
 

 

  
Abstract—In this paper, the mixed-integer linear programming 

(MILP) of minimax assignment is formed, and a solution called 
Operations on Matrix is presented and compared with the solutions of 
exhaustion and MILP. Theoretical analyses and numerical tests show 
that the operations on matrix are efficient well-implied enumeration 
for both minimax and global-minimum assignment problems. 
 

Keywords—Assignment problem, method of exhaustion, 
mixed-integer linear programming (MILP), operations on matrix.  

I. INTRODUCTION 
HE global-minimum assignment problem is described, see, 
e.g. [1], by language as: There are n  people and n  tasks. 
Each person completes and only completes a task. The 

payment in each person for a task is given. The problem is, 
which person completes which task such that the total payment 
is minimum?  

Let 
ijx  be the 2n  0-1 decision variables, where 1ijx =  

represents person i  for task j , and 0ijx = , otherwise. The 

global-minimum assignment problem may be described as 
follows, 
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where ijc  represents the payment in person i  for task j , 

elements ijc  give an n n×  real cost matrix. The problem (1) 

is an integer linear programming (ILP). If the constraint 
condition 0 or 1ijx =  is replaced by 0 1ijx≤ ≤  in (1), then it 

becomes the relaxed linear programming (RLP). We may 
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naturally solve the problem (1) by ILP methods, for instance 
by the isometric surface method, see [2]. All the ILP methods 
are derived form the RLP methods, and there are 2n  decision 
variables in (1). The flops to solve once RLP for (1) are 
usually  3.5 7(( ) ) ( )O n n O n× = , so that, from the point of view of 
computational complexity, the ILP methods for (1) aren’t 
better than the Hungarian algorithm, see, e.g. [1].  

If 
ijc−  represents the profit to gain by person i  for task j  

in (1), then the global-minimum assignment problem may be 
regarded as the assignment problem for maximum gross profit. 
Let ( )ijC c=  be the negative profit matrix, and solve the 

global-minimum assignment problem for the negative profit 
matrix. The negative value of objective function is the 
maximum gross profit. 

If the “payment” is understood as cost depletion, then the 
objective function of the global-minimum assignment problem 
(1) is reasonable. However, if the “payment” is understood as 
time, then the objective function of (1) is not always 
reasonable. The “total time” to expend in people for their tasks 
is not interested here. It is important to minimize the maximal 
time to expend in some person for his task. Therefore the 
objective function of (1) should be modified. That is,  
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This is the mathematical model of the minimax assignment 
problem. It is an integer programming, where the objective 
function is nonlinear. There is no evident relation between the 
solutions of (2) and (1).  
    Assignment problem, linear programming (LP), ILP, MILP 
and their applications have been researched for many years, 
see, e.g. [1,3,4,6,7,8].  

In this paper, the method of exhaustion for the integer 
programming (2) is analyzed first and foremost. Then the 
MILP of the minimax assignment problem (2) is formed, and 
the isometric surface method for the MILP is discussed. A 
solution called Operations on Matrix is presented for the 
minimax assignment problem (2) is presented and applied to 
solving the global-minimum assignment problem (1). Finally, 
the analyses of computational complexity and numerical tests 
show that the operations on matrix are efficient well-implied 
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enumeration, see [5], for both minimax and global-minimum 
assignment problems.  

II. THE METHOD OF EXHAUSTION FOR (2) 
The basic idea of the method of exhaustion is to compare all 

the objective functions of feasible solutions directly or 
indirectly. After the comparison is completed, the optimal 
solution is found naturally. Unfortunately, number of the 
feasible solutions for general integer programming or 
mixed-integer programming increases with scale of problem 
too fast for any computer.  

The feasible solution of the minimax assignment problem 
(2), for example, is an assignment Γ  corresponding to n  “1” 
and nn −2  “0” of n n×  0-1 matrix, where all the elements “1” 
are located in different rows and columns of matrix. The 
objective function z  of each assignment Γ  is the maximal 
element corresponding to “1” in the cost matrix ( )ijC c= . The 

assignment Γ  minimizing the objective function z  is a 
solution of (2). The solution is not unique possibly, but the 
value of the optimal objective function is unique.  

Let 
1 2{ , ,..., }nj j j  be a permutation of {1, 2,..., }n . Set 

1
11 =ja , 1

22 =ja , …, 1=
nnja  in n n×  0-1 matrix. Thus a 

feasible assignment Γ  is formed, where the objective 
function 

1 21 2max{ , ,..., }
nj j njz c c cΓ = .  

Each permutation 
1 2{ , ,..., }nj j j  corresponds to an 

assignment Γ , so that the sum total of assignments is !n . 
When n  is big enough, in Stirling’s factorial formula, 

! 2 ( / )nn n n eπ≈ . This shows that the sum total of 
assignments increases in exponent with n .  

It is not convenient to solve (2) by the method of exhaustion 
on PC when n  exceeds by 10.  

III. AN MILP MODEL  
Introducing a real variable 

1ny +
, we can improve the 

minimax assignment problem (2) into MILP. The MILP 
equivalent to (2) is as follows,  
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The MILP (3) is equivalent to the problem (2) clearly, where 
there is only one real variable 

1ny +
, but there are more 2n  

constraint inequalities in comparison with (2).  
    The isometric surface method for ILP, see [2], may be also 
applied to MILP, see [3]. In order to apply the isometric 
surface method for the MILP (3), (3) should be changed into 
the following canonical form,  
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The isometric surface method for the MILP (4) is derived form 
the solution of the following RLP,  
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There are 2 1n +  variables and 243 2 −+ nn  constraint 
inequalities in the RLP (5). The flops to solve once RLP (5) are 
more than )( 7nO . In order to get an optimal solution of the 
MILP (4), generally we need to solve the RLP (5) for 2n  times. 
Therefore the flops to solve the MILP (4) are generally )( 9nO  
using the isometric surface method.  

What is more, the 2 1n +  hyperplanes to determine optimal 
solution of the RLP (5) constitute ill-condition linear 
equations. Generally we cannot get the solution of (5) 
whatever using the isometric plane method, see [4], or 
MATLAB simplex method. Thus it can be seen that some ILP 
or MILP of decision problem are difficult to solve.  

IV. THE OPERATIONS ON MATRIX FOR (2) 
The operations on matrix for the minimax assignment 

problem (2) find the solution directly from the cost matrix 
)( ijn cC =  and the objective function, here the subscript n  of 

cost matrix nC  represents the order of matrix.  
We arrange the 2n  payments 

ijc  in order from small to 
large, where some payments are possibly equal each other. So 
that these 2n  payments are arranged in order from small to 
large into the r )1( 2nr ≤≤  real numbers with different 

levels rRRR ,...,, 21 ， )...( 21 rRRR <<< , where there are ks  

payments ijc  equal to kR  )1( rk ≤≤ . Clearly 1≥ks  and 

2

1
ns

r

k
k =∑

=

. Let R  be a real number larger than or equal to rR , 

R   may be also regarded as the sign ∞ . If 1=r , namely all 
the 

rij Rc = , then there are !n  solutions for (2), the objective 
function value of every solution is rR . There is no harm in 
supposing 1>r .  

It is easy to see max max{ } max max{ }r ij iji j j i
R c c= =  and. 

1 min min{ } min min{ }ij iji j j i
R c c= = . But 

min max min{ }r
ijji

R c=  and 
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min max min{ }c
ijij

R c=  aren’t equal each other possibly. Let 

max min minmax{ , }o r cR R R= . We have,  
Proposition 1. The optimal objective function value of the 

minimax assignment problem (2), *z , is larger than or equal to 
max
oR .  
[Proof] Each person completes and only completes a task 

because of the constraint conditions of (2). The payment to 
expend in the last person for his task is larger than or equal to 

min
rR , and larger than or equal to min

cR  as well. Therefore the 
payment oRz max

* ≥ .   □  
All the elements larger than max

oR  in the cost matrix 

)( ijn cC =  are covered by R . This covering is called basic 

covering. Via Proposition 1, after the basic covering of 
nC , 

max
oR  is the largest uncovering element, and there is an 

uncovering element in each row and each column at least. If 
there exists a feasible assignment Γ  in all the uncovering 
elements, then Γ  is an optimal solution of (2).  

Proposition 2. Assume that, after the basic covering of 
nC , 

there are s  ( 2s ≥ ) uncovering elements in each row and each 
column at least. Removing the row and column where some 
uncovering element is located at the cross point, we get the 
residual matrix of 1n −  order, 

1nC −
, where there are 1s −  

uncovering elements in each row and each column at least.  
[Proof] It is sufficient to prove for 2s = . Assume that, after 

the basic covering of 
nC , there are two uncovering elements 

1ijc  and 
2ijc  (

1 2 max, o
ij ijc c R≤ ) in the i -th row. Since there are two 

uncovering elements in the 
1j -th column or the 

2j -th column 
of 

nC  at least, there is an uncovering element less than or equal 

to max
oR  in each row and each column of 

1nC −
 at least, after the 

i -th row and the 
1j -th column or the i -th row and the 

2j -th 
column of 

nC  are removed.  
Similarly, assume that, after the basic covering of 

nC , there 
are two uncovering elements 

1i jc  and 
2i jc  in the j -th column. 

There is an uncovering element less than or equal to 
max
oR  in 

each row and each column of 
1nC −
 at least, after the j -th 

column and the 1i -th row or the j -th column and the 
2i -th row 

of 
nC  are removed.  □  

Set nt CCnt == :,:  in the beginning, and make the basic 
covering of the matrix )( ijt cC = . Find the sequence number of 

max
oR  in series rRRR ,...,, 21 , and let o

k RR max= . The elements 
larger than or equal to 

11 ++ = k
t
k RR  in the cost matrix tC  have 

been covered by R . The algorithm, operations on matrix, for 
the minimax assignment problem (2) consists of the following 
steps:  

① Investigate the uncovering elements in every row and 
column of tC . Suppose there exists row or column where only 

one element is uncovered, and the uncovering element is pqc . 

Record the minimal 
pqc  (optimal assignment in single entry), 

and remove the p -th row and the q -th column of the matrix 

tC . The residual matrix of 1−t  order is 1−tC . Set : 1t t= − , 

1:t tC C −= , and turn to Step ① or ②.  
② Investigate the uncovering elements in every row and 

column of tC . Suppose that each row or column has two 
uncovering elements at least. Turn to Step ③.  
③ The optimal objective function value of tC  is t

kR . Each 

row or column of tC  has two uncovering elements at least. 
Deflate tC  with one order according to Proposition 2. There 
are many selections of recorded uncovering element 

pqc  
during the deflation. The selective sequence is as follows,  

I) Removed the p -th row or the q -th column contains 
the least uncovering elements,  

II) The number of elements contained in the p -th row 
and the q -th column is minimum,  

III) Record the minimal pqc  (optimal assignment in 

single entry).  
Set 1:,1: −=−= tt CCtt  after deflation. Turn to Step ① or ② if 

2≥t .  
If }1,,1,|max{ −= nntc pq

 is larger than o
k RR max= , then 

the 
kR  covering doesn’t make a feasible assignment. Consider 

the 
kR  covering for 1: += kk , and perform again the next 

covering circle of Step ① - ③, until }1,,1,|max{ −= nntc pq
 

is equal to 
kR  (the optimal objective function value).  

Proposition 3. Assume that the 2n  payments of cost matrix 
nC are arranged in order from small to large into the r  real 

numbers with different levels rRRR ,...,, 21 , where there are is  
payments 

ijc  equal to 
iR  ( 1, , )i r= , and that, after the basic 

covering of 
nC , the sequence number of 

max
oR  in series 

rRRR ,...,, 21  is k  )1( rk ≤≤ . Then using 1r k− +  covering 
circles at most, the operations on matrix find a solution of the 
minimax assignment problem (2).  

[Proof] Since, for the first covering circle, there is an 
uncovering element in each row and each column at least, two 
uncovering elements are recorded at least in the first covering 
circle. If n  uncovering elements are recorded in the first 
covering circle, then the operations on matrix find an optimal 
solution with the basic covering. Otherwise, increasing a 
covering circle, for example 1: += kk , the level of uncovering 
elements is increased to 

1kR +
, and the number of uncovering 

elements is increased to 
1

1

k

i
i

s
+

=
∑ . Since 2

1

r

i
i

s n
=

=∑ , the operations 

on matrix find a solution of (2) using 1r k− +  covering circles 
at most.   □  

We shall prove that the operations on matrix give the 
optimal solution of the problem (2) in well-implied 
enumeration. An enumerative algorithm is called well-implied 
enumeration, see [5], that means it can obtain the optimal 
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solution in fact with only a few enumerated feasible solutions, 
where “only a few” is understood as the number of enumerated 
feasible solutions is a polynomial function of dimension of 
solution space and number of constraints, and “in fact” is 
understood as some probability to obtain the optimal solution 
is equal to 1. The operations on matrix, via Proposition 3, 
obtain a solution of the problem (2) with only a few 
enumerated feasible solutions. It is necessary to prove that 
some probability to give the optimal solution with operations 
on matrix is equal to 1.  

The following hypotheses concerning probability 
calculation are to conform to reality.  

  U1)  All the elements of cost matrix C  are equally likely 
distribution;  

  U2)  After R  covering of C , all the elements are divided 
into two classes, covering elements and uncovering elements, 
there is no difference between the elements of each class.  

Proposition 4. Assume that the number of uncovering 
elements of cost matrix C , where there is an uncovering 
element in each row and each column at least, is m . Then 

2n m n≤ ≤ , and the probability ),( 1 mZp  to obtain the optimal 
solution with operations on matrix for C  is equal to 1 when 
m n=  or 2 2n n m n− ≤ ≤ .  

[Proof] Since, for the n -order cost matrix C , there is an 
uncovering element in each row and each column at least, 
clearly 2n m n≤ ≤ . If nm = , then 1),( 1 =nZp  because the n  
uncovering elements are distributed on different row and 
column of matrix. Step ① of operations on matrix can give the 
optimal solution.  

If nnm −≥ 2 , then 1),( 1 =mZp  as well. This is easily to 
prove by inductive method. In fact, 

2 2
1( , | ) 1p Z m n n m n− ≤ ≤ =  holds clearly for the 3-order cost 

matrix with 6 uncovering elements at least. Suppose that the 
conclusion holds for the k -order cost matrix. Let 1n k= + . If 
there is only one uncovering element in some row or column 
of cost matrix, then, after deflation of matrix with operations 
on matrix, there is one covering element at most in the k -order 
cost matrix, and the conclusion holds clearly for the k -order 
matrix. If there are two uncovering elements in each row and 
each column of cost matrix at least, then, after deflation of 
matrix with operations on matrix, there are 

2)1(3)1( 2 ++−+ kk  kk −= 2  uncovering elements at least 
for the k -order cost matrix, and the conclusion holds as well.   
□  

It is possible that there is no feasible solution of the 
assignment problems for the basic covering of the cost matrix 
C  when nnmn −<< 2 . Therefore it is possible that 

1),( 1 <mZp  for nnmn −<< 2 .  
Proposition 5. Assume that the number m  of uncovering 

elements of cost matrix 
nC  satisfies ( 1) / 2m n n≥ + , and that, 

during the deflation of each t -th order matrix ( , 1,t n n= − ) 
with operations on matrix, t  uncovering elements are 
removed at most , then the probability to obtain the optimal 
solution by operations on matrix 1),( 1 =mZp .  

[Proof] It is easy to prove the proposition by inductive 
method. In fact, the equality 

1( , | ( 1) / 2) 1p Z m m n n≥ + =  holds 
for 2n =  clearly. Suppose that the proposition holds for 

1n s= − , namely 
1 1 1( , | ( 1) / 2) 1s sp Z m m s s− − ≥ − = , where 

1sm −
 

represents the number of uncovering elements of the ( 1s − )-th 
order matrix. Let n s= , and the number of uncovering 
elements of the s -th order matrix ( 1) / 2sm s s≥ + . Since s  
uncovering elements are removed at most when the s -th order 
matrix is deflated with operations on matrix, the number of 
uncovering elements of the ( 1s − )-th order deflated matrix 

1sm − ≥ ( 1) / 2 ( 1) / 2s s s s s+ − = − . Therefore 
1( , |sp Z m  

( 1) / 2) 1sm s s≥ + = .  □  
It is easy to see that, for any covering of cost matrix nC , the 

exit of operations on matrix is always Step ① whether the 
covering has feasible solution of problem (2) or not. Assume 
that there are s  uncovering elements in each row and each 
column of some covering at least, thus the number of 
uncovering elements snm ≥ , where 1≥s . If 1s =  holds from 
start to finish during the deflations of matrix with operations 
on matrix, then the solution is clearly correct. However, if 

1s >  occurred during the deflations, then the solution is not 
always correct. For example,  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01001
11110
11110
01001
10001

C
， 

where 1 represents uncovering element, and 0 covering 
element. There is a feasible solution at least for matrix C  and 
there are 14 uncovering elements. 2s = . Four uncovering 
elements are removed when the matrix is deflated with Step ③ 
of operations on matrix, and there are 4 selections of recorded 
uncovering element. If row 1 and column 5 are removed, then 
the operations on matrix cannot give feasible solution. With 
the exception of this, the operations on matrix find the feasible 
solution. Therefore, when 1s > , the operations on matrix 
mistake possibly the covering that has solution for the 
covering that has no solution.  
  In order to avoid possibly mistaken about this case, the 
operations on matrix should deal specially with the cost matrix. 
That is, the recorded element is modified artificially as the sign 
∞ , then the operations on matrix are applied to the modified 
cost matrix again. This special treatment guarantees that the 
operations on matrix give always a correct solution of the 
problem (2).  

Proposition 6. Assume that there are s  uncovering 
elements in each row and each column of cost matrix nC  at 
least, where 1≥s . If the cost matrix is modified artificially 
when the conclusion of no feasible solution is given by 
operations on matrix for 1s > , then the probability to obtain 
the correct solution of problem (2) by operations on matrix 

1),,( 2 =smZp .  
[Proof] Since the recorded element becomes into ∞  and is 

covered for each artificial modification, there are 1s −  
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uncovering elements at least in each row and each column of 
cost matrix modified artificially. If 1 1s− >  and the conclusion 
of no feasible solution is still given by operations on matrix, 
then the cost matrix is artificially modified again. Therefore, 
the result to perform operations on matrix for some cost matrix 
modified artificially is that a feasible solution is obtained, or 
that 1s =  holds from start to finish during the deflations and 
no feasible solution is obtained. The operations on matrix give 
a correct solution always, namely 1),,( 2 =smZp . □  

Proposition 7. The operations on matrix with modifying 
artificially cost matrix for the minimax assignment problem (2) 
are well-implied enumeration. Using 1r k− +  covering circles 
at most, the operations on matrix find the optimal solution, 
where r  and k  are specified as in Proposition 3.  

[Proof] If there is feasible solution of the problem (2) for 
the basic covering of cost matrix C , then, via Propositions 4 - 
6, the optimal solution is found by the first covering circle. 
Otherwise, the next covering circle is performed. Increasing a 
covering circle, one level of uncovering elements is increased. 
Using 1r k− +  covering circles at most, via Proposition 3, a 
feasible solution is found. Suppose that the feasible solution is 
found at the earliest j -th covering circle. Then there is no 
feasible solution before the j -th covering circle. That is, in 
order to find feasible solution, 1−j  levels of R  covering for 
cost matrix should be increased from the level oRmax

of basic 
covering. Therefore the optimal objective function value 
equals 

1k jR + −
, where o

k RR max= . The solution found by 

operations on matrix in the j -th covering circle is the optimal 
solution.  □  

To perform Step ① - ③ for the t -order matrix, the flops are 
)( 2tO ; t  decreases from n  to 1, so that, to perform a covering 

circle, the flops are 3( )O n . To perform 1r k− +  covering 
circles at most, the optimal solution is found. Therefore, to 
neglect the times of artificial modifications, the flops to solve 
the minimax assignment problem (2) by operations on matrix 
are )( 5nO  at most. The computational complexity of the 
operations on matrix is greatly lower than the computational 
complexity to solve the MILP (4).  

V. TO APPLY OPERATIONS ON MATRIX TO SOLUTION OF (1)  

Since the minimal 
pqc  in Step ① and Step ③ is 

recorded, namely the optimal assignment in single entry is 
adopted into the algorithm, the solution of the problem (2) 
obtained with operations on matrix is often the solution of the 
problem (1). However, the operations on matrix may not 
necessarily solve the global-minimum assignment problem (1) 
if the cost matrix is not transformed into the relative cost 
matrix before R  covering.  

In the cost matrix )( ijn cC = , every element of each row 
subtracts the least element of the row (row conventional 
number), and every element of each column subtracts the least 
element of the column (column conventional number). The 
new cost matrix ( )n ijB b= , after such a transformation, is a 

nonnegative matrix, and there is one element 0 at least in each 
row and each column. Corresponding to the element 0=ijb , 

the sum of the i -th row conventional number and the j -th 
column conventional number equals the payment 

ijc . Via the 

Hungarian algorithm, see, e.g. [1], the cost matrix 
nB  is 

equivalent to 
nC  for the assignment problem (1). The element 

of 
nB  represents the relative payment. If all the 0-elements of 

nB  can constitute a feasible assignment, then, the sum of the 
elements of 

nC  corresponding to the assignment, namely the 
sum of row and column conventional numbers, is the optimal 
objective function value. 

Now the operations on matrix with the optimal assignment 
in single entry are applied to the relative cost matrix nB . The 
basic covering is the covering of nonzero elements. If a 
feasible assignment can be found by the basic covering of 

nB , 
then the assignment is a solution of the problem (1). Otherwise, 
using positive element covering of the lowest level, the 
operations on matrix give a solution of the problem (2) for 

nB , 
where the least uncovering elements are contained as many as 
possible. Via the optimal assignment in single entry, this 
solution is generally the solution of the problem (1). The 
objective function value of the problem (1) equals the sum of 
corresponding elements of 

nB  plus the sum of row and column 
conventional numbers.  

Notice that the solution of the problem (2) given by the 
operations on matrix with the optimal assignment in single 
entry for the relative cost matrix 

nB  is not always the solution 
of the problem (1). For example, the deflated relative cost 
matrix of some covering circle is as follows, 

2 3

3 3 1
3 2

,   3 2 0 .
2 0

1 0 0
B B

⎛ ⎞
⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

 

The operations on matrix find the correct solutions of the 
minimax assignment problem (2) for

2 3,B B , and both objective 
function values are equal to 2. But these solutions are not the 
solutions of the global-minimum assignment problem (1).  
   Since the operations on matrix with the optimal assignment 
in single entry will be applied to 2-order deflated relative cost 
matrix ultimately, the absolute payment sum of the last two 
assigned elements should be verified after the 
global-minimum assignment problem (1) is solved by the 
operations on matrix. There is small probability to make a 
mistake, even if the verification has been done.  

In order to estimate an upper bound of the probability )(Ep , 

where the event E  represents to make a mistake by the 
operations on matrix for the problem (1), a hypothesis is added 
besides the hypotheses U1) and U2).  
 U3) Provided that the solution of operations on 

matrix for the problem (2) is obtained with nonbasic covering 
of relative cost matrix, there are n  incomplete uncovering 
elements in the relative cost matrix such that the sum of them 
is less than the sum of solution elements of the problem (2). 
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The number of these events is less than or equal to 1r k− + , a 
maximum of covering circles given by Proposition 3.  

Hypothesis U3) amplifies the probability of event E , but 

simplifies the estimation of )(Ep .  

Proposition 8. With the relative cost matrix, the operations 
on matrix for the global-minimum assignment problem (1) are 
a well-implied enumeration, the probability to find the optimal 
solution with 1r k− +  covering circles at most tends to 1 with 
increasing n .  

[Proof] The operations on matrix are applied to the relative 
cost matrix, via Proposition 7, find the optimal solution of the 
minimax assignment problem (2) with 1r k− +  covering 
circles at most. When the covering circles are larger than 1, it 
is possible to make a mistake since the optimal solution of 
problem (2) is regarded as the optimal solution of problem (1).  
According to Hypothesis U3), provided that the solution 
of problem (2) is obtained with incomplete 0-elements of 
relative cost matrix, there are n  incomplete uncovering 
elements such that the sum of them is less than the sum of 
solution elements of the problem (2). In the 1r k− +  events at 
most, the maximal probability event is that there are 1−n  
elements equal to 0 except one covering element. We now 
calculate the probability to form a feasible solution of problem 
(1) with these n  elements. According to Hypotheses U1) and 
U2), there are 1

1
2 −×

−
nn

nCn  distributions for one positive covering 
element and 1−n  0-elements in 

nB , where nn!  distributions 
are different feasible solutions of the problem (1). So that the 
probability to form feasible solution of the global-minimum 
assignment problem (1) with these n  elements is 

2 1 2 2 2
2 1! /( ) (( 1)!) ( )!/( 1)!n n

nn n n C n n n nτ × −
−= = − − − . The 

probability of event E  satisfies 2)1()( τ+−≤ krEp . 

With Stirling’s factorial formula to estimate 2)1( τ+− kr , 
right side of )(Ep . When n  is big enough, 

12
2 ))1/()1(()1/()1(2)1( −+−+−≤+− nnnnnnnkr πτ  

1)1( /))1/(( −−+ nnn enn . Therefore, with the operations on relative 
cost matrix 

nB  for problem (1), the probability to make a 
mistake )(Ep  tends to 0 with increasing n .   □ 

VI. NUMERICAL TESTS  
Via comparison of computational complexity, the 

operations on matrix for the minimax assignment problem (2) 
or the global-minimum assignment problem (1) are far 
efficiency in comparison with method of exhaustion and MILP 
model. We need only to test the operations on matrix for 
problems (2) and (1) with higher order cost matrix. The cost 
matrix nC  is generated by computer in the numerical tests.  

The tests of the operations on matrix for problems (2) and 
(1) are completed on a PC. The program is run using 
MATLAB7.0 under WindowsXP. Including the time to 
generate cost matrix, the computational CPU time required on 
a PC is given in seconds.  

Example 1. The matrix elements  

       10 5 5  ( ),  5 10 ;   

10,15, 20, 25,30,35, 40, 45,50.

n n
ij iic i j i j c i

n

= + + ≠ = +

=
             (6) 

The optimal objective function value of problem (2) is clearly 
n515 + . There are two optimal solutions (for even number n ) 

at most. The diagonal elements from left lower to right upper 
are always an optimal assignment.  

The solutions between problems (1) and (2) are totally 
different for the cost matrix with elements (6). Via the relative 
cost matrix, the unique solution of (1) is the diagonal elements 
from left upper to right lower. The optimal objective function 
value is 2510 nn + .  

Example 2. The matrix elements  
10 5 5  ( ),  15 10 ;  

 10,15,20,25,30,35,40,45,50.

n n
ij iic i j i j c i

n

= + + ≠ = +

=
                (7) 

The optimal objective function value of problem (2) is n515 +  
(for even number n ) or n520 +  (for odd number n ). There is 
unique optimal solution for even number n . There are 4 
optimal solutions for odd number n . The diagonal elements 
from left lower to right upper are always an optimal 
assignment.  

Via the relative cost matrix, there are many solutions of 
problem (1) for the cost matrix with elements (7). Many 
feasible assignments without diagonal elements are all optimal 
solutions, and the optimal objective function value is 

215 5n n+ .  
Example 3. The matrix elements  

10 5 5 ;  

10,15,20,25,30,35,40,45,50.

n
ijc i j

n

= + +

=
             (8) 

The optimal objective function value of problem (2) is n515 + . 
The optimal solution is unique, namely the diagonal elements 
from left lower to right upper.  

Via the relative cost matrix, there are !n  solutions of 
problem (1) for the cost matrix with elements (8). Any feasible 
assignments are all optimal solutions of (1), and the optimal 
objective function value is 215 5n n+ .  

Let n =5 and n =6 in order investigate the solutions of 
operations on matrix for Examples 1-3. Table 1 gives the row 
and column assignments and the payments to solve the 
problem (2). Notice that there are two solutions for n =6 and 
Example 1, and that there are four solutions for n =5 and 
Example 2. The solutions given by Table 1 are not diagonal 
assignments from left lower to right upper, while they accord 
with the optimal assignment in single entry. The optimal 
assignment in single entry, of course, is possible only for 
multiple solutions of (2). Usually there are multiple solutions 
for the minimax assignment problem (2). The solutions of 
Examples 2 and 3 found directly by the operations on matrix 
for the problem (2) are also for the problem (1), but the 
situation of Example 1 is not so. 

Table 2 gives all the computation time to solve the problem 
(2) for Examples 1-3 of 5010 →=n , including the time to 
generate cost matrix and to display results. The maximal 
expended time is about 0.125s for n =45 and Example 2 since 
there is one covering circle of 245=kR  more performed. It is 
easy to see from Table 2 that efficient operations on matrix are  
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Table 1: Solutions of the problem (2) 

 n =5 n =6 
E. 1 40 

5–1 
40 

4–2 
35 

3–3 
40 

2–4 
40 

1–5 
45 
6–1 

45 
5–2 

45 
1–6 

45 
2–5 

35 
3–3 

45 
4–4 

E. 2 40 
5–1 

40 
4–2 

40 
1–5 

35 
2–3 

45 
3–4 

45 
6–1 

45 
5–2 

45 
4–3 

45 
3–4 

45 
2–5 

45 
1–6 

E. 3 40 
5–1 

40 
4–2 

40 
3–3 

40 
2–4 

40 
1–5 

45 
6–1 

45 
5–2 

45 
4–3 

45 
3–4 

45 
2–5 

45 
1–6 

 
Table 2: Time to solve the problem (2) 

  n   10                15                20               25             30              35               40               45               50 
0.031 0.031 0.031 0.063 0.063 0.063 0.078 0.109 0.109 
0.031 0.063 0.031 0.094 0.063 0.109 0.094 0.125 0.094 

E. 1 
E. 2 
E. 3 0.031 0.031 0.031 0.063 0.063 0.063 0.078 0.078 0.094 

 
Table 3: Solutions of the problem (1) 

                                    n =5                                       n =6 
 E. 1 25 

2–2 
 35 
3–3 

 45 
4–4 

 15 
1–1 

 55 
5–5 

 25 
2–2 

 35 
3–3 

 45 
4–4 

 55 
5–5 

 15 
1–1 

 65 
6–6 

 E. 2 25 
2–1 

 30 
1–3 

 40 
4–2 

 55 
5–4 

 50 
3–5 

 25 
2–1 

 30 
1–3 

 40 
4–2 

 55 
5–4 

 65 
6–5 

 55 
3–6 

 E. 3 20 
1–1 

 30 
2–2 

 40 
3–3 

 50 
4–4 

 60 
5–5 

 20 
1–1 

 30 
2–2 

 40 
3–3 

 50 
4–4 

 60 
5–5 

 70 
6–6 

 
Table 4: Solutions of the problem (1) for negative profit matrix 

                                    n =5                                       n =6 
 E. 1 -40 

1–5 
  -45 

5–2 
  -30 

3–1 
  -45 

4–3 
  -40 

2–4 
  -45 

1–6 
  -50 

6–2
  -30 

3–1 
  -45 
4–3 

  -55 
5–4 

  -45 
2–5 

 E. 2 -25 
1–1 

  -35 
2–2 

  -45 
3–3 

  -55 
4–4 

  -65 
5–5 

  -25 
1–1 

  -35 
2–2

  -45 
3–3 

  -55 
4–4 

  -65 
5–5 

  -75 
6–6 

 E. 3 -20 
1–1 

  -30 
2–2 

  -40 
3–3 

  -50 
4–4 

  -60 
5–5 

  -20 
1–1 

  -30 
2–2

  -40 
3–3 

  -50 
4–4 

  -60 
5–5 

  -70 
6–6 

 
 

completely fit to solve online both minimax and 
global-minimum assignment problems.  

The tests for Example 1 of n =100 and 1000 have been done, 
and the time is 0.250s and 161.828s respectively. The tests for 
Example 2 of n =101 and 1001 have been done as well, and 
the time is 0.422s and 253.750s respectively. The time to solve 
the 1000-order problem (2) with the operations on matrix 
doesn’t exceed 5 minutes. However, the time to solve on PC 
the 1000-order MILP problem (4) with the isometric surface 
method is over 20 minutes, see [3], while the 1000-order 
MILP problem corresponds to only the 31-order assignment 
problem. ( 311000 ≈ .) 

Table 3 gives the row and column assignments and the 
payments to solve the problem (1), via the relative cost matrix, 
with the operations on matrix. And Table 4 gives the row and 
column assignments and the payments to solve the problem (1) 
for negative profit matrix. The optimal objective function 
value equals the sum of every payment. The results conform to 
completely the notes of Examples 1-3. In Table 4, the 
maximum gross profit equals the negative optimal objective 
function value.  
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