
 

 

  
Abstract— A simple HIV/AIDs finite dimensional mathematical 

model on interactions of the blood cells, the HIV/AIDs virus and the 
immune system is studied for consistence of the equations to the real 
biomedical situation that they model. Definitions to model 
parameters indicate either that the system of equations is derived 
from one in infinite dimensions or can be naturally extended to cover 
this situation. A better understanding to the illness modelled by the 
finite dimensional equations is furnished. Various case studies, 
extracted from the current literature, are considered and numerical 
results show that mathematical analysis is very powerful for  
understanding such systems. In particular, by examining the effect of 
parameters in the model leads one to infer important properties on the 
variables of the system, such as blow up of solutions.  
 

Keywords— Dynamical properties of solutions, HIV/AIDS 
mathematical model equations.  

I. INTRODUCTION 

In this paper, we study a simple system of equations 
modelling interactions between blood cells, the immune 
system and the HIV/AIDs virus. More precisely, we study the 
following nonlinear system of ordinary differential equations  
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 wherein the density variables and constant parameters hold 
the following biological significances  
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 A virus is a small amount of genetic material surrounded by 
one or more protective shells. If it gains entry to a host cell, it 
hijacks the cell's machinery for its own replication. It then 
leaves the cell, and the process is repeated. Different viruses 
target different host cell types for this purpose. The evolution 
process described by the equations (1) is as follows. The virus 
is replicated by the infected cells, so its rate of production is 
taken proportional to Y  and die at a specific rate b . The 
uninfected cells are constantly being produced by the 
organism at a rate c , they die at a rate d , and become 
infected by the virus at rate Vβ , thereby entering the Y  

class. Infected cells die at rate def +=  where d  is the 

natural death rate and e  the additional death rate owing to the 
infection. The relationship between the virus and uninfected 
cells is analogous to that of predator and prey models [1, 2, 3, 
8, 14, 15, 16]. Thus Xβ  is a functional response of the virus 

to the uninfected cells.  We refer the reader to other reference 
sources for  more detailed models [25-28]. 

 Our above finite dimensional system of equations 
(1) modelling interactions between blood cells, the HIV/AIDs 
virus and the immune system agrees with other systems of 
equations formulated elsewhere, for examples in the following 
references [2, 6, 18, 22]. However, it is the simplest 
formulation. Other situations still in the case of ordinary 
differential equations, can include a saturating functional 
response, and some cells entering a latent class on their 
infection in which they do not produce new virions, but may 
do so at a later stage. More complicated models in this 
direction, are infinite dimensional systems of equations. These 
take into account as well spatial effects in the biological 
motions. Of concern in this paper, is to give relevance even in 
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the simplest form of the well posedness of the finite 
dimensional evolution processes. This will include a study of 
the immediate dynamical properties, and consistence of the 
model equations with the biomedical phenomena considered. 
Thus, although infinite time considerations of the evolutionary 
processes studied may seem irrealistic, since by nature the life 
span of any living organism is temporarily limited. These will 
make sense here on assumption that the times considered are 
measured in extremely small units. 

 
 In the elementary text book [2] by Nicholas Britton, 

it is mentioned that one of the problems with the HIV/AIDs 
virus is that it targets the killer cells themselves. Thus the 
number of Z  cells in the blood decreases from 1000 per 
microlitre in the early stages of the disease to about 200 per 
microlitre in its full blown stage. This is a steady decrease that 
may take approximately ten years, even in the absence of a 
drug treatment and is equivalent to a five fold decrease in the 

ratio 
g
f

. The reason in the delay to surfacing up of the 

disease is that the virus can hide for longer periods in latent 
cells. These are Y  cells that are not recognized as infected by 
the immune system. The virus load increases very gradually 
over the course of the infection until full blown AIDs occurs, 
when it breaks free of the immune system control. A process 
measurable numerical as a ratio below which the immune 
system becomes below. In other words, there is a coexistence 
period, to which medical scientists should develop a solution 
that will upgrade the potential of the immune system to 
recognize and combat effectively the virus. This problem in 
equivalent terms is therefore of finding a booster to the 
immune system before or on the blowing up time of the virus 
population in the organism.  

 This paper is organized as follows. In Section II, we study 
the local well posedness of the system of ordinary differential 
equations (1), and we provide an analysis the stability 
properties of the steady state solutions. More precisely, we 
will identify the stationary solutions to the system of the 
equations. Then via a linearization of the vector field about 
these equilibria, we will computate the eigenvalues and 
analyze their signs so as to classify the nature of the steady 
state solutions. In Section III, we study directly from the 
system of equations, the global long time asymptotic 
dynamics. This will yield hidden information on the behaviour 
of the density variables. Two typical situtions found are the 
following. Either the HIV/AIDs virus population tends to a 
null state or it blows up at infinite time. In either situation, we 
have characterized the effects on other density variables of the 
system of equations.  In Section  IV we present numerical 
validation of the theoretical results. 

II. LOCAL WELL-POSEDNESS AND ANALYSIS OF THE STEADY 

STATES 

 In this section, we first prove that the system of 
equations (1) are locally well poseded. Then, we will study the 
stability properties of the stationary states. This quick 

approach to the dynamics generated by the equations (1) is 
correct. Since in the theory of evolution equations when a 
system of equations is given without initial conditions, then its 
the long time asymptotic limit behaviour of that system of 
equations that is modelled. To initiate, we have the following 
theorem.  

Theorem 2.1 Let }:{= 2
4 ρ≤∈ ||| WIRWE  

where 2|||| ⋅  denotes the euclidean norm of 4IR , 0>ρ  is 
an adequately chosen real number, and in the finite 
dimensional evolution equations (1) denote the vector field by  
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 Also assume that given are initial conditions EU ∈0 . Then, 
the system of nonlinear ordinary differential equations (1) has 
unique continuous in time solution with values in E , which 
we write as follows  

 dssUFeUeUtU sttt ))((=),( )(

000
−∫+ AA

 (3) 
 where  

 

],,,[=

,

000

000

000

000

=

htftdtbtt eeeediage

h
f

d
b

−−−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

A

A

 (4) 
 and is such that it is continuously differentiable on )(0,T . 
Moreover, for all )(0,Tt ∈ , EtU ∈)( , the system of 
ordinary differential equations (1) is verified, and 

0=(0) UU .  
  
Proof. We only need to prove that the nonlinearity 

(2) is locally Lipschitz continuous. To do this, let 

EZYXVUZYXVU ∈ΤΤ ),,,(=,),,,(= 2222211111  Then 

computing the difference  
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 It follows on taking the euclidean norm on 4IR  that in 
estimating from above we obtain that  
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 Therefore, the nonlinear term (2) of the system of equations is 
locally Lipschitz continuous. Now general results on existence 
and uniqueness of solutions to nonlinear ordinary differential 
equations in [1, 3, 8, 16] conclude our theorem. In particular, 
the representation (3) follows in [16] Theorem 1. pp.60. Our 
proof of the theorem is complete.  

 
 In what follows, we study the dynamical properties 

of the steady state solutions to the system of equations (1). 
These equilibria are the following,  
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 The first of these stationary states is an uninfected 
equilibrium. It is important, for this equilibrium to notice the 
proportional rates yielded by the biological relevant constants. 
In particular, there are no virions and no infected cells 
production. The production of the uninfected cells is given as 
a ratio to their death, and so is for the production of the 
immune system response cells. To explain the spread of the 

virus inside the organism. Let 0Θ  denote the basic 

reproductive ratio of the virus. This is an average number of 
new virions given rise to by a single uninfected cell. Since the 
functional response of the virus to uninfected cells is Xβ , at 

a rate to infected cells of a unit time over b , and each 
infected cell gives birth to new virions at rate a  for a time 

f
1

. Thus from the first equilibrium state we find that 

dbf
caβ

=0Θ  and if 1>0Θ  we have spread of the virus. This 

spread is explicitly modelled in the equations, see Section 3. 
Relating to the second equilibrium point of the system of 
equations, it is important, to note the type of constants 

yielding ∗X  which are from the death processes.  
 To discuss the nature of the above equilibria, we use 

a traditional approach [1, 3, 2, 14, 16, 15, 8] based on analysis 
of the signs of the eigenvalues to the linearized vector field of 
the system of equations (1). This allows us to conclude the 
following lemma.  

 
Lemma 2.2  Consider the evolution process of 

interactions modelled by the equations (1), and assume all 
given constants are positive. Then if it holds that  

 ),(2>
2

gfhd
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 the first steady solution in (6) has dynamical properties of a 
saddle limit equilibrium point, otherwise it is a sink. The 
second steady state solution of (6) has dynamical properties of 
a  saddle limit equilibrium point.  

  
Proof. Let ),,,( ZYXVF  denote the vector field of 

the equations (1). Then computing the Jacobian matrix 
associated with ),,,( ZYXVF ,  we find that  
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 Therefore evaluating this at the first steady state solution and 
computing the determinant  
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which yields directly that  
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More precisely,  
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 Thus, if in this equation (9) we assume (7) holds. Then one of 
the eigenvalues is real and strictly positive. Thus the nature of 
the first equilibrium in (6) is that it is a saddle point. In 
otherwise, all the real parts of the eigenvalues are negative. 

Thus the steady state ),0,(0,
h
g

d
c

 is a sink.  

 In case of the second steady state solution in (6) of 

(1). As above we find ),,,( ∗∗∗∗ ZYXVDF  and compute 

the determinant 0|=),,,(| IZYXVDF λ−∗∗∗∗ . This 

yields,  
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Consequently, we find that  
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and that the other two eigenvalues are  
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                                                                (10) 
 It follows from the signs of all the above real 

eigenvalues that we deduce the equilibrium point in question 
is a saddle.                                                                                   
□ 

From the Lemma  2.2 , we deduce the geometrical 
properties of the dynamical system generated by the equations 
(1) are the following. The linearized positive semiflow has a 

set of its trajectories approaching ),0,(0,
h
g

d
c

 as a stable 

state limit point at infinite time, while other trajectories 
eminate and diverge away from it. Thanks to the assumption 
(7). There are some instabilities in the evolution processes of 
the interactions. In the other case, all the real parts of the 

eigenvalues are negative. Thus the steady state ),0,(0,
h
g

d
c

 

is a stable in positive time equilibruim. To comment on the 
second steady state solution in (6) besides being a saddle 
equilibruim. We have already noted that the type of constants 

yielded in ∗X  are of the death processes. In (10) the 
eigenvalue is of multiplicity two. This implies a stronger 
contribution to the instability of the system of equations 
possibly a movement from the saddle state equlibrium 

),0,(0,
h
g

d
c

 after effects of the condition (7) in the 

dynamical system.  
 Finally for this section, we recall from [1, 3, 2, 14, 16, 15, 8], 

that if ),,,(= ZYXVU , ),,,(= ∗∗∗∗ ZYXVDFA  

where F  is the vector field in (1) and if AUU =  
corresponds to the linearized process of the equations. Then 
the long time asymptotic dynamics of the linearized equations 
are equivalent to those of the orignal system of ordinary 
equations (1). 

III. GLOBAL WELL POSEDNESS OF THE MODEL 

EQUATIONS  

 In view of understanding the model equations given 
in the above section, we initiate a primary study of the 
equations (1) in the case described by the first three of the 
system equations with 0=γ , this situation describes the 

evolution process of the interactions between immune system 
and the HIV/and AIDS virus in the absence of a immune 
response function. Slightly generalizing on the system of 
equations, we shall drop the assumption that all constants are 
positive. We conclude the following theorem.  

 
Theorem 3.1  Consider the system of ordinary 

evolution equations (1) in the absence of an immune system 
response variable. Assume that initial conditions at +∈ IRt0  

are given. Then, ),(i  if all constants are positive we have the 
system of equations (1) is globally well posed, moreover the 
virus population tends to a null solution. ).(ii  If 

{0}\, −∈ IRfb  are strictly negative, {0}\,, +∈ IRda β  

strictly positive, or {0}\, −∈ IRba , {0}\+∈ IRβ . Then 
the virus population blows up at infinite time with other 
variables assuming null solutions.  

  
Proof. It is clear that the system of equations (1) is 

reducible to a system of two equations. Namely, modeling the 
speed of infection by the HIV/AIDS virus against changes in 
the uninfected cells population. This coupled system of 
equations is the following  
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 It is easy to see by comparison that there exists families 

}:))(),({( INntVtX nn ∈  of globally defined upper and 

lower solutions which converge to the solution,  
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 if fb ≠ , of (11). This solution is by direct integration. 

Similarly, for the case fb =  see (14) below. More precisely, 

for existence of sub and supersolutions, we notice in the 
system of equations (11) the following. If 0=β  then the 

system of equations is uncoupled. Thus by integration we get 
its )(tX  component is a supersolution to the same solution 

component in (12). Moreover, ∞≤ −∞→ <)(liminf0 tXt . 

This boundedness estimate is trivial in the positive time. Since 
all variables in (11) are non negative. Thus null solutions are 
subsolutions.  

 It is clear that the )(tV  solution component for 

0=β  in (11) is a subsolution. Also there exists 

supersolutions to the coupled equation in (11), by virtue, of 
the boundedness of the )(tX  solution component. 

Furthermore, this supersolution will always decay to its null 
solution at infinite time. In this way )(i  is proved.  

 Now to prove )(ii , we note that if 

{0}\, −∈ IRfb  are strictly negative, {0}\,, +∈ IRda β  

strictly positive. Then, considering one case of either 
0>bf −  or exclusively 0>fb − , we get that 

∞→)(tV  as ∞→t . On the other hand, it follows from 

the solution variable )(tX  that  
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 where 
d
cXX +(0)=(0)

~
, as ∞→t  since ∞→)(tV , 

and (13) is due to the standard Gronwall's inequality [1, 7, 10, 
20]. Thus at infinity time 0=)(tX .  

 Next consider the case bf = . Then, by integration 

we get solution components  
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 It follows if {0}\, −∈ IRba , {0}\+∈ IRβ  then 

∞→)(tV  as ∞→t . Thus again arguing as in (13) we get 

that 0)( →tX  as ∞→t . This yields the theorem, so either 

the coupled system of equations (1) is well posed globally and 
has at most one solution, or the density variable )(tV  blows 

up at infinite of positive time, and the )(tX  density variable 

tends to its null solution. Hence this and the convention 
0=0 ∞⋅  yields the conclusion of the last alternatives for the 

system of equations (1), with which our proof is complete.     
□ 

 
The system of equations as given in (1) taking into 

account the immune functional response is very complicated 
and detailed and will appear as a sequel to this paper.  In this 
case one can infer properties on the blow up of the solutions  
similar to the case above.  Various properties on the long time 
asymptotic behaviour of the solutions will be proved by 
considering the effects of model parameters and initial 
conditions.  

IV. NUMERICAL EXPERIMENTS 

We performed various numerical experiments to demonstrate 
concordance of the numerical results with the theoretical 
results derived above. Table I-VII  lists parameters used in our 
simulations. The data taken from [9] and [24] . Some values 
have been slightly perturbed to fit the description of our 
model. The data in the  third column corresponds to modified 
values which we have made in order to illustrate the global 
well posedness of the problem. 
 

The solution profiles in Figs 1&2 correspond to the case in 
Sec. III (Thm . 3.1) with 4.0,4.2 −=−= fb . Fig. 1 shows 

the blow up of the virus population )(tV and Fig. 2 

demonstrates that )(tX  tends to a null solution. Fig. 3 shows 

a plot of )(&)( tXtV  in the case 

4.2,06.224 −=−= ba . Once again )(tV  blows up and 

)(tX tends to the null solution. Hence, the numerical results 

are in agreement with the theoretical result stated in Thm. 3.1 
(ii). 
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TABLE I 

DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

0.015 

a Rate of virus 
reproduction 

224.06 

b Rate of death of 
viruses 

2.4 

c Reproduction of 
uninfected cells 

6 

d Death rate of 
uninfected cells 

0.1 

f Death rate of infected 
cells 

0.4 

x Initial x 100 

y Initial y 3 

v Initial v 4 
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Figure 1: )(tV  solution   
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Figure 2: )(tX  solution 
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Figure 3: )(&)( tXtV  solutions. 
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Figure 4: Snapshots of  the solutions for different choices of 
the parameters given in Table I and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
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TABLE II 
DEFINITION OF PARAMETERS  

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

4.6E-4 

a Rate of virus 
reproduction 

980 

b Rate of death of 
viruses 

3 

c Reproduction of 
uninfected cells 

1.3E-1 

d Death rate of 
uninfected cells 

1.3E-2 

f Death rate of infected 
cells 

4.E-1 

x Initial x 1.E+1 

y Initial y 0.00 

v Initial v 1.E-9 
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Figure 5: Snapshots of  the solutions for different choices of 
the parameters given in Table II and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE III 
DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

3.6E-4 

a Rate of virus 
reproduction 

1800 

b Rate of death of 
viruses 

3 

c Reproduction of 
uninfected cells 

2.E-1 

d Death rate of 
uninfected cells 

2.E-2 

f Death rate of infected 
cells 

8.E-1 

x Initial x 1.E+1 

y Initial y 0.00 

v Initial v 1.E-9 
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Figure 6: Snapshots of  the solutions for different choices of 
the parameters given in Table III and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
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TABLE IV 
DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

6.3E-4 

a Rate of virus 
reproduction 

870 

b Rate of death of 
viruses 

3 

c Reproduction of 
uninfected cells 

1.7E-1 

d Death rate of 
uninfected cells 

1.7E-2 

f Death rate of infected 
cells 

3.9.E-1 

x Initial x 1.E+1 

y Initial y 0.00 

v Initial v 1.E-9 
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Figure 7: Snapshots of  the solutions for different choices of 
the parameters given in Table IV and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE V 
DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

8.00E-4 

a Rate of virus 
reproduction 

730 

b Rate of death of 
viruses 

3 

c Reproduction of 
uninfected cells 

1.7E-1 

d Death rate of 
uninfected cells 

1.7E-2 

f Death rate of infected 
cells 

3.1.E-1 

x Initial x 1.E+1 

y Initial y 0.00 

v Initial v 1.E-9 
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Figure 8: Snapshots of  the solutions for different choices of 
the parameters given in Table V and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
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DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

6.6E-4 

A Rate of virus 
reproduction 

830 

B Rate of death of 
viruses 

3 

C Reproduction of 
uninfected cells 

8.5E-2 

D Death rate of 
uninfected cells 

8.5E-3 

F Death rate of infected 
cells 

1.7.E-1 

X Initial x 1.E+1 

Y Initial y 0.00 

V Initial v 1.E-9 
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Figure 8: Snapshots of  the solutions for different choices of 
the parameters given in Table VI and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE VII 

DEFINITION OF PARAMETERS 

Paramete
r 

Definition Value 

β  Rate at which 
uninfected cells 

becomes infected 

2.5E-3 

a Rate of virus 
reproduction 

110 

b Rate of death of 
viruses 

3 

c Reproduction of 
uninfected cells 

6.00E-2 

d Death rate of 
uninfected cells 

6.00E-3 

f Death rate of infected 
cells 

1.3E-1 

x Initial x 1.E+1 

y Initial y 0.00 

v Initial v 1.E-9 
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Figure 9: Snapshots of  the solutions for different choices of 
the parameters given in Table VII and different values of time.  
The first shot corresponds to the case in Thm 3.1 (i). The 
second and third shots correspond to the cases in Thm 3.1 (ii) 
, respectively. Color Coding: Red (v(t)), Green (x(t)) and Blue 
(y(t)). The next three shots are repeats for different times. 
LogSol denotes the Log of the solution. 
 

V. CONCLUSION 

We have presented a simple HIV/AIDs finite dimensional 
model on interactions of the blood cells, the HIV/AIDs virus 
and the immune system. The primary objective of  this paper 
is to give relevance of the well posedness of the finite 
dimensional evolution processes and to obtain a numerical 
validation of the theoretical results. Extension to the infinite 
dimensional case will be the focus of future work. 
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