
 

 

  
Abstract—This paper extends the identification procedures based 

on distributions theory to continuous time systems with friction. 
There are defined the so called generalized friction dynamic systems 
(GFDS) as a closed loop structure around a smooth system with 
discontinuous feedback loops representing friction reaction vectors. 
Both GFDS with static friction models (SFM) and dynamic friction 
models (DFM), also simplified Dahl model are analyzed. The 
identification problem is formulated as a condition of vanishing the 
existence relation of the system. Then, this relation is represented by 
functionals using techniques from distribution theory based on 
testing function from a finite dimensional fundamental space. The 
advantage es of representing information by distributions are pointed 
out when special evolutions as sliding mode, or limit cycle can 
appear. The proposed method does not require the derivatives of 
measured signals for its implementation. Some experimental results 
are presented to illuminate further its advantages and practical use.  
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simplified Dahl model. 
 

I. INTRODUCTION 

otion in many mechanical, hydraulic or pneumatic 
systems is influenced by the so-called friction forces 
because of interactions with the environment or of 

the interaction between their components.  
Friction is a complex phenomenon, not yet completely 

known, with many different physical causes, so it is a difficult 
task to model it. Such models contain some specific 
nonlinearity such as stiction, hysteretic, Stribeck effect, stick-
slip, depending on velocity [1], [2], [3], [4]. These models 
depend on many parameters whose values can change during 
the system evolution or are influenced by some other causes 
as external temperature, quality of materials etc. In literature 
there are accepted a large variety of friction models as 
Coulomb friction model [5], Dahl model [5], [6], exponential 
model [7], bristle model [8], state variable model [9].  
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Ignoring friction in controlling such systems can lead to 
tracking errors, limit cycles, undesired stick-slip motion [2]. 

To avoid these difficulties, adaptive control strategies, 
named model-based friction compensation techniques [2], are 
recommended.   

A survey of models, analysis tools and compensation 
methods for the control of machines with friction is presented 
in [11]. Furthermore, the application of classical identification 
methods for continuous time friction models requires the 
acceleration measurement that is not an easy task. A 
frequency domain approach to identification of mechanical 
systems with friction is developed in [12], which does not 
require the acceleration information but the procedure is 
available for periodic excitation input only. Good results on 
continuous time system identification based on distribution 
theory are reported in [13], for linear systems, or in [14], for 
nonlinear systems. 

Because of their discontinuities, identification of systems 
with frictions is much more difficult. One way is to perform 
continuous time domain identification transforming the system 
differential equations to an algebraic system that reveals the 
unknown parameters [15], [16], [17]. This can be done by 
using some modulating functions to generate functional to 
avoid the direct computation of the input-output data 
derivatives [18], [19]. From computational point of view 
many advantages are obtained by using the classic methods 
based on orthogonal functions. 
This paper extends the procedures of [13], [20],[14], based on 
distributions, for parametric identification in continuous time 
systems with friction. By this method, it is possible to perform 
identification of these systems, processing only information 
on position and the sign of the velocity in any consistent 
transient response. The proposed method is a batch on-line 
identification method because identification results are 
obtained during the system evolution after some time intervals 
but not in any time moment. Even if it is based on the input-
output measurements only, the method is insensitive to the 
initial state of any transient. 
The paper is organized as follows: After introduction in the 
first section, Section II presents the structure of generalised 
friction dynamic systems GFDS. Section III, presents some 
aspects regarding the problem of continuous time system 
identification based on distributions. Applications of the 
identification methods for different types of systems with 
frictions take the space of Section IV. Some experimental 
results and implementation aspects are presented in Section V, 
and conclusions in Section VI. 
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II. GENERALISED FRICTION DYNAMIC SYSTEMS 

 
A generalised dynamic friction system (GFDS) is a system 

characterised by the state equation of the form 
 1( , , ,.., ,.., )= i px f x u r r r                                (1) 

where n
0( ) ,∈ ⊆ ∀ ≥Xx t t tR , is the state vector and 

q
0( ) ,∈ ⊆ ∀ ≥Uu t t tR  is the input vector. The vectors 

 n
i 0( ) , , 1:∈ ⊆ ∀ ≥ =Rir t t t i pR                         (2) 

are called friction reaction vectors. They depend on x  and 
u through a specific operator i{}Ψ , called friction operator, 

 i{ , }, 1:= Ψ =ir x u i p                                  (3) 

There are two categories of friction models: static friction 
models (SFM) and dynamic friction models.(DFM). 

For SFM, the operator (3) is a non dynamic mapping  
 im

i i( , ) : , 1:= → ⊆ =X × U Rir F x u i pR                  (4) 

with a specific structure as follows. 
For any 1:=i p , there are two functions 

 im
i i( , ) : , 1:= ν → ⊆ =X ×U Viv x u i pR ,                (5) 

which determines the so called generalized velocity vector iv , 

and  
 im

i i( , ) : , 1:= α → ⊆ =X ×U Aia x u i pR ,                (6) 

expressing the so called active component of the velocity 
vector iv . In SFM, the non dynamic mapping (4) can be 

expressed as a function of iv , and ia only, that means,  

 i ( , ) ( , ), 1:= ρ = =i i i ir v a F x u i p                          (7) 

Inspired from mechanical systems /11/, the expression of 
the function ρi from (7) is explicitly defined for 0=iv  and for 

0≠iv . As a result, two components of the friction reaction 

vectors , 1:=ir i p  can be defined: static friction reaction s
ir  

and cinematic friction reaction c
ir , where, 

0( , ) , 0
( , ) ( , )

0, 0

=
⎧ρ =⎪= ρ = = ⎨

≠⎪⎩

ii i i v is s s
i i i i i

i

v a v
r v a F x u

v
               (8) 

0( , ) , 0
( , ) ( , )

0, 0

≠
⎧ρ ≠⎪= ρ = = ⎨

=⎪⎩

ii i i v ic c c
i i i i i

i

v a v
r v a F x u

v
              (9) 

A particular structure gives  
 = +s c

i i ir r r                                        (10) 

which is equivalent with 
 i i( , ) ( , ) ( , ), ,ρ = ρ + ρ ∀ ∈ ∀ ∈V As c

i i i i i i i i i i iv a v a v a v a .       (11) 

The adjective static and dynamic, for the friction reaction 
vectors , 1:=ir i p , must be understood with respect to the 

velocity vector iv only. Also, for a vector im , 1:∈ =iv i pR , it 

is defined the function ( )isgn v  as  

 sgn( ) /=i i iv v v                                       (12) 

where iv  is the Euclidian norm of imR . In this norm the 

function sgn( )iv is a discontinuous function in the point 

0=iv . It is observed that  

 sgn( ) sgn( ) 1, 0 , sgn( 0 ) 0= = ≠ =i i iv v v .          (13) 

If 1=im , iv is a scalar variable, then (12) can be presented by 

using inequalities as 
 sgn( ) 1 0; 0 0; 1 0= − < = >i i i iv if v if v if v  .           (14) 

Because of (8) and (9), the system state vector evolution 
( )x t  is characterized by a status of two values, related to each 

friction reaction vectors , 1:=ir i p , 

1. Evolution inside a surface characterized by zero value of 
the velocity vector iv , i( ) S∈x t , where 

 iS { , 0} { , ( ) 0}= ∈ = = ∈ ν =X Xi ix v x x .               (15) 

2. Evolution with nonzero value of the velocity vector iv , 

that means outside the surface iS , i( ) S∉x t . 

There are different specific expressions for the functions 
( , )ρs

i i iv a  and ( , )ρc
i i iv a  considering (10) and (11), but for all 

of them three conditions must be accomplished: 
a. Outside the surface iS , ir  is a vector opposite to 0≠iv   

 , 0, 0= −λ ⋅ λ > ≠i i i i ir v v                            (16) 

b. Inside the surface iS , ir  is a vector opposite to ia   

 , 0, 0= −γ ⋅ γ > =i i i i ir a v                            (17) 

c. There is a closed subset 0S ( ) S⊆i iu , called sticky area 

(SA), which keeps the system state inside . This means  
 0

i( ( )) [ ( )] ( ) 0, S ( )= ⋅ = ∀ ∈Td d
i idt dxv x t v x x t x u . 

    Inside the SA = −i ir a . Because the input u  can change the 

SA position the state x  can be forced to be out of 0S ( )i u , 

crossing its border. For any admissible u, the function 
( , )=i ir F x u is continuous with respect to 0

iS ( )∀ ∈x u . Because 

of this, when the system state ( )x t  arrives on or leaves out 
0
iS ( )u  the friction reaction ( )ir t  is a continuous time function. 

Condition c, is called the smooth sticky condition (SSC). 
However, when 0

i ix(t) S \ S ( )∈ u , ( )ir t has a discontinuity and 

( ( )) 0≠d
idt v x t . In this case ( )x t passes from one side to other 

of 0
i iS \ S ( )u , as a switching mode or as a sliding mode. For 

example, expressions as (18) and (19) of (8) and                  
(9) respectively, satisfy conditions a, b, c, where by ia it must 

understand ( , )=i ia a x u , 

( , ) max{ , } sgn( ) [1 sgn( ) ]= ρ = − ⋅ ⋅ −s s
i i i i i i i ir v a Q a a v      (18) 

( , ) [ ( 1)] sgn( )β ⋅= ρ = − + ⋅ + ⋅ − ⋅i ivc c
i i i i i vi i i ir v a Q K v B e v     (19) 

As it can be observed, the cinematic reaction c
ir is a sum of 

three components, , ,cc cv cs
i i ir r r  expressing respectively 

Coulomb friction, viscous friction and the so called Stribeck 
effect, /4/, /11/,  
 = + +c cc cv cs

i i i ir r r r .                                 (20) 

From (18) and (19), considering (10), a friction reaction 
vector ir on the surface ( ) 0ν =i x  takes the form 
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( , , )ix f x u r=  

( , )i i iv aρ
( , )i x uα  

( )i xν  

x  

x  

u

ir

( , ),

1:
i ir F x u

i p
=

=

ir
iv

ia

u  

( , )h x u
yuu

 0

,
( , ) (0, )

,
=

⎧− ≤⎪= ρ = ρ = ⎨
− >⎪⎩

i

i i i
i i i i v i i Q

i i i

a a Q
r v a a

a a Q
           (21) 

where 
 { , }∈ = =Q Q

i i i i ia A a a Q                           (22) 

and 
 (0, ) ifρ = ≥i i i i ia Q a Q ,                          (23) 

but  
 ( ) 0 ( , ) ( , )ν ≠ ⇒ ρ = ρc

i i i i i i ix v a v a                     (24) 

 
0

lim ( , ) ,
→

ρ = ∀ ∈ A
i

i i i i i iv
v a Q a .                       (25) 

so, the smooth sticky condition is assured.  
For 1=im , all , ,i i ir a v are scalar variables so the static 

reaction (18), s
ir , is illustrated as in Fig. 1.a. and the cinematic 

reaction (19), c
ir , as in Fig. 1.b. 

 
 
 
 
 
 
 
 
 
 
 
      Fig. 1. Static and cinematic components of a scalar friction   
                                                   reaction 
 
A friction reaction vector ir , as above defined, has a sticky 

characteristic which means there is a subset S
iS ( ) S⊆ iu , called 

sticky set (SS), such way  
 S

i( ) / { ( ( ))} 0, ( ) S ( ( )) S= = ∀ ∈ ⊆i i iv t d dt v x t x t u t .          (26) 

The position of SS depends on input vector u . When the 

system state ( )x t  approaches S
iS ( )u , generated by a vector ir , 

it remains inside of that SS till the input ( )u t  changes the 

position of S
iS ( )u , forcing ( )x t  to be outside of it. 

Substituting (4) into (1) and denoting 
 1 1 i p( , ) ( , , ( , ) ,.., ( , ),.., ( , ))=f x u f x u F x u F x u F x u           (27) 

the GDFS takes the compact form 
 0 0 0( , ) , ( ) ,= = ≥fx x u x t x t t .                         (28) 

This is a differential system with a discontinuous function 
on right side so for its analytical description, special 
mathematical approaches are necessary. For example 
approaches describing the solution in the Charatheodory sense 
[4], using the Filippov approach [23], or differential 
inclusions and differential inequalities [22]. However, for the 
identification it is supposed a solution exist for (19) and are 
available as measurements the input variable u  and the output 
variable y where            

( , )=y h x u                                                                  (29) 

    

The structure of a GDFS with SFM is illustrated in Fig. 2.  
 
 
 
 
 
 

 
 

 
Fig. 2. The feedback structure of a GDFS with SFM. 

 
For dynamic friction models, (DFM) the operator (3) is a 

dynamic system characterized by an additional state vector iz , 

expressing internal changes in some surfaces of relative 
movements. The friction reaction vector ir  is the output of a 

dynamic system 
 i ( , , )=i ir h z x u                                     (30) 

 i ( , , )=i iz f z x u                                     (31) 

There are many types of DFM but we shall present a 
simplified Dhal model [2], [5], for 1=im , characterized by a 

first order nonlinear dynamic system 
 i= − ⋅ ⋅ +i i i iz a v z v                                 (32) 

 i= ⋅i ir c z                                         (33) 

where the velocity iv  is i ( )= ν ∈iv x R .                         (34) 

This system can be expressed as a single differential 
equation with respect to the friction reaction variable 

 [1 ( / ) sgn( ) ]= ⋅ − ⋅ ⋅ ⋅i i i i i i ir c a c v r v                      (35) 

 

III. CONTINUOUS TIME SYSTEM IDENTIFICATION 

BASED ON DISTRIBUTIONS 

 
This section presents the main results on continuous time 

system identification based on distribution, as have been 
presented in [13]. Let Φn be the fundamental space from 

distribution theory [21] of the real testing functions, 
: , ( )ϕ → → ϕt t , having continuous derivatives at least up 

to the order n , with compact support T for any of the above 
derivative. The linear space Φn  is organized as a topological 

space considering a specific norm [21]. A distribution is a 
linear, continuous real functional 
on Φn , : , ( )Φ → ϕ→ ϕ ∈nF F . Let : , ( )→ →q t q t  be a 

function that admits a Riemann integral on any compact 
interval T from . Using this function, a unique distribution 

: , ( )Φ → ϕ → ϕ ∈q n qF F can be build by the 

relation ( ) ( ) ( ) ,ϕ = ⋅ϕ ⋅ ∀ϕ∈Φ∫q nF q t t dt .  

Considering, at least, 0C ( )∈q , the following important 

equivalence take place [22], 
 ( ) 0, ( ) 0,ϕ = ∀ϕ∈Φ ⇔ = ∀ ∈q nF q t t .                (36) 

s
ir  

iQ−  

0iv =  

ia  

iQ  

0  iQ  
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c
ir  

iv

iQ  

0  
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c
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The m-order derivative of a distribution is a new 
distribution, ( ) /∈Φm

q nF uniquely defined by the relations,  

 ( ) ( )( ) ( 1) ( ),ϕ = − ⋅ ϕ ∀ϕ ∈Φm m m
q q nF F                    (37) 

When ( )∈ mq C , then ( )
( ) ( )( ) ( ) ( ) ( )ϕ = ϕ = ϕ∫m
m m

q q
F F q t t dt  

that means the k-order derivative of a distribution generated 
by a function C ( )∈ mq  equals to the distribution generated 

by ( )mq , the k-order time derivative of the function q .   

If C ( )∈ mq , from (26), (29) one can write, ∀ϕ∈Φn  
( ) ( ) ( )( ) ( ) ( ) ( 1) ( ) ( )ϕ = ϕ = − ⋅ϕ ⋅∫ ∫m m m m

qF q t t dt q t t dt        (38) 

Let us consider a dynamical continuous time system 
expressed by a differential operator,  / ( , ) ( , , )u y Cq F u yθ = θ   (39)  

whose expression depends on a vector of parameters 
 1[ ... ... ]θ = θ θ θ T

i p .                               (40) 

It represents a family of models with a given structure in 
constant parameters. A special case is the model expressing a 
linear relation in the parameters 

 /( , ) 1
( , , )

p T
u y C ii

q F u y w v w vθ =
= θ = ⋅θ − = ⋅θ −∑ ,          (41) 

where iw  and v  represent a sum of the derivatives of some 

known, possible nonlinear, functions ψ j
i , 0ψ j , with respect to 

the input and output variables, 

 ( )

1
[ ( , )] , 1:

=
= ψ =∑

ji i
p nj

i ij
w u y i p ,                      (42) 

 0 0( )
01

[ ( , )]
=

= ψ∑
jp nj

j
v u y .                             (43) 

where parameters 0 0, , ,j j
i ip n p n  are given integer numbers. In 

[13] the existence and uniqueness conditions for a problem of 
distribution based continuous time system identification are 
presented. 

Suppose that it is possible to record the functions (u, y) in 
an the time interval ⊂T , called observation time interval or 
just time window. The restriction of the functions ( , )u y to the 

time interval T is denoted by ( , )T Tu y  respectively. If no 

confusion would appear, then we may drop the subscript T . 
An identification problem means to determine the 

parameter θ = θ , given the priori information on the model 
structure CF , (30), and a set of observed input-output pairs 

( , )T Tu y , ( , , )T T Cu y Fθ = θ  in a such a way that,  

 
/( , )

( ) 0,
θ

= ∀ ∈
T Tu yq t t                               (44) 

This condition involves,  
 

/( , )
( ) 0, , ( , )

θ
= ∀ ∈ ∀ ∈Ω × Γu yq t t u y                   (45) 

for any input-output pair ( , )u y  observed to that system.  

Let us consider two families of regular 
distributions, , 1:=

iwF i p , and ( )ϕvF  created based on the 

functions (42), (43),                                       (46) 
( ) ( )

1 1
( ) [ ( )] ( ) ( 1) [ ( )] ( )

= =
ϕ = ψ ϕ = − ψ ϕ∑ ∑∫ ∫

j j ji ii i i

i

p pn n nj j
w i ij j

F t t dt t t dt
R R

 

which determines the row vector, 

1
( ) [ ( ),..., ( ),..., ( )]ϕ = ϕ ϕ ϕ ∈

i p

T p
w w w wF F F F .                   (47) 

0 00 0 0( ) ( )
0 01 1

( ) [ ( )] ( ) ( 1) [ ( )] ( )
= =

ϕ = ψ ϕ = − ψ ϕ∑ ∑∫ ∫
j j jp pn n nj j

v j j
F t t dt t t dt

R R
.   (48) 

Any input-output pair ( ,u y ) observed from the system (41) is 

described by a pair of regular distribution ( ,w vF F ) for any 

ϕ∈Φn , [13]. The problem of the system (39) parameter 

identification can be represented now by distributions. For 
example, the regular distribution generated by the continuous 
function /( , )θ u yq from (39), is related to the parameter vector 

θ , ∀ϕ∈Φn  as                                                                 (49) 

θ θ /( , ) 1
( ) ( ) ( ) ( ) ( ) ( )

=
ϕ = ϕ = ϕ θ − ϕ = ϕ θ − ϕ∑ i

p T
q q u y w i v w yi

F F F F F F

If a triple ( *, *, *)θu y is a realization of the model (39), then 

the identity (61) takes place, 
 

θ* θ* /( *, *)( ) ( ) 0,ϕ = ϕ = ∀ϕ∈Φq q u y nF F                    (50) 

and vice versa, if an input-output pair ( *, *)u y  of the family 

of models (49), with unknown parameter θ , generates a 
distribution  

 
θ θ /( *, *) 1
( ) ( ) ( ) ( )

=
ϕ = ϕ = ϕ ⋅θ − ϕ∑ i

p
q q u y w i vi

F F F F            (51) 

which satisfies 
 

θ θ /( *, *)( ) ( ) 0, *ϕ = ϕ = ∀ϕ∈Φ ⇒ θ = θq q u y nF F ,            (52) 

As θ  has p components it is enough a chose (utilize) a 
finite number ≥N p  of fundamental function , 1:ϕ =i i N  

and to build an algebraic equation,     ⋅ θ =F Fw v                 (53) 

where wF  is an ( ×N p ) matrix of real numbers 

 1[ ( );...; ( );...; ( )]= ϕ ϕ ϕF T T T T
w w w k w NF F F                  (54) 

where k-th row ( )ϕT
w kF  is given by (47). The symbol 

Fv denotes an N -column real vector built from (48), 

 1[ ( ),..., ( ),..., ( )]= ϕ ϕ ϕF T
v v v k v NF F F .                  (55) 

When only the restriction ( ,T Tu y ) of the pair ( ,u y ) on the 

time interval T is available, any ϕi must have for its k 

derivative ( ) ( ), 1:ϕ =m
k t m n  the same compact support kT , 

( )supp{ ( )} [ , ] , 1: , 1:ϕ = = ⊆ ∀ = =m k k
k i a bt T t t T m n k N     (56) 

Below there are some simple testing functions ϕ ∈Φk n ,   

 ( ) ( , ) ( , , )ϕ = α ⋅β ⋅ Ψk k k k
k k k a b k a bt t t t t t                      (57) 

sin [ ( ) / ( ) ], ,
( , , )

0, ( , ] [ , )

⎧ π ⋅ − − ∀ ≥
Ψ = ⎨

∀ ∈ −∞ ∪ ∞⎩

kn k k k
k k b b a k
a b k k

a b

t t t t k n n
t t t

t t t
       (58) 

where αi  is a scaling factor and βi normalizes the area 

 ( , ) 1/ ( , , ) ,β = Ψ ∀ <∫
k
b

k
a

tk k k k k k
k a b k a b a bt

t t t t t t t .                 (59) 

If ( )= =Fwr rank p , then a unique solution is obtained. 
1( ) *−θ = ⋅ ⋅ ⋅ = θF F F FT T

w w w v                                              (60) 
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IV. APPLICATION FOR A FRICTION MECHANICAL 

SYSTEM IDENTIFICATION USING THE SIMPLIFIED 

DAHL MODEL 

 
Let us consider the simplest system with a single friction, as 

in Fig. 3, represented by a mass m  attached to a spring with 

stiffness PK  and viscosity VK , moving on a horizontal 

surface. The end of the spring is a fixed point. A horizontal 
force u  acts on the mass. 

                                     VK ⋅ξ   

 
 

 
 
 
 

Fig. 3. Principle diagram of the friction mechanical system 
 
Originally the mass is at rest in a position expressed by the 

variable 0ξ = . The equation of motion is  

 ;V Pm K K F u⋅ ξ + ⋅ξ + ⋅ξ + =                         (61) 

where  is friction of force F is given by the relation: 

0 ;F zσ= ⋅                                                                     (62) 

0σ  represents the stiffness of contact, again z represents the 

displacement at speed  0  and is modeled by: 

0

C

dz z
dt F

σ ξ
ξ

⋅
= − ⋅ ;                                                     (63) 

The state x of (1) has three components, 

1 2 3; ;x x xξ ξ ξ= = = , so 

1 2 2 3 3 1 2; ; ;P Vx x x x m x u K x K x= = ⋅ = − ⋅ − ⋅                   (64) 

Using the simplified Dahl: 

0 [1 sgn( ) ]
C

FF
F

σ ξ ξ= ⋅ ⋅ − ⋅ ,                                     (65) 

the relation (62) and (63), deriving the relation (61), this 
becomes:  

0 0 0
0( )V P V

C C C

m K K u m K
F F F
σ σ σ

ξ + ξ + + σ ξ − ξ + ξ ξ + ξ ξ

0
P

C

K u
F
σ

+ ξ ξ = .                                                                 (66) 

Denoting

0 0 0
1 2 3 0 4 5 6; ; ; ; ; ;v P V

C C C

m K K m K
F F F
σ σ σ

θ = θ = θ = +σ θ = θ = θ =

0
7 P

C

K
F
σ

θ = .                                                                        (67)  

the parameters that have to be identified, (66) is expressed as 
the operator (41), where 7p = . 

1 2 3 4 5 6; ; ; sgn( ) ; sgn( ) ; sgn( ) ;w w w w u w w= ξ = ξ = ξ = ξ ξ = ξ ξ ξ =ξ ξ ξ

7 sgn( ) ;w v u= ξ ξ ξ = .                                                          (68) 

The distribution image (51) of this differential operator, 
evaluated for a testing function ϕk on the time interval 

[ , ]= ⊆k k
k a bT t t T , contains the elements given by (46), (47), 

(48) of the form ( ) ( ) ( )ϕ = ⋅ϕ∫
k
b

ki
a

t

w k i kt
F w t t dt where, (69) results 

1
( ) ( ) ( )

k
b

k
a

t

w k kt
F t t dtϕ = − ξ ⋅ ϕ∫ ;  

2
( ) ( ) ( )

k
b

k
a

t

w k kt
F t t dtϕ = ξ ⋅ϕ∫  

3
( ) ( ) ( )

k
b

k
a

t

w k kt
F t t dtϕ = − ξ ⋅ϕ∫ 4

( ) [sgn( ( )) ( ) ( )] ( )
k
b

k
a

t

w k kt
F t t u t t dtϕ = ξ ξ ϕ∫  

5 6
( ) [ ( )sgn( ( )) ( )] ( ) ; ( ) [ ( )sgn( ( )) ( )] ( )

k k
b b

k k
a a

t t

w k k w k kt t
F t t t t dt F t t t t dtϕ = ξ ξ ξ ϕ ϕ = ξ ξ ξ ϕ∫ ∫

7
( ) [ ( )sgn( ( )) ( )] ( )

k
b

k
a

t

w k kt
F t t t t dtϕ = ξ ξ ξ ϕ∫ ; ( ) ( ) ( )

k
b

k
a

t

k kt
F u t t dtν ϕ =− ϕ∫  

For the evaluation of these integrals only input-output pair 
( , )ξ u and the sign of ξ are necessary in the case of friction 

without Stribeck effect . Otherwise also the speed ξ and the 

acceleration ξ  have to be measured. Integrals (69) are 

utilized to build the system (53), (54), (55), whose solution is 
(60). 

 

V. EXPERIMENTAL RESULTS 

 
To implement in Simulink the feedback structure of a 

system described by differential equation (61):  

v pm K K F u⋅ ξ + ⋅ξ + ⋅ξ + = ;  

with [0 1; ];VP KK
A

m m
−−

=
1

[0 ];B
m

= [1 0];C = 0D =  

which represents the linear part of a system, described via 

state-space and 0 0 [1 sgn( ) ]
C

dz FF
dt F

= σ ⋅ = σ ⋅ξ ⋅ − ξ ⋅  (65) 

which represents the simplified Dahl model, is the nonlinear 
part of a system.  
 

the simplified Dahl model

velocityfriction

Step State -Space

x' = Ax+Bu
 y = Cx+Du

Scope

 
Fig. 4. Block diagram of the friction mechanical system using 

the simplified Dahl model 
 

A step input u(t)=2·1(t) is applied from initial state  
x(0)=[2 6 3] considering A=[0 1.0000 ; -0.8000 –0.1000];  
B=[0 ; 0.2000]; C=[1 0]; D=0 in which 5;m =  4PK = and 

0.5;VK =  

 

u  
m  

F−  

ξ  0  

PK  
PK ⋅ ξ  
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    The result of these simulation is: 

 
 

Fig. 5. Block diagram of simulation from fig. 4. 
 

To implement distribution based identification methods, an 
experimental platform (DBI) has been developed. It allows 
creating testing functions with settable parameters, 
automatically to create and solve the system (53). The input-
output data for identification are obtained from an external 
source (a data file) or internally by simulation. 

Many examples and types of friction systems have been 
implemented for identification but, because of limited space in 
this paper, only one example is analysed, based on the 
application presented in section IV.  

In the first example, the measured signals, as indicated in 
Fig. 6., are generated by a step input ( ) 2 ( )= ⋅1u t t with initial 

state x(0)=[2 6 3] and considering 

0 0 0 0
0, , , , , ,P V V P

C C C C

m K K m K K
F F F F
σ σ σ σ

σ+ ⋅ ⋅ ⋅  as parameters 

for identification. Seven testing functions ϕk on KT  , as (57), 

with  nk=4 and T1=[0,3];T2=[3,6]; T3=[6,9]; T4=[9,12] are 
utilized. 

 

 
Fig. 6. Measured variables for the friction system using the 

simplified Dahl model and initial state x(0)=[2 6 3] 
 

The matrices WF , and  T
VF , respectively are: 

-10.4502   -12.3516     15.7123    -10.1908   11.6045       -12.6103     4.3498 
 12.7302   -11.8704    -10.3976   -11.9654    12.9043        13.4010     13.8743 
- 9.2890     10.2423     12.6523     12.3490    10.3087       10.3067     11.4280 
  5.9832    -12.3446     14.5378     -13.5967    12.8376      11.5482     12.7601 
12.4782       4.3098      13.8941     10.8281     16.3167      13.8213     16.2810 
13.6754       5.8956     7.7602      -10.5032     15.2784     15.3462      13.2903 
 6.7653      -1.3405     10.8903      11.7598      13.3452      12.8368     12.6587 
14.3752    14.752       14.3752       14.3752     14.3752        14.3752     14.3752 

 

The real and identified parameter values are respectively: 
 
m :                5.00          4.9980479519  

0PK σ+ :   7.00          6.9977692527 

VK :              0.50          0.5084353753  

0

CF
σ

:              3.00         2.9964871357 

0

C

m
F
σ

⋅ :        15.00       14.9883563673  

0
V

C

K
F
σ

⋅ :    1.50         1.4966571237 

0
P

C

K
F
σ

⋅ :     12.00      11.9967343671 

and the conditioning number of  Fw, cond(Fw)=30.4328. 
For the same input but with x(0)=[1 2 3] and T1=[0,5]; 

T2=[5,10];T3=[10,15];T4=[15,20];  

The matrices WF and T
VF , are: 

-8.5827  -8.1706    12.6403    -6.3093    12.7543     -4.5341      7.2567  
10.1132    -4.4704    -10.6064   -8.6526    10.7543    5.5213    10.7345  
-5.5172     10.5623   9.8666    10.0882   12.1908     10.5678     6.7841  
5.0847   -10.2452  8.7684   -4.1249    10.4562      12.7891       5.4567  
13.0847   8.3452   4.7834    3.9871      5.4562        10.6523       3.3452  
12.5643    10.7656   6.5432   -10.3526   8.8743      4.5622      12.0945  
10.4507   -10.0734    10.3024   9.6734   3.0944     10.4508     10.5921  
12.6721  12.6721   12.6721   12.6721   12.6721    12.6721      12.6721 
 

cond(Fw)=28.4618.,  
 
The identification results are:  

 
m :                5.00           4.9970578919  

0PK σ+ :   7.00           6.9356772327 

VK :             0.50           0.4934355752 

0

CF
σ

:             3.00          2.9855876132 

0

C

m
F
σ

⋅ :     15.00          14.9986723781  

0
V

C

K
F
σ

⋅ :    1.50           1.4921549274 

0
P

C

K
F
σ

⋅ :    12.00        11.9851204581.    
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The measured variables for the second example are 
illustrated in Fig.7.  

 

 
Fig. 7. Measured variables for the friction system using the 

simplified Dahl model and initial state x(0)=[1 2 3] 
 

The third example refers to the same conditions as in the 
second example but considering errors in the measurement of 
both input and output. A zoom of these measurements 
containing error is shown in Fig,8. 
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yz
12
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Fig. 8. Measured variables for the friction system without 
Stribeck effect and initial state x(0)=[1  2  3] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. A zoom representation of measurements containing 
error for the friction system without Stribeck effect and initial 
state x(0)=[1  2  3] 

VI.  CONCLUSIONS 

 
The above results illustrates the advantages of distribution 

based identification for systems with discontinuities on the 
right side. Description by functionals allows to enlarge the 
area of systems to which identification procedures can be 
applied. This paper is development of a paper “Identification 
of systems with friction via distributions”. 
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