ues for Womersley and Weissenberg numbers we get the
same solution behavior shown in Figure 5.

V. CONCLUSIONS

A nine-director theory has been used to derive a 1D
generalized second-order fluid model in a straight and
rigid tube with circular cross-section and constant radius,
as an alternative approach to predict some of the main
properties of the associated 3D model (10) − (13). Un-
steady nondimensional relationship between mean pres-
sure gradient and volume flow rate over a finite section
of the tube has been obtained by introducing a shear-
dependent function of power law related with the normal
stress coefficients. In the case of unsteady/steady mean
pressure gradient we predicted some numerical results for
different values of flow index, Weissenberg and Womer-
sley numbers. Finally, we conducted numerical simula-
tions of perturbed flows, obtaining an exact expression
for the perturbed volume flow rates in the steady case,
providing a first step towards stability analysis of the
model. Future work will be mainly directed to the appli-
cation of this approach theory, related with the model
(10) − (13), for different geometries with the specific
Carreau-Yasuda shear-dependent viscoelastic function.
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