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  Abstract: - In the present study a Friction-Driven oscillator is 

investigated analytically using perturbation method and numerically 
with Runge–Kutta’s integration procedure. The analytical method is 
also used to investigate damping performance of a single-particle-
impact damper on amplitude and frequency of system over a wide 
range of particle-to-structure mass ratios, clearance, and coefficients 
of restitution. Considering sensitivity of the system to variation of 
mass ratio and coefficient of restitution, optimal values are obtained 
for these parameters. These optimal values are plotted as a function 
of the other two parameters. The frequency of the system has low 
sensitivity to the variation of coefficient of restitution but varies with 
clearance and mass ratio changes.  
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I. INTRODUCTION 

 riction-driven oscillation is a kind of self-excited 
vibration in  which the variable friction force generates 

periodic motion. The vibration of dry friction damped systems 
has been of considerable interest to researchers for a long 
time, for it occurs frequently in everyday life as well as in 
engineering systems such as creaking doors, squeaking chalks, 
and rattling turbine blade joints The characteristics of the 
friction force are quite complex and depend on the normal 
pressure, slip velocity, surface and material properties [1]. A 
single particle impact damper is a common vibration-damping 
device consisting of a single particle enclosed within a 
container. 
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The container can either be mounted directly to the structure 

to be damped [2] or can be designed as a part of the structure, 
often as holes drilled directly into the structure [3]. The 
advantages of impact dampers over traditional damping 
devices are that impact dampers are inexpensive, have simple 
designs that provide effective damping performance over a 
range of accelerations and frequencies [4,5]. In addition, 
impact dampers are robust and operate in environments that 
are too harsh for other traditional damping methods [6]. This 
damper can also be used to damp harmonic excitation system 
[7]. Also the impact damper can be used for two-degrees-of-
freedom system [8]. Vibration damping with impact dampers 
has been used in a wide variety of applications including 
vibration attenuation of cutting tools [9] television aerials [10], 
turbine blades [11,12] structures [13] and plates [2], tubing, 
and shafts [14,15,16].   

   In a recent paper, the control of friction-driven oscillation 
by using impact damper has been studied [17]. An 
experimental setup of a single degree-of-freedom friction-
driven oscillator with an attached impact damper was designed 
and an approximate solution of general steady-state response 
was then derived analytically using a piecewise equivalent 
linearization approach. 

  In this paper experimental results, reported in literature 
were used to find the equation of motion. Using dimensionless 
variables and choosing the order of the magnitude of the 
different elements of the system it was found that the problem 
depends on a few parameters, so perturbation method is used 
to solve this problem [18].  The behavior of this system is 
analyzed over a wide range of particle-to-structure mass ratios, 
non-dimensional clearance, d, and coefficient of restitution to 
derive optimal values for these parameters. 

 
II. PROBLEM FORMULATION 

Figure (1) shows the standard mass on a moving belt model 
of a friction oscillator. The frictional force is a function of 
relative velocity, thus the equation of the motion of the mass 
can be written as equation (1). 
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Fig.1 
Mass on the moving belt system 

  
                                        

00 )()()( VXasXVFtKXtXM <−=+         (1) 
 
Where F  is the friction force, K  the linear spring 

stiffness and 0V is the constant belt speed. 
It is convenient to introduce a new variable x (t), replacing 

X (t) as 
                                               

)()()( 0 KVFtXtx −=                                               (2) 
 
Therefore Equation (1) becomes 
                                    

)()()()( 00 VFxVFtKxtxM −−=+                       (3) 
 
It is assumed that the frictional force can be adequately 

expressed as a Taylor’s series. Assuming )(tx to be small and 
the Taylor’s series converges rapidly enough to justify the use 
of the first three terms only,     
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Equation (4) can be written as 
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The non-dimensional form of the above equation is  
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Where the prime denotes differentiation with respect to 

τ and 
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For M=.56 (kg) and K=763 (N/m) the values of parameters 

( candba, ) are obtained experimentally [17] as below: 
 

0088.00099.004.0 =−=−= cba        
Thus the Equation (7) can be written as 
                         

)(2475.0)(()()( 2 ττεττ yyyy ′−′=+′′ ))(22.0 3 τy′−          (8)      
                                                                     
Where 04.0=ε . 
 
Multiple Scale method is used to obtain the solution of 

present system. Solving Equation (8) it follows  
 

)cos()1)04.(exp(46.2)( 2
5.

1 ccy +++−= − τττ                 (9)  
 
Equation (9) shows that 
 

∞→+→ τετ asOty )(cos46.2)(                         (10) 
 
   The answer is independent from the values of 1c as long 

as it is not zero. This result is in complete agreement with the 
numerical solution. Figure (2) shows Numerical and 
Analytical solution of Equation (8). The initial conditions are 
found by putting 1c and 2c  equal to zero. 

Figure (3) shows the peaks of numerical and analytical 
solutions as a function of dimensionless time. For the 
numerical analysis, Runge–Kutta’s integration procedure is 
employed. This figure indicates a complete agreement 
between numerical and analytical solutions.            
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Fig.3 

The peaks of numerical and analytical solutions 
• Solid line indicates analytical data, 
• Symbols indicate numerical data. 

 
 
Moreover, the effect of an impact damper is also 

investigated. A single-particle-impact damper is a common 
vibration-damping device consisting of a single particle 
enclose within a container shows the friction-driven oscillator 
with an impact damper (Figure 4).                      

 

 
     

Fig.4 
Mass on a moving belt system with an impact damper 

                         
 
Considering the steady-state motion of the system, a 

periodic solution with two non-symmetric impacts per cycle is 
derived. Without any loss of generality, the time origin is 
arbitrarily set 0=τ  at the instant of an impact with the right-
hand side wall. Now, the next two consecutive impacts occur 
at 1ττ = and 2ττ = . 

 The differential equations describing the motion of the 
system between two consecutive impacts can be written in the 
following non-dimensional form: 
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Fig.2  
Comparison of the numerical solution (b) with the analytical solution 

(a) for 7536.1)0( =y  and 1096.0)0( =y  
( 021 == cc ) 
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 The superscript “+” and “-“indicate conditions just after 

and prior to the impact.  
     
It can be written:                                     

0

0
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x
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Where M is the mass of structure and u is the displacement 
of particle. 

 
Since there is no force acting on the secondary mass “m” 

between impacts, its velocity during the intervals 
10 −+ << ττ  and 21 τττ <<+ remains constant and is 

assumed as 1v and 2v , in respective intervals.             
Now, consider the displacement continuity at the impact as 
    

)()0( 211 τyy =+                                                              (14) 
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(15)                         
The definition of the coefficient of restitutionε  yields 
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It is used when the impact occurs on the right-hand side 
wall, and 
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When the impact occurs on the left-hand side wall.   
Using the conservation of momentum principle, we get 
                                  

22111 )()0( mvMymvMy +=++ τ                                 (18) 
 

111211 )()( mvMymvMy +=+ −+ ττ                                 (19) 
 
From the kinematics of motion of the secondary mass 

between impacts, it may be written as follows 
 

11111 2)()0( ττ vdyy −=+− −+                                        (20)  
               

)(2)()( 1221111 ττττ −=+− + vdyy                              (21)  
   Now we have total 8 unknown variables, 

21214321 ,,,,,,, vvcccc ττ and 8 nonlinear equations. Using 
these equations we obtain the values of these variables for the 
given values of dmMcba ,,,,,  andε . System behavior is 
studied over a wide range of particle-to-structure mass ratio 
and coefficients of restitution. 

In this study the parameters h and r are quantified by 

 

undamped

damped

A
A

h =                    
M
mr =  

Where dampedA  is the amplitude of structure with impact 

damper and undampedA  is the amplitude of the structure 
without impact damper. It is obvious that the effect of impact 
damper on the amplitude of system has inverse relation with h. 

 
III. PROBLEM SOLUTION 

A system of friction-driven oscillations with an impact 
damper is solved analytically for the particular range of d. In 
Figure (5) the non-dimensional amplitude of the controlled 
system, h, is plotted as a function of dimensionless clearance 
d, for different values of mass ratio r= 0.05, 0.10, 0.15 with 
e=0.8. It is observed that dimensionless amplitude of the 
controlled system decreases by increasing non-dimensional 
distance, d.  
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Fig.5 

Analytical results for different values of r, 
with e=0. 8 

 
In Figures 6(a) and 6(b), dimensionless amplitude h, is 

plotted against e for two different values of r and d. It is 
observed that the non-dimensional amplitude of the controlled 
system, h, increases by increasing restitution coefficient. 
Because dissipation of energy approaches zero in this 
condition, when 1→ε  the amplitude of the controlled system 
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approaches the amplitude of the uncontrolled system. 
Consequently the performance of    impact damper is weak in 
higher limits of e.  

Figures (6) and (7) show that dimensionless amplitude h 
decrease when e decreases because of increasing the energy 
dissipation. From the overall observation of all results, it is 
noticed that there is an infinite restitution coefficient, e, that 
decreasing restitution coefficients less than this value, result in 
small influence on the amplitude of the system. On the other 
hand very low restitution coefficients are practically 
unattainable and problematic, because of material 

deformation. Thus we determine an optimal restitution 
coefficient that depends on r and d. Another important 
conclusion is that the response of the system in large 
coefficient of restitution is independent of r, and there is a 
lower limit for r by which the amplitude converges to a 
specific value. 
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Fig.6 

Non-dimensional amplitude of a controlled system, h, as a function of the coefficient of restitution for (a) d=0.6, r=0.05; (b) d=0.8 r=0.1 
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Fig.7 

Analytical results for different values of d with (a) r=0.075 (b) r=0.1
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Fig.8 

Optimal coefficient of restitution as a function of r and d 
 

The optimal coefficient of restitution is shown in Figure (8) 
for a wide range of mass ratio and clearance. 

As indicated in Figure (8) the optimal coefficient of 
restitution increases when r and d decrease. 

Figure (9) shows the effect of mass ratio on h for constant e 
and d. The results presented in this figure show that the 
influence of impact damper on amplitude of the system 
increases when mass ratio increases, because momentum 
transfer between the structure and particle increases by 
increasing particle mass.  
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Fig.9 

Analytical results for e=0.8  
and with d=0. 4, 0.6 and 1 

 
From the overall observation of all results, it is noticed that 

there is an infinite mass ratio that increasing mass ratio more 
than this value results in small influence on the amplitude of 
the system. Moreover, a much higher mass ratio increases the 
impulse transfer. This results in unwanted excessive vibration 
at the resonance of the main structure. Consequently we 
determine the optimal mass ratio that depends on e and d. 
Another important conclusion is that the response of the 
system in large mass ratios is independent of d, and there is a 
higher limit for r by which the amplitude converges to a 
specific value. A much smaller mass ratio will however reduce 

the momentum transfer between the impact damper and the 
structure, reducing thereby the effectiveness of the impact 
damper. 

The optimal mass ratio is plotted as a function of e and d in 
Figure (10). 
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Fig.10 

Optimal mass ratio as a function of d and r 
 
From Figure (10) it can be seen that optimal mass ratio 

increases by increasing restitution coefficient and decreasing 
clearance.  

  The two consecutive impacts occur at 1ττ =  and 2ττ = , 
and as it is mentioned earlier 12 2ττ ≠ . The non-dimensional 
period of system 2τ  is examined analytically and the 
frequency of the system 21 τ=f is plotted as a function of 
variables r and d. 

Figures (11) and (12) show that by decreasing d, system 
frequency decreases. Results presented in Figure (12) shows a 
relatively low sensitivity to a variation of the restitution 
coefficient. It is also indicated that the frequency decreases at 
large values of mass ratio.  
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Fig.11 

Effect of d on the system frequency  
for different values of r and e=0.8 
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Fig.12 

Sensitivity of the system to e and r on the frequency of system for 
d=0.8 

 
 

IV.   Conclusion 
The amplitude of the friction-driven oscillator without 

impact damper was investigated numerically and analytically. 
The perturbation method was employed in the analytical 
solution and results were very close to the numerical results. 
The control of a single degree-of-freedom friction-driven 
oscillator by using an impact damper was studied analytically 
and numerically for different values of clearance, mass ratio 
and restitution coefficients. Results were compared with 
numerical results. These conclusions are interpreted: 
• The amplitude of the controlled system decreases by 

decreasing restitution coefficient as a result of mounting 
energy dissipation. It has been observed that decreasing 
restitution coefficient, less than the specific value, results in 
small influence on the system amplitude, on the other hand 
very low restitution coefficients are practically unattainable 
and problematic, because of material deformation, and thus 
this specific value is defined as the optimal restitution 
coefficient which depends on the mass ratio and clearance. 
• Optimal coefficient of restitution increases by increasing r 

and d.  
• The response of the system in large coefficient of 

restitution is independent of r, and there is a lower limit for r 
by which the amplitude converges to a specific value. 
• Momentum transfer between impact damper and structure 

increases with increasing mass ratio, having more influence on 
amplitude. However when mass ratio reaches specific value, 
the system has low sensitivity to its varied values. This value 
is optimal for the mass ratio because much higher mass ratio 
will increase the impulse transfer. This would result in 
unexpected excessive vibration at the resonance at the main 
structure 
• Optimal mass ratio increases by increasing restitution 

coefficient and decreasing clearance. 
• Variation of the restitution coefficient has low influence 

on the system frequency. 
The frequency of the system decreases by increasing mass 

ratio and clearance. 
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