
 

 

  
Abstract— In a recent paper we presented the computation of 
the exact symmetry transformations of dynamical systems 
from their reduced systems using the Kepler problem as 
vehicle. We also noted therein that this computational 
technique is applicable to systems that can be reduced to 
couple oscillator(s) and a conservation law both in two-and 
three-dimensions. In this paper we show in addition to the 
former that when the reduction variable for the radial 
component of the equation of motion is varied by the 
multiples of quadratic powers of the angular momentum, the 

exact symmetry transformations of the vector fields 11∂vα and 

22∂vα  are invariants in 2-dimension. We demonstrate this by 

using both the Kepler and the generalized Kepler problems in 
two dimensions. We also note that this is not necessarily the 
case for the dynamical system in 3-dimensions. 
 

Keywords—-Exact, symmetries, dynamical, systems, 
infinitesimal, generators, flow, Kepler, Lie, generalized-Kepler. 

I. INTRODUCTION 

YMMETRIES in general and in particular Lie point 
symmetry analysis are formidable tools for finding 
solutions to differential equations ( be it ordinary or partial 

differential equations) [1],[2],[3],[4],[5]. Lie theory and more 
recently works/researches [2],[4],[6],[7],[8],[9],[10] in the 
subject emphasized the attainment of the infinitesimal 
generators of the Lie point symmetries for the differential 
equations. This approach may not be far from the 
consequences of the efforts required for  the actual 
computational activities that are involved in obtaining the Lie 
point symmetry infinitesimal generators given the fact that 
some symmetry transformations of some dynamical systems 
are nonlocal types in their representations.[11],[10],[9],[8] 
More so, the determinations of the symmetries of most 
physical dynamical systems actually posed significant 
challenges in the literature [10],[11],[12] as in the 
understanding of their physical properties, visa vise constants 
of the motion, first integrals, linearization and orbit equations. 
Noether theory is significant in the aspect of variational 
symmetries in that it provided a straightforward link between 
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symmetries and constants of the motion (first 
integrals).[1],[2],[3] It is also well known that in the case of 
the Kepler problem the Noether symmetries (five variational 
symmetries) which are subset of the Lie symmetries obtained 
in the literature.[11],[8],[10] The events that followed the 
analysis of complete symmetry groups of differential 
equations brought to the fore the reduction of order technique 
for obtaining the infinitesimal generators for dynamical 
systems.[11],[13] Krause [11], Nucci [13], Nucci et al[21] 
Leach et al [22] and a host of other papers  revolutionized the 
entire symmetry analysis of differential equations although 
these did not amount to deviation from the original idea of 
Lie’s but explicitly exposed the importance of nonlocal 
symmetries as well as opening the frontiers of the subject, 
specifically they amounted to the  acknowledgement of 
nonlocal symmetries as the bases for the actual integrability of 
differential equations.[7],[11],[12] The reduction of order 
algorithm reduced dynamical systems to systems of 
oscillator(s) and conservation laws, which admits Lie 
algorithm for the  determination of their infinitesimal 
symmetry generators. The applicability of the reduction of 
order algorithm is formidable for determining the Lie 
symmetry group of dynamical systems [6],[ 9],[10],[11],[13]. 
It was reported [14],[26], [27] that the literature refers to the 
vector fields of the infinitesimal generators as symmetries and 
nowhere in the literature were exact symmetries as presented 
therein was mention hitherto. In [14],[26] the exact 
symmetries of dynamical systems which are different in 
representations from vector fields of the infinitesimal 
generators of dynamical systems were computed from the Lie 
symmetry generators of their reduced systems obtained by the 
reduction of order algorithm. It was also shown [14],[29] that 
one could use analogous constants obtained from the 
Hamilton vector of dynamical systems instead of the 
Ermanno-Bernoulli constants to reduce dynamical systems to 
systems that admit Lie algorithm. In this paper we consider 
the cases where the respective natural variables for reducing 
dynamical systems into systems of oscillator(s) and 
conservation law(s) are constant multiples of the positive 
quadratic powers (or inverse quadratic powers) of the angular 
momentum of the dynamical systems in two dimensions. The 
computations of these exact symmetry transformations of the 
Kepler and generalized Kepler problems was undertaken and 
inferences was drawn. In section II, we review basic 
definitions [26],[28] that are crucial to the understanding of 
our discussion. Section III reviews the computation of the 
exact symmetry transformations of the Kepler problem in two-
dimensions while in section IV we examined the exact 
symmetry transformations of both the Kepler problem and the 
generalized Kepler problem from the constant multiple of the 
reduction variables by the quadratic powers of the angular 
momentum point of view in two-dimensions.  Section V is 
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devoted to the treatment of the three-dimensional cases. In 
section VI we present concluding remarks. 

II. BASIC DEFINITIONS AND CONCEPTS 

Let YYT →: be a one-to-one, and onto mapping 
(transformation) defined on a sub-manifold MY ⊂ . The 
totality of such transformations )(Mτ form a group where 

the composition of mappings plays the part of a group 

operation and the identity transformation is designated MI . 

The point ),( ty to point ),( ty transformation defined 

symmetry transformation in general conceptualization. If the 

point transformation depends on a group parameters iα  such 

that the point );,( αty is transformed to the point );,( αty  

where )...,,( 21 nααα=α , we have a parameter-dependent 

symmetry transformation. By this we mean the following 
symbolic transformations 
               );,( αtytt = , );,( αtyyy = ; 

               );,();,( αα tyytyyy == ,                       (1) 

and for some ),( αααα = , the identity 0α =  ensured that 

ttyt =)0;,(  and ytyy =)0;,(  hold for the continuous 

group parameter α . Lie theory is centered on one parameter 

transformations which are flows λλλλλ +=),( .  

 
A.  Flows (Lie group of symmetry transformations) 

A flow or one parameter group of symmetry 
transformations of a space MY ⊂ onto itself is a set of 

functions YYf →:λ  such that the following composition 

and identity maps are respectively defined on the spaceY , 

           (i)  μλμλ fff =+  ; 

           (ii) idf =0 on Y . 

Theorem1. The map YYf →:λ is a flow if and only if 

there is a vector function V on Y such that )(yy λf= is a 

solution of the equation  

           )(yy V
d
d

=
λ

, yy = when 0=λ . 

Proof: let YYf →:λ be a flow, 

then )]([)( yy μλμλ fff =+ . On differentiating this with 

respect to μ  we have the following relation 

         )]([)()( yyy λ
μ

μλμλ μλμ
f

d
df

f
d
df

d
d

=≡ ++ .   (4) 

By setting 0=μ  in (4) we have that )(yy V
d
d

=
λ

 

where )(yy λf= , 
0

)()(
=

=
μμμ

yy f
d
dV . 

Conversely, if we let 

                   )(yy V
d
d

=
λ

,                                             (5) 

 such that yy = when 0=λ . 

Then we have the integral equation 

      ∫ ′+== ′
λ

λλ λ
0

)]([)( dfVf yyyy                       (6) 

and )(0 yy f= . 

But the function )()( yy μλλ += fg is also a solution of (5) 

which satisfies )()(0 yy μfg = . 

 Thus ( ))()( 0 yy gfg λλ =  

          i.e.          )]([)( yy μλμλ fff =+ . ■ 

If ℜ→YF : is a function then by Taylor’s Theorem we 
have that 

    
00 !

)(
==

∑=
λλ

λ
n

nk

n d
Fd

n
F

n
x                                            (7) 

But     ∑ ∑
=

∂
∂

=
∂
∂

=
i i i

i
i

i

y
Fv

y
F

d
yd

d
Fd

0λ
λλ

,  

                               WF
x
Fv

i i
i =

∂
∂

= ∑                           (8) 

So (7) implies  

      ∑
=

==
k

n

Wn
n

xFeFW
n

F
0

)(
!

)( λ
λx ,                          (9) 

 and ∑ ∂= iivW where ),...,,( 21 nvvvV = , is called the 

vector field generating the flow λf  (commonly referred to as 

the symmetry generator). 
 
B.  Illustrative Examples 
(i). The flow generated by the vector field ytV ∂= on 

},|),{( RtytyRR ∈=× is given by the solution to the 

equations [26],[27],[28] 

               t
d
d

=
λ
y

, 0=
λd
td

 

where ),(),( tt yy = when 0=λ . 

i.e.                    tt = , tλ+= yy .  

So the flow is given by 

             ),(),(),( tttft λλ +== yyy .                     (10) 

Conversely given the flow λf , the vector field generating it is 

given by 

              yty tttf
d
d

∂=∂+∂=∂⋅
=

0),(
0μ

μμ
y . 

(ii). The vector field ty tytV ∂+∂= 2  generates the flow 

λf given by the solution of the equations 
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            ty
d

yd
=

λ
, 2t

d
td

=
λ

.  

The equations respectively give the solutions 

               
t

yy
λ−

=
1

  and  
t

tt
λ−

=
1

. 

Thus 

        ),()1(),(),( 1 tyttyfty −−== λλ .        

 
Conversely, calculating 

      ty tyttyf
d
d

∂+∂=∂⋅
=

2

0

),(
μ

μμ
,                     (11) 

which is the vector field generating the flow. 
 
C.   Lie point symmetry and nonlocal symmetry 
The Lie theory of symmetry analysis of differential equations 
is anchored on the shore of extended (prolongation) vector 
fields. [4],[1],[2],[3] For a vector field given by the relation 

    xt tytyV ∂+∂= ),(),( ηξ ,                     (12 19) 

the prolongation of V to the nth order is defined by the 
relation 

 )(
)()( ... ny

n
yyt

nV ∂++∂′+∂+∂= ′ ηηηξ ,             (13) 

where ξξηη )1()( )( ++′−= n
n

n
n yy

dx
d

 ,                   (14)   

and )(nη is not the nth derivative of η . The invariance of the 

differential equation under the action of the prolonged vector 
field is invariant is well known. The general equation of order 
k denoted by 

                  0),...,,( =kyyytE ,                               (15) 

 and is invariant under the action of the kth prolonged vector 

field )(kV if and only if 

       0),...,,(
0),...,,,(

)( =
=kyyytE

kk yyytEV .              (16) 

The system (17) separates into systems of partial differential 
equations in terms of ),( tyξ and ),( tyη  that can be solved 

by the method of superposition of linearly independent basis 

solutions ),( tyiξ and ),( tyiη so that  

                     yitii tytyV ∂+∂= ),(),( ηξ ,              (17) 

become the infinitesimal generator of the Lie point 
symmetries of (15). It is well known in the literature that the 
totality (dimension) of (17) defined the group dimensionality 
of the Lie point symmetry group of (15). When (15) is of 
order one, the totality of (17) is infinite and there is no known 
algorithm of obtaining them, while the dimension is less or 
equal eight if it is of order two or more. 
 
D.   Definitions 

If the functions ),( tyiξ , ),( tyiη  in (17) contains 

integral(s) of the dependent variable, the resulting 
infinitesimal generator is called nonlocal 

symmetry.[11],[12],[13] One type of the nonlocal symmetries 
is 

               ytdtY ∂+∂= ∫ ηξ }{ .                                   (18) 

We note also that there are exponential nonlocal symmetries if 
the infinitesimal contained exponent of integral(s).[12],[15] If 

the infinitesimals ),( tyiξ and ),( tyiη  in (18) are dependent 

on the derivative of x  say ),,( tyyξ and ),,( tyyη then the 

resulting infinitesimal generator is called contact symmetry.  
Note that the contact symmetries are also regarded as Lie 
point symmetries. 
   
E.   Complete symmetry groups 

The concept of complete symmetry groups was generally 
accepted to mean the group of symmetries of differential 
equations which completely specify them on till recently. In 
this view Lie identified the symmetry groups of second-order 
differential equations to have not more than eight Lie point 
symmetries that specify them completely (any linearizable 
second-order differential equation has the maximum eight Lie 
point symmetry group).[16],[17],[18],[19] The literature in 
this issue is very rich, the work of Noether on the Kepler 
problem could only identified five variational symmetries ( 
also found by Lie analysis) [1],[2],[3] which could not specify 
the Kepler equation of motion. So there was a gap of not been 
able to obtain the complete symmetry groups for the Kepler 
problem in the sense of Lie. More recently, it was shown [7, 
20] that complete symmetry groups and algebras are not 
unique and the concepts of “maximality” or “minimality” (the 
maximal or minimal set of symmetries required to specify the 
differential equation completely) of symmetry groups and 
algebras came to the fore. However for the purpose of this 
paper we intend to confine our discussion to emergence of 
nonlocal symmetries as the bye-products of the general quest 
for complete symmetry groups of the Kepler problem for 
which the forerunner is Krause (1994) [ we refer the interested 
reader to references in ref. [11],[10],[13]], who obtained the 
additional three symmetries (nonlocal type) and together with 
the five point symmetries obtained by either Noether theorem 
or Lie theorem, was able to specify the equation of motion of 
the Kepler problem completely.  
 

III. EXACT SYMMETRY TRANSFORMATIONS OF 
KEPLER PROBLEM IN TOW-DIMENSIONS 

We firstly review the Kepler problem so as to note some of 
its interesting properties as below. The Kepler problem has the 
equation of motion given by 

         0
3

=+
r
yy μ

, y=r .                                         (19) 

The system (19) possess the angular momentum vector 
L where  
              yyL ^= .                                                      (20) 

The vector product of (19) with (20) yields the relation 

              ( ) 0
^

^
3

=+⋅

r
LyLy μ

.                                  (21) 
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Using rr rr eey +=  we have that rr eLy 3^ −= , so that 

(21) becomes 

               ( ) 0^ =−⋅
reLy μ ,                                      (22) 

and on integrating (22) we obtain the second conserved 
quantity called Laplace-Runge-Lenz (LRL) vector J given by 

                ( ) JeLy =− rμ^                                        (23)  

The third conserved vector of (19) is the Hamilton’s vector 
obtained by Hamilton in 1845; videlicet 

                  rL
eLyK ^ˆμ

−= , L=L .                     (24) 

The analysis of system (19) for its Lie point symmetries 
attracted large volume of articles in the literature. It is well 
known that Lie method produced five Lie point symmetry 
generator which was also demonstrated by Noether method of 
variational symmetry theory although these symmetry 
generators were unable to specify the Kepler problem in the 
art of complete symmetry analysis that followed which 
consequence brought to the for the notion of nonlocal 
symmetry.[10],[11,[13] The first five Lie point symmetry 
generators are given as follows 

  tY ∂=1 , rt rtY ∂+∂= 3
2

2 ,
23323 yy yyY ∂−∂= ,   

31134 yy yyY ∂−∂= ,
12215 yy yyY ∂−∂= .           (25) 

While the three additional nonlocal symmetry generators [11] 
are  

rt rydtyV ∂+∂= ∫ 111 }{2 , rt rydtyV ∂+∂= ∫ 222 }{2 , 

rt rydtyV ∂+∂= ∫ 333 }{2 ,                                         (26) 

where 3
3

2
2

2
1

2 yyyr ++= . One noticed that the above 

symmetry generators (25) and (26) separated into the 
following four symmetry transformations viz Translation 
symmetries (time and special); Dilation also called self 
similarity or scaling symmetries (time and special); Rotation 
symmetries; and the Nonlocal symmetries. 

The scaling symmetry 2Y  described the Laplace-Runge-

Lenz (LRL) vector of the Kepler problem which is the source 
of the orbit equation for system  (19).[13],[23] However later 
works  have established that these nonlocal symmetries are 
attainable by reduction of order developed by Nucci [13],[21], 
and more also it is well known that the reduction of order 
process is achieved by natural reduction variables of the 
system via the Ermanno-Bernoulli constants [21],[13,[22] and 
as well as Quasi-Ermanno-Bernoulli constants reported in ref. 
[14],[26],[27],[28] are used to reduced (19) to a system of 
oscillator(s) and a conservation law. We noted there that this 
is applicable to a number of dynamical systems. The reduced 
systems of (19) using the method of Nucci [13], Nucci and 
Leach [21] and the associated Lie symmetry generators are 
given by (27) and (28) respectively, 

             011 =+′′ vv ,    02 =′v                                     (27)                                                                                                

where μ−= −12
1 rLv ; θ2

2 rv =  and 

  221 ∂=Γ v ; θ∂=Γ2 ; 113 ∂=Γ v ; 14 ∂=Γ ±
±

θie ; 

   ][ 11
2

6 ∂±∂=Γ ±
± ive i

θ
θ ; ][ 1

2
118 ∂±∂=Γ ±

± ivve i
θ

θ ,  

                                                                                       (28) 

where ii v∂∂=∂ / . Obtaining the symmetry generators of the 

dynamical system (19) entails the backward translation from 
the Lie symmetry generators (28) of the reduced system (27) 
variables to the original variables of system (19), the scheme 
for doing this is available in [24] and many of which are 
largely nonlocal symmetries in the original variables (in some 
cases their representations are highly complicated). We only 
list the symmetries in the original variables for (28) below: 

           rt rt ∂+∂=Γ 231 , 

           θ∂=Γ2 , 

           [ ] ( ) rt LrrtLrdt ∂−+∂−=Γ ∫ 22
3 2 μμ , 

           [ ] r
i

t
i erdtre ∂+∂=Γ ±±

± ∫ θθ 2
4 2 ,     

( )[ ]
( ) θ

θθ

θ

μ
μ

∂+∂++
∂+=Γ

±±

±
± ∫

i
r

i
t

i

eLeLrr
dteLr

2222

22
6

3               
32

,

( )( ){ }[ ] t
i dterrirLr ∂+−±=Γ ±

± ∫ θθμθμ 23233
8 22   

( )( )[ ]
( ) θ

θθμ
θμθμ
∂−+

∂+−±+
±i

r
erL

rrirLrr
232

23233

                 
2

,                    (29) 

in which the factor 2L has been included to make the 
expressions look simpler. [11],[21],[24],[25]      

We now calculate the exact symmetry transformations of 
(19) from (28) as following: 

For the vector field 11∂vα where α is arbitrary constant the 

flow of this vector field is the function 

),,(),,( 2121 θθ vvvvf =  where  

        1
1 v

d
vd

α
λ

=  ; 02 =
λd
vd

; 0=
λ
θ

d
d

.                        (30) 

Solving system (30) we have the following 

          11 vev αλ=   ;   22 vv = ; θθ = .                        (31)                        

The second equation in (31) implies that LL = while the 
first equation implies that  

             )( 1212 μμ −=− −− rLCrL , 

              )1( 22 rLCrL
r
r

−− −+= μμ , 

             rHr 1
1
−=  ,                                                     (32) 

where )1( 22
1 rLCrLH −− −+= μμ , αλeC = .         (33)  

From θθ 22 rr = we have that 

             2
1
−= H

dt
td

.                                                     (34) 

Equations (33) and (34) constitute the exact symmetry 

transformations of (19) with the given generator 113 ∂=Γ v . 

We note that these symmetry transformations are global, that 
is 

              yy 1
1
−= H .                                                    (35) 
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We also note that when y is made three-dimensional, the 

symmetry transformations (35) is also true. For the vector 

field 22∂vα , we have the flow as ),,(),,( 2121 θθ vvvvf =  

where 

      01 =
λd
vd

 ;  2
2 v

d
vd

α
λ

= ; 0=
λ
θ

d
d

.                        (36) 

Solving system (36) we have the following 

         11 vv =   ;   22 vev αλ= ; θθ = .                         (37) 

The second equation in (44) implies CLL = while the first 
equation implies that 

                  μμ −=− −− 1212 rLrL  

               i.e. μμ −=− −− 12122 rLrLC  

where αλeC = , then 

            2C
r
r

= ⇒ rCr 2=  .                                   (37) 

But CLL =  implies that 

    22 rCr θθ = ⇒
dt
dCr

td
dr θθ

22 = , 

which implies that 

                  3C
dt
td

= ,                                                    (38) 

i.e.          tCdt 3+= , 
where d is an arbitrary constant. 
Consequently the exact symmetry transformations generated 

by the vector field 221 ∂=Γ v for the Kepler problem is given 

by equations (37) and (38). If )sin,cos(),( 21 θθ rryy =  

denotes the Cartesian coordinates of x in the plane of motion 

then θθ =  implies that 

                      yy 2C= ,                                              (39) 

which is the global symmetry transformation  where 

jiy 21 yy +=  is the two dimensional Cartesian vector. 

The vector field θα∂  has the flow 

),,(),,( 2121 θθ vvvvf =  where 

        01 =
λd
vd

 ;  02 =
λd
vd

; α
λ
θ

=
d
d

.                         (40) 

Solving system (40) we have the following, 

     11 vv =   ;   22 vv = ; αλθθ += .                        (41) 

Since 22 vv = ⇒ LL = we have that 

   μμ −=− −− 1212 rLrL  ⇒  rr = ,                      (42) 

and           tt =  .                                                         (43) 
While the global symmetry transformations are given 
by yy A=  and (43). The rotation symmetry transformations 

are given by yy A= , where ))(cos(1 αλθ += ry , 

 ))(cos(1 αλθ += ry ; That is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

1

cossin

sincos

y
y

y
y

αλαλ
αλαλ

y .               (44) 

If the matrix A  is arbitrary it implies that all rotation 
symmetry transformations are ensured. Applying the same 
manner of calculations we obtain the exact symmetry 
transformations for the vector field 

   i.e.        121 )sincos( ∂+ θαθα   

              yy 1
4
−= H ; 2

4
−= H

dt
td

                                  (45) 

where  

           xα ⋅+= −2
4 1 LH λ , λαeC = ,  

           2211 yy αα +=⋅ yα  .                                  

We note here also that this is true for the case when x is in 
three-dimensions. 
 
 

IV. ON THE KEPLER AND GENERALIZED KEPLER 
PROBLEMS IN 2-DIMENSIONS 

In the treatment of the exact symmetries of the Kepler 
problem above we considered the cases where the natural 
variables for both the Kepler and generalized Kepler problems 

are respectively μ−= −12
1 rLv , Lv =2  

and μ−= −12
1 rAv , Av =2 . We now consider the cases 

where the respective natural variables are constant multiples 
of the positive quadratic powers (or inverse quadratic powers) 

of the angular momentum, 21
1

−− −= Lru μ , Lu =2 ; and 
21

1
−− −= Aru μ , Au =2  respectively. And 

correspondingly we note that their generalizations 

videlicet )( 212 −− −= iii LrLw μ  for the Kepler problem and 

)( 212 −− −= iii ArAw μ for the generalized Kepler problem 

reduction variables followed. We now in the following 
compute their exact symmetries using these new variables. 
 
    A.  The Kepler problem  

In the reduced system for the Kepler problem the vector 

field 11∂uα , possesses the flow ),,(),,( 2121 θθ uuuuf =  

which satisfies the relations 

 1
1 u

d
ud

α
λ

= , 02 =
λd
ud

, 0=
λ
θ

d
d

.                            (46) 

The solutions to relations in (46) are 

      11 Cuu = , 22 uu = , θθ =                                    (47) 

where αλeC = . 

But 22 uu = and θθ =   ⇒   LL = , so that we have from 

the first relation in (46) that  

              ⎟
⎠
⎞

⎜
⎝
⎛ −=− −− 22

11 L
r

CL
r

μμ .     

i.e.           rHr 1−= ,                                                    (48) 

 where       ( )rLCrLH 22 1( −− −+= μμ ,                       
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and               2−= H
dt
td

. 

For the vector field 22∂uα  we have the flow as the 

function ),,(),,( 2121 θθ uuuuf =  which satisfies the 

relations 

       01 =
λd
ud

, u
d
ud

α
λ

=2 , 0=
λ
θ

d
d

.                          (49) 

The solutions to the relations in (49) are respectively given by 

       11 uu = , 22 Cuu = , θθ = .                                 (50) 

The second expression in (50) implies CLL = , thus the first 
expression gives  

         222
11

−−− −=− L
r

LC
r

μμ      

 i.e.     rHr 1−= ,                                                   (51) 

where                 ( )22 )1(1 −− −+= LrCH μ  

and from CLL =  we have that 

                  θθ 22 Crr =   ⇒ 21 −−= HC
dt
td

.     

In the case of the vector field θα∂  the flow    is the function 

),,(),,( 2121 θθ uuuuf =   such that 

      01 =
λd
ud

, 02 =
λd
ud

, α
λ
θ

=
d
d

  .                          (52) 

So that we have the solutions of the expressions in (52) given 
by  

            11 uu = , 22 uu = , 

             αλθθ +=  .                                               (53) 
Following the usual substitutions the first and the second 
relations in (53) respectively produced the following 
transformations 
                            rr = ,                                            (54) 
                           tdt += . 
The global transformation is denoted by yy = , from which 

one obtains the rotation symmetry transformations denoted by 
(55) (for arbitrary matrix B) 
              yy B= ,                                                       (55) 

with ( ))cos(1 αλθ += ry , ( ))sin(2 αλθ += ry . 

For the case of the vector field 1∂θα ie  the flow is a 

function ),,(),,( 2121 θθ uuuuf = . We only consider the 

cosine part of this symmetry and note that the sine part is 
easily deductive from this calculation. That is the flow satisfy 
the following relation (56) such that the cosine part is given 
by 

   θα
λ

cos1 =
d
ud

, 02 =
λd
ud

, 0=
λ
θ

d
d

.                      (56)                                       

Solving (56) we have the following relations 

    θαλ cos11 += uu , 22 uu = , θθ = .                   (57) 

On adapting the same substitutions as before we obtain 

                               rHr 1−=                                      (58)                          

                               2−= H
dt
td

 

where            )cos1( θαλrH +=  . 

Globally we have that the first relation in (58) transformations 
as 

                        yy 1−= H                                             (59) 

                         )1( yα ⋅+= λH     

where       2211 yy αα +=⋅ yα . 

 
   B.   The Generalized Kepler problem  

Following the same procedures for the Kepler problem 
diligently we have for the generalized Kepler problem the 
following transformations for the respective vector fields 
given as in the table1 below. 
 
Table1. Exact symmetry transformations of the generalized Kepler 
problem in 2-dimensions. 
      Vector fields    :     exact symmetry transformations 

a)         11∂uα        :         rHr 1−=  

                                           ⇒ yy 1−= H                                  

)1( 22 rACrAH −− −+= μμ  

            ⇒ )1( 22 yy −− −+= ACAH μμ  

    αθeC = , Lrg
rA 2

2
1

−⎟
⎠
⎞⎜

⎝
⎛=  ,   

)(
)(

rrg
rgr

dt
td

=  

b)       22∂uα          :       rHr 1−=   

                                        ⇒  yy 1−= H  

                                      ))1(1( 22 rACH −− −+= μ   

   ⇒     ))1(1( 22 y−− −+= ACH μ  

                                       
)(
)(

1

rrg
rgrC

dt
td

−=  

c)     θα∂                :        rr =   

               ⇒  yy B= the rotation symmetry transformations 

                                       tdt +=  

d)      1∂θα ie           :     rHr 1−=  

                                             ⇒ yy 1−= H                                 

)cos1( θαλrH += ⇒  )1( yα ⋅+= λH                           

                                        
)(
)(

rrg
rgr

dt
td

= . 
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We observed from the foregoing that the exact symmetry 

transformation of the vector field ww∂α  where w is the 

natural variable for reducing the radial component of the 
equation of motion to oscillator is invariant while that of the 

vector field 22∂uα  for the conservation law of the reduced 

systems is not when we take the constant multiples of the 
natural reduction variable(s) with the angular momentum for 
the exact symmetry transformation computations. We also saw 
that the exact symmetry transformations for the vector fields 

θα∂ and 1∂θα ie are unaltered.  

 
V. EXACT SYMMETRY TRANSFORMATIONS OF 

KEPLER PROBLEM IN THREE-DIMENSIONS 
The reduced system for (19) in three-dimensions have been 

known and is given by[14], [24],[25] 

              011 =+′′ uu  

              022 =+′′ uu                                                   (60) 

              03 =′u  

where 

              ( ) θθθμ cossin 2221
1 rrLLru −−− −−= , 

              θφ sin22
1 rrLu −−=′ , 

              θθφ cossin21
2 rLu −= ,                                                                                                

              θ21
2 rLu −−=′                                              (61) 

               θφ 22
3 sinru =  . 

We have reported [14],[28] that the exact symmetry 
transformations of dynamical systems in three-dimensions can 
be obtained from the Lie symmetries of the reduced systems. 
We list here the Lie symmetry generators of the reduced 

system (19). They consist of sixteen generators, one viz 1Γ  

for the conservation law 03 =′u  and the fifteen Lie symmetry 

generators for the pair of harmonic oscillators (60). They are 
as follows 

             331 ∂=Γ u , kj
jk u ∂=Γ2 , 

             φ∂=Γ3 , j
ij e ∂=Γ ±

±
φ

4 , 

             )(2
5 ∂⋅+∂=Γ ±

± uie i
φ

φ ,  

             )(6 ∂⋅+∂=Γ ±
± uiue j

ij
φ

φ                               (62)     

 where jj ukj ∂∂=∂= /;2,1, and 2211 ∂+∂=∂⋅ uuu . 

The symmetry representations of (62) in the original variables 
are very much complicated than that of section 2 above. We 
now compute the symmetry transformation generated by the 

vector field 11
11
2 ∂=Γ uαα for the Kepler problem. The 

symmetry transformation generated by this vector field is the 
transformation f given by 

         ),(),( φφ jj ufu = where   

        11 Cuu = , 22 uu = , 33 uu = , 

        φφ = , αλeC =                                                      (63) 

from which it follows that  

 11 uCu ′=′ , 22 uu ′=′ , LL =  .                                      (64) 

From 22 uu =  we have that  

        θθφθθφ cossincossin 2121 rLrL −− = .          (65) 

Also we have that   

            22 uu ′=′ ⇒  θθ 2121 rLrL −− = .                       (66) 

 And from )sin( 22242 θφθ += rL  we obtained   

                  1)(sec 2
2

22
2 =′+ uu θ                                 (67) 

Equations (65), (66), (67) imply that θθ = . Thus from the 

invariance of 2u and 2u′  in (63) and (64) we note that 

                   θθ secsec = ,  

i.e.              θθ = .                                                       (68) 
The relations in (54) imply that                                     

   ( ) θθθμ cotsin 1
21

1 ′′−−= −− uLru .                     (69) 

Since L ,θ ′and θcot are invariants of this transformation, the 
first relation in (63) becomes  

      ( ) =′′−− −− θθθμ cotsin 1
21 uLr    

                         ( ) θθθμ cotsin 1
21 ′′−− −− uCLrC ,  (70) 

which reduces to 

      ( ) ( )2121 −−−− −=− LrCLr μμ ;                            (71) 

                  i.e. rHr 1
2
−= , 

where )1( 22
2 rLCrLH −− −+= μμ .  

The relation 22 uu ′=′  in (64) implies that 

                     θθ 2121 rLrL −− =  

      i.e. ( ) 2
2

2
−== Hr

r
dt
td

                                         (72) 

In view of equations (71), (72) and the relations θθ = , 

φφ =  in (63) and (64) the required exact symmetry 

transformation of the Kepler problem in three-dimensions for 

the vector field 11∂uα is given by 

            yy 1
2
−= H ;  2

2
−= H

dt
td

 .                                (73) 

Thus, we hereby depict in the following Table2. some of the 
vector fields with their corresponding exact symmetry 
transformations below: 
 
Table2. Vector fields and exact symmetry transformations in 3-
dimensions (note the correction of misprints in [28]) 

      Vector fields : exact symmetry transformations 

22
22
2 ∂=Γ uαα :  Crr = ,  tCdt 2+=  

 
 ( d  is constant) and       yy C=   is the Global exact 

symmetry.      
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21
12
2 ∂=Γ uαα :       rr = ,   

                               
θαλθ

θ
sin2rLdt

td
−+′
′

= , 

 where ʹ denotes derivation with respect to φ .                 

12
21
2 ∂=Γ uαα : rHr 1−= , 2−= H

dt
td

 

where                                                             

[ ])cot1(coscos1 22 θθθθλα ′−+= ecrH . 

1
1
4 ∂=Γ φαα ie  :    

(The sine part is deductive from this cosine part 
obviously.                         

                             rHr 1−= , 2−= H
dt
td

 

where 

[ ])sincot(coscos1 φθθφθαλ ′−+= ecrH  

 
 

φαα ∂=Γ3 :                    rr = ⇒ yy B=  

                                         tdt +=  
 
We note [28] that the rotation symmetry transformations of 
the Kepler problem in three-dimension are obtainable from the 

vector field φαα ∂=Γ3 which has the rotation symmetries 

denoted by yy B= , B  is a scalar 3x3-matrix. That is by 

setting 
                )cos,sinsin,cossin( θφθφθ rrr=y  

as the spherical coordinates of the motion we have the rotation 
symmetry transformation about the z -axis as 

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

3

2

1

100

0cossin

0sincos

y
y
y

y
y
y

αλαλ
αλαλ

.                  (74) 

If B is an arbitrary rotation matrix then the rotation symmetry 
is globally defined. 

We have reported that the exact symmetries of the 
remaining six vector fields are computable as well following 
the same method diligently. We note also that the Hamilton 
vector K for the Kepler problem [25] is given by 

)^(12 yLyK −−−= rLμ  (This is a constant multiple of the 

expression for K given in ref.[14]). This expression for 
K yields the relation [14],[26],[27] 

           φυυ ieiiKKK ±
± ′±=±= )( 1121 ,                 (75)  

where 

           θθμθυ cos)1(sin 2
1 rLrr −−+= , 

            φθμυ sin)1( 2
1 rL−−=′ .                                (76) 

We note that one could consider instead of (60), the same 

system of equations with 1u replaced with 1υ , and its Lie 

symmetries to obtain the exact symmetry transformations of 
the original system.[14],[26],[27],[28],[29]  

However when we utilized the reduction variables which 
are constant multiple of the one above by the angular 
momentum say 

            ( ) θθθμ cossin 212
1 rrrLv −−= − ,  

            θθφ cossin2
2 rv = , 

            θφ 22
3 sinrv =  

instead for the above computations the symmetry 

transformations for the corresponding vector field ww∂α , we 

obtain the exact symmetry transformations given by 

        yy 1
2
−= H ;  2

2
−= H

dt
td

                                      (77) 

 where     )1( 22
2 yy −− −+= LCLH μμ , 

which are unchanged (invariant) compared with (73). For the 
other vector fields we obtain the following exact symmetry 
transformations in table3 below. 
 
Table3. Vector fields and exact symmetry transformations in 3-
dimensions when the reduction variable is a constant multiple of the 
quadratic powers of the angular momentum 

      Vector fields : exact symmetry transformations 

22
22
2 ∂=Γ vαα :  rr = ,  tdt +=  

 
 ( d  is constant) and       yy =   is the Global exact 

symmetry transformations only exist at the identity.      

21
12
2 ∂=Γ vαα :       rr = , 

θαλθ
θ

sinrdt
td

+′
′

=  

 where ʹ denotes derivation with respect to φ .                     

12
21
2 ∂=Γ vαα : rHr 1−= , 2−= H

dt
td

 

where                                                             

)]cot1(coscot1[ 22 θθθθαλ ′++= − ecrLH . 

1
1
4 ∂=Γ φαα ie  :    

(The sine part is deductive from this cosine part 
obviously),                         

                  rHr 1−= , 2−= H
dt
td

;where 

[ ])sincot(coscos1 12 φθφθφθαλ −− −+= ecrLH . 

 
 

φαα ∂=Γ3 :           rr =  

       ⇒ yy B= (rotation symmetry transformations) 

                              tdt += . 
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VI. CONCLUDING REMARKS 
The exact symmetry transformations of the vector field 

ww∂α  where w is the natural variable for reducing the radial 

component of the equation of motion to oscillator is invariant 
while that of the other vector fields  may not when we take the 
constant multiples of the natural variable(s) with the angular 
momentum for the exact symmetry transformation 
computations in 2-dimensions. One could varify from the 
comparison of equations (32)-(35) and (48), (37)-(39) and 
(51), (42)-(44) and (54), (45) and (58). We have also noted 
that in the case for 3-dimensions the situation is not different 

for the vector field ww∂α , but for other vector fields the 

symmetry transformations vary as the table2 and table3 clearly 
shown. 

We have demonstrated [26],[28] that the exact symmetry 
transformations of the Kepler problem can be calculated from 
the symmetries of its reduced systems rather than just 
obtaining the symmetry generators (vector fields) that are 
often complicated in their representations as they are in their 
nonlocal symmetry forms in system (29) above. Hitherto (c.f. 
[26],[28])  the exact symmetry transformations computation as 
demonstrated above is new. We report here that we have 
devised and utilized this computational method to obtain the 
exact symmetries of other dynamical systems that are 
reducible to systems of oscillator(s) and conservation law(s). 
Consequently the complicated nonlocal symmetry 
representations of dynamical systems are simply realizable in 
their simple explicit forms as shown using the Kepler problem 
as a vehicle. In our recent works the Kepler problem with 
drag, the generalized Kepler problem, the MICZ problem 
(though much more cumbersome than that of the former) and 
a host of other dynamical systems with complicated nonlocal 
symmetries have proven to admit this computational method 
for obtaining their exact symmetries in both two- and three-
dimensions. These are subject for further discussions. The 
computation of the exact symmetry transformations of the 
generalized Kepler problem in 3-dimensions and that of the 
Kepler problem with drag are in progress. 
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