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Abstract— The problem of modelling and simulating pipelines
that are used for transporting different fluids is addressed in
the paper. The problem is solved by including fluid density in
the model beside pressure and velocity of the medium. First,
the system of nonlinear partial differential equations is derived.
Then, the obtained model is linearised and transformed into
the transfer function form with three inputs and three outputs.
Admittance form of model description is presented in the paper.
Since the transfer function is transcendent, it cannot be simulated
using classical tools. Rational transfer function approximation of
the model were used and validated on the real industrial pipeline.
It was also compared to the model that does not take the changes
in fluid density into account. The latter model cannot cope with
batch changes whereas the proposed one can.

Index Terms— Pipeline, Fluid dynamics simulation, Transcen-
dent transfer function, Lumped parameter model

I. I NTRODUCTION

Real time transient model (RTTM) based leak monitoring
systems require a sophisticated mathematical model of the
flow in pipelines. The so called ”water hammer equations”
are relatively simple mathematical models assuming isentropic
flow; they are obtained using the principles of mass and
momentum conservation [1].

However, in the case when different fluids are transported
through the same pipeline, the above model is not adequate.
The water hammer equation can easily be extended, and
this enables simplified description of multi-product-flowswith
multiple products or batches being transported at the same time
in one pipeline. Up to now, there is no analytical solution for
this nonlinear, partial differential equation system available.
Instead, numerical solution techniques like the method of
characteristics can be used [2].

Another possibility to solve the problem is to use lineari-
sation and Laplace transformation techniques in order to get
a frequency domain description [3]. This leads to a simplified
pipeline model with lumped parameters. We hereby get some
advantages: the classical system theory for Multi-Input Multi-
Output (MIMO) systems can be used, e.g. for controller
design and system identification. The resulting algorithmsare
less time-consuming and hence better suited for critical real
time applications. Additionally, the analysis of fluid transients
caused by leaks is much easier.

In Section II the nonlinear model of a pipeline is derived that
takes into account multiple fluids being transported. In Section
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S. Blǎzič is with the University of Ljubljana, Faculty of ElectricalEngineer-
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III the model is linearised, and in Section IV a simplified
model with lumped parameters is given. The obtained models
is compared to the one derived in [3] that assumes constant
density of the fluid. The results are validated on the real
industrial pipeline in Section V. At the end some conclusions
are given.

II. M ATHEMATICAL MODEL OF THE PIPELINE

The classical solution for unsteady flow problems is ob-
tained by using the equations for continuity, momentum, and
energy. These equations correspond to the physical princi-
ples of mass, momentum, and energy conservation. Applying
these equations leads to a coupled nonlinear set of partial
differential equations and hence, they are very difficult to
solve analytically. To date, there is no general closed-form
solution. Further problems arise in the case of turbulent flow,
which introduces stochastic flow behaviour. Therefore, the
mathematical derivation for the flow through a pipeline is a
mixture of both theoretical and empirical approaches.

The following assumptions for the derivation of a mathe-
matical model of the flow through pipelines are made:

1) Fluid is compressible.Compressibility of fluid results
in an unsteady flow.

2) Flow is viscous.Viscosity causes shear stresses in a
moving fluid.

3) Flow is adiabatic. No transfer of energy between fluid
and pipeline will be considered.

4) Flow is isothermal. Temperature changes due to pres-
sure changes can be neglected for liquids. Under these
circumstances, temperature changes could only be the
result of friction effects, but these effects will also be
neglected. Therefore, the temperature along the pipeline
is constant.

5) Flow is one-dimensional. All characteristics of the
pipeline such as velocityv and pressurep depend only
on the x-axis laid along the pipeline.

Consider now a pipeline of lengthLp with constant diameter

D = D(x) = 2R = const. (1)

The continuity equation in conservative form for the one-
dimensional case yields [4]

dρ

dt
+ ρ

∂v

∂x
= 0 (2)

with densityρ(x), velocity v(x), and with the substantial or
total derivative

dρ

dt
≡ ∂ρ

∂t
+ v

∂ρ

∂x
(3)

The momentum equation in conservative form for the one-
dimensional case yields [4]

ρ
dv

dt
= −ρg sinα − ∂p

∂x
+

∂pL

∂x
(4)
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with pressurep(x). The quantityg sinα is the x-component
of the standard gravity vectorg. The pressure losspL rely on
the shear stressτR. The formula from Darcy and Weisbach
[5] states that

∂pL

∂x
= −ρ

λv|v|
2D

(5)

with the dimensionless friction coefficientλ(v). This equation
holds for laminar flow as well as for turbulent flow. Laminar
flow is described by [5]

λ = λ(v) =
64

Re
(6)

if the dimensionless Reynolds number

Re =
D

ν
· v (7)

is smaller than 2320 (ν is the kinematic viscosity of the fluid).
For larger values of the Reynolds number, flow is assumed
to be turbulent. In that case, Eq. (6) can be replaced by
an appropriately mixed theoretically and empirically derived
formula such as the formula of Colebrook [5]

1√
λ

= −2 log

(

2.51

Re
√

λ
+ 0.27

kR

D

)

(8)

with roughness heightkR as a measure of the roughness of
commercial pipes.

Using Eqs. (4) and (5) we obtain

dv

dt
+

1

ρ

∂p

∂x
+ g sinα + ρ

λv|v|
2D

= 0 (9)

The model of the pipeline is completed by

p = a2ρ (10)

with the (isentropic) speed of sounda of the fluid. Eqs. (2),
(9), and (10) lead to the following mathematical model that
will be treated in the paper:

dρ

dt
+ ρ

∂v

∂x
= 0 (11)

dv

dt
+

1

ρ

∂p

∂x
+ g sinα +

λv|v|
2D

= 0 (12)

dp

dt
− a2 dρ

dt
= 0 (13)

III. L INEARISATION OF THE MATHEMATICAL MODEL

By replacing total derivatives with partial ones, multiplying
Eq. (12) with ρ, and by inserting Eq. (11) into Eq. (13) we
get

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0 (14)

ρ
∂v

∂t
+ ρv

∂v

∂x
+

∂p

∂x
+ ρg sin α +

ρλv|v|
2D

= 0 (15)

∂p

∂t
+ v

∂p

∂x
+ a2ρ

∂v

∂x
= 0 (16)

In order to simplify this system of partial differential equa-
tions, first the steady state will be evaluated. It is obtained by
setting to zero all partial derivatives with respect to time( ∂·

∂t
:=

0) which yields the following set of ordinary differential
equations (with respect tox):

v̄
dρ̄

dx
+ ρ̄

dv̄

dx
= 0 (17)

ρ̄v̄
dv̄

dx
+

dp̄

dx
+ ρ̄g sinα +

ρ̄λv̄|v̄|
2D

= 0 (18)

v̄
dp̄

dx
+ a2ρ̄

dv̄

dx
= 0 (19)

This set of equations cannot be solved analytically. It was
solved by MATLAB - SIMULINK for the pipeline used for
the verification of the model (see Section V). The results for
p̄, v̄ and ρ̄ are shown in Fig. 1.

The convective termsρv ∂v
∂x

andv ∂p
∂x

in Eqs. (15) and (16),
respectively, are small compared to the derivatives with respect
to time ρ∂v

∂t
and ∂p

∂t
, respectively, and will be neglected.

Next, Eqs. (15) and (16) will be linearised around steady-state
solution. In order to do this, new variables will be introduced:

ṽ(x, t) = v(x, t) − v̄(x) (20)

p̃(x, t) = p(x, t) − p̄(x) (21)

ρ̃(x, t) = ρ(x, t) − ρ̄(x) (22)

After linearising Eqs. (15) and (16), and taking into account
Eqs. (18) and (19), the following is obtained:

ρ̄
∂ṽ

∂t
+

∂p̃

∂x
+ ρ̃g sin α +

ρ̄λ|v̄|
D

ṽ +
λv̄|v̄|
2D

ρ̃ = 0

(23)
∂p̃

∂t
+ a2ρ̄

∂ṽ

∂x
+ a2ρ̃

dv̄

dx
= 0 (24)

The last term in Eq. (24) can be neglected due to the fact that
dv̄
dx

is very small (see Fig. 1). Using notations that are common
in the analysis of electrical transmission lines:

L = ρ̄ (25)

R =
ρ̄λ|v̄|
D

(26)

C =
1

a2ρ̄
(27)

and by denoting

T = g sin α +
λv̄|v̄|
2D

(28)

we get

L
∂ṽ

∂t
+ Rṽ + T ρ̃ = −∂p̃

∂x
(29)

C
∂p̃

∂t
= −∂ṽ

∂x
(30)

Since the fluid in the pipeline is almost incompressible, the
dynamics ofρ in Eq. (14) are relatively slow, compared to
those ofv and p in Eqs. (15) and (16). As a consequence,
the velocity profile along the pipeline is nearly constant
within each time instant. Due to a special reason that will be
explained later, the derivative∂v

∂x
will not be neglected in Eq.

(14). Rather, it will be approximated with a very small constant
∆vx. Linearising (14) and considering (22) then yields:

∂ρ̃(x, t)

∂t
+ ṽ(x, t)

dρ̄(x)

dx
+

+v̄(x) +
∂ρ̃(x, t)

∂x
+ ρ̃(x, t)∆vx = 0 (31)
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Fig. 1. Steady state solution of the pipeline: pressurep̄, velocity v̄, and densitȳρ

Note that dρ̄
dx

is very small (see Fig. 1). It could be neglected
in Eq. (31), but it will not be at this point since its influence
is similar to the influence ofdv̄

dx
(see Eq. 17).

The first step in obtaining analytical solution of the system
is to solve Eq. (31) by applying Laplace transformation on it.
It is assumed that it is permissible to interchange the orderof
differentiation with respect tox and the taking of the Laplace
transform. The consequence is that the first order ordinary
differential equation is obtained [6]

sρ̃(x, s) − ρ̃(x, 0) + ṽ(x, s)
dρ̄(x)

dx
+

+v̄(x)
dρ̃(x, s)

dx
+ ∆vxρ̃(x, s) = 0 (32)

It is assumed here that the system rests at timet = 0, i.e.
ρ̃(x, 0) = 0, p̃(x, 0) = 0, ṽ(x, 0) = 0. Equation (32) can then
be transformed to

dρ̃(x, s)

dx
+

s + ∆vx

v̄(x)
ρ̃(x, s) = −dρ̄(x)

dx

ṽ(x, s)

v̄(x)
(33)

The solution of the homogenous part of Eq. (33) would be

ρ̃(x, s) = ρ0(s)e
−mx (34)

with

ρ0(s) = ρ̃(0, s) (35)

m =
s + ∆vx

v̄(x)
(36)

if m (or v̄) did not depend onx. Since the latter assumption
is violated and Eq. (33) is not homogenous, the candidate for
the solution is

ρ̃(x, s) = ρ′(x, s)e−mx (37)

Inserting Eq. (37) into Eq. (33), and taking into account

dm

dx
= −s + ∆vx

v̄2

dv̄

dx
= −m

v̄

dv̄

dx
(38)

yields

dρ′(x, s)

dx
e−mx + ρ′(x, s)e−mx(−m − xdm

dx
) +

mρ′(x, s)e−mx = −dρ̄(x)

dx

ṽ(x, s)

v̄(x)

dρ′(x, s)

dx
= −ρ′(x, s)m

x

v̄

dv̄

dx
− emx dρ̄(x)

dx

ṽ(x, s)

v̄(x)
(39)

Since dv̄
dx

and dρ̄
dx

are very small, it follows from Eq. (39)
that ρ′ can be regarded as independent ofx (at least on the
interval of interestx ∈ [0, Lp]). Therefore, the solution (34)
will be treated in the paper. Similarly, dependence of physical
parameters of the pipeline (L, R, C, T , andm) on x shall be
neglected in the rest of the paper since they are only functions
of v̄ and ρ̄.

In the following, only the deviation model will be con-
sidered. To simplify the notation, the tildes will be omitted
in the equations. The varaiblesp, v, and ρ will stand for
the deviations of the respective variables from the stationary
values.

The next step in the derivation of a simple model of the
pipeline is the analytical solution of linear Eqs. (29) and (30).
Performing the Laplace transformation on them yields

(Ls + R)V (x, s) = −dP (x, s)

dx
− Tρ(x, s)

(40)

Cs · P (x, s) = −dV (x, s)

dx
(41)

INTERNATIONAL JOURNAL of MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 1, 2007                                                               64



where stationary initial conditions̄v and p̄ were assumed, i.e.
v(x, 0) = 0, p(x, 0) = 0. By differentiating Eqs. (40) and (41)
with respect tox

(Ls + R)
dV (x, s)

dx
= −d2P (x, s)

dx2
− T

dρ(x, s)

dx
(42)

Cs
dP (x, s)

dx
= −d2V (x, s)

dx2
(43)

the following equations are obtained using Eqns. (40) and (41)

(Ls + R) · Cs · P (x, s) =
d2P (x, s)

dx2
+ T

dρ(x, s)

dx
(44)

(Ls + R) · Cs · V (x, s) =
d2V (x, s)

dx2
− CsTρ

(45)

Taking into account Eq.(34) we obtain:

(Ls + R) · Cs · P (x, s) =
d2P (x, s)

dx2
− Tρ0(s)me−mx

(Ls + R) · Cs · V (x, s) =
d2V (x, s)

dx2
− CsTρ0(s)e

−mx

which are known as wave equations. Their solutions are

P (x, s) = C1(s)e
−nx + C2(s)e

nx − Tρ0(s)m

n2 − m2
· e−mx

(46)

V (x, s) = C3(s)e
−nx + C4(s)e

nx − CsTρ0(s)

n2 − m2
· e−mx

(47)

where

n2 = (Ls + R) · Cs (48)

The four expressions,C1(s), C2(s), C3(s), andC4(s) are not
completely independent. By introducing (47) into (40) and by
differentiating (46) with respect tox, we obtain

(Ls + R)[C3(s)e
−nx + C4(s)e

nx −
CsTρ0(s)

n2 − m2
e−mx] = nC1(s)e

−nx − nC2(s)e
nx −

Tρ0(s)m
2

n2 − m2
e−mx − Tρ0(s)e

−mx (49)

From Eq. (49), the following relations betweenC1(s), C3(s),
andC2(s), C4(s), respectively, are obtained

C1(s)

C3(s)
=

Ls + R

n
=

√

Ls + R

Cs
= ZK (50)

C2(s)

C4(s)
= −Ls + R

n
= −

√

Ls + R

Cs
= −ZK (51)

since

Tρ0(s)e
−mx

[

(Ls + R)Cs

n2 − m2
− 1 − m2

n2 − m2

]

≡ 0

(52)

The termZK is called thecharacteristic impedance. The com-
plete solution is obtained applying the boundary conditions.
First, using the boundary conditions forx = 0

P (0, s) = P0(s) = C1(s) + C2(s) −
Tρ0(s)m

n2 − m2

= ZK(C3(s) − C4(s)) −
Tρ0(s)m

n2 − m2
(53)

V (0, s) = V0(s) = C3(s) + C4(s) −
CsTρ0(s)

n2 − m2

(54)

the coefficientsC3(s) andC4(s) are obtained in the following
form

C3(s) =
1

2
V0(s) +

1

2ZK

P0(s) +
Tρ0(s)

2ZK

· 1

n − m
(55)

C4(s) =
1

2
V0(s) −

1

2ZK

P0(s) +
Tρ0(s)

2ZK

· 1

n + m
(56)

Next, the boundary conditions forx = Lp are used in Eqs. (46)
and (47)

P (Lp, s) = PL(s) = ZK [C3(s)e
−nLp − (57)

− C4(s)e
nLp ] − Tρ0(s)m

n2 − m2
e−mLp

V (Lp, s) = VL(s) = C3(s)e
−nLp + (58)

+ C4(s)e
nLp − CsTρ0(s)

n2 − m2
e−mLp

By introducing (55, 56) into (57, 58) the inverse chain repre-
sentation of the pipeline is obtained

PL(s) = −ZKV0(s) sinh(nLp) + P0(s) cosh(nLp) +

+
Tmρ0(s)

n2 − m2

[

cosh(nLp) − n
m

sinh(nLp) − e−mLp
]

(59)

VL(s) = V0(s) cosh(nLp) −
1

ZK

P0(s) sinh(nLp) +

+
Tmρ0(s)

Zk(n2 − m2)

[

n
m

cosh(nLp) − sinh(nLp) − n
m

e−mLp
]

(60)

Expressions (59) and (60) can be simplified by the evaluation
of n

m
using Eqs. (36), (48), (25), (26), and (27):

n

m
=

√

(Ls + R)Cs

(s + ∆vx)/v̄
=

√

(

ρ̄s + ρ̄λ|v̄|
D

)

1
a2ρ̄

s

(s + ∆vx)/v̄

=
v̄

a

√

s2 + λ|v̄|
D

s

(s + ∆vx)2
(61)

Note that| n
m
| � 1 since the sound speed is much bigger than

the fluid speed (a � v̄). Consequently, the terms withn
m

in
square brackets in Eqs. (59) and (60) can be neglected. By
taking into account

m

n2 − m2
=

1

m
(

(

n
m

)2 − 1
) ≈ −m−1 = − v̄

s + ∆vx

(62)
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and

n

Zk

= Cs (63)

Eqs. (59) and (60) take the following form

PL(s) = −ZKV0(s) sinh(nLp) + P0(s) cosh(nLp) −

−T v̄ρ0(s)

s + ∆vx

(

cosh(nLp) − e−mLp
)

(64)

VL(s) = V0(s) cosh(nLp) −
1

ZK

P0(s) sinh(nLp) −

− T v̄ρ0(s)

Zk(s + ∆vx)
(−sinh(nLp)) (65)

The constant∆vx is very small but positive (what can be
seen from Fig. 1). Consequently, 1

s+∆vx
is a stable transfer

function. In the time scope of interest this transfer function is
equivalent to an integrator, and will be replaced by one in the
equations of the model. This is the reason why∆vx was not
neglected in the early phase of the model derivation. Similarly,
the terme−mLp in Eq. (64) becomes

e−mLp = e−
s+∆vx

v̄
Lp ≈ e−

Lp

v̄
s = e−τs (66)

and can be interpreted as a pure delay system (τ is the time
needed for the fluid to reach the outlet from the inlet of the
pipeline – transport delay).

Apart from Eqs. (64) and (65), an additional equation
is needed for the complete description of the system. This
equation defines the density at the pipeline outlet and can be
obtained by settingx to Lp in Eq. (34):

ρ(Lp, s) = ρL(s) = ρ0(s)e
−mLp = ρ0(s)e

−τs (67)

Finally, we arrive to the noncausal (the transfer function matrix
goes to∞ ass → ∞) representation of the pipeline:





PL(s)
VL(s)
ρL(s)



 = [A1 A2 ]





P0(s)
V0(s)
ρ0(s)



 (68)

where

A1 =





cosh(nLp) −ZK sinh(nLp)
− 1

ZK
sinh(nLp) cosh(nLp)

0 0





A2 =





−Tv0

s
(cosh(nLp) − e−τs)
Tv0

Zks
sinh(nLp)
e−τs





The linearised model of the pipeline (68) can be written in
one of the following four forms which differ from each other
with respect to the model inputs (independent quantities) and
outputs (dependent quantities):

1) Hybrid representation: Inputs V0, PL, ρ0 outputs VL,
P0, ρL:





P0

VL

ρL



 = [A3 A4 ]





PL

V0

ρ0



 (69)

where

A3 =





1
cosh(nLp) ZK tanh(nLp)

− 1
ZK

tanh(nLp)
1

cosh(nLp)
0 0





A4 =





Tv0

s

(

1 − 1
cosh(nLp)e

−τs
)

Tv0

Zks
tanh(nLp)e

−τs

e−τs





2) Hybrid representation: Inputs VL, P0, ρ0, outputs V0,
PL, ρL:





PL

V0

ρL



 = [A5 A6 ]





P0

VL

ρ0



 (70)

where

A5 =





1
cosh(nLp) −ZK tanh(nLp)

1
ZK

tanh(nLp)
1

cosh(nLp)
0 0





A6 =





−Tv0

s

(

1
cosh(nLp) − e−τs

)

−Tv0

Zks
tanh(nLp)
e−τs





3) Impedance representation: InputsV0, VL, ρ0, outputs
P0, PL ρL:





P0

PL

ρL



 = [A7 A8 ]





V0

VL

ρ0



 (71)

where

A7 =





ZK coth(nLp) −ZK
1

sinh(nLp)

ZK
1

sinh(nLp) −ZK coth(nLp)
0 0





A8 =





Tv0

s
Tv0

s
e−τs

e−τs





4) Admittance representation: Inputs P0, PL, ρ0, out-
puts V0, VL, ρL:





V0

VL

ρL



 = [A9 A10 ]





P0

PL

ρ0



 (72)

where

A9 =





1
ZK

coth(nLp) − 1
ZK

1
sinh(nLp)

1
ZK

1
sinh(nLp) − 1

ZK
coth(nLp)

0 0





A10 =







−Tv0

Zks

(

coth(nLp) − 1
sinh(nLp)e

−τs
)

−Tv0

Zks

(

1
sinh(nLp) − coth(nLp)e

−τs
)

e−τs







It should be noted that the form (72) represents causal
models, whilst Eqn. (68) represent a noncausal model. There-
fore, the latter cannot be realised by means of simulation.
This completes the derivation of the transfer functions of
the linearised pipeline. The resulting transfer functionsare
transcendent. In the next section, their approximations by
rational transfer functions will be given.
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Fig. 2. The time courses of the densityρ – measuredρ at the inlet (dash-dot line), measuredρ at the outlet (solid line) and simulatedρ (dotted line)

IV. SIMPLIFIED PIPELINE MODEL WITH LUMPED

PARAMETERS

In this section, the rational transfer functions of the pipeline
will be refered to since such transfer functions are much easier
to simulate, e.g. when designing real time transient model
based leak monitoring systems. There are two different tran-
scendent functions (e−τs is the third one, but this one will be
left as it is, since it can be simulated directly):1

ZK
coth(nLp),

and 1
ZK

1
sinh(nLp) .Their approximations with rational transfer

functions (obtained by expanding the transcendent transfer
functions into a Taylor series) can be found in [3].

V. VALIDATION OF THE SIMPLIFIED MODEL

The models were validated on a real pipeline with the
following data: length of the pipelineLp = 9854 m, velocity
of sound a = 1059 m/s, friction coefficientλ = 0.0158,
gravity constantg = 9.81 m/s2, diameterD = 0.2065 m,
and inclinationα = −0.00256 rad. Simulations of the plant
were performed on the lumped parameter model in admittance
form.

The most significant change in the fluid densityρ occurs
during a batch change, so the data was recorded in the
operation phase where the batch was changed twice. Due to
operational reasons the pipeline must be stopped before and
after a batch change. The stationary operation between 7000s
and 14000 s was chosen as the operating point. Figure 2
shows the time courses of the (measured) densityρ at the
inlet (dash-dot line) and outlet (measured density – solid line;
model response – dotted line) of the pipeline, respectively.
The batch changes (1000 s to 5300 s and 14800 s to 19000 s)
can be seen clearly. The model response corresponds perfectly
to the measured data for the second batch change, where the

current operating conditions meet the chosen operating point.
However, during the first change some miss-agreement can be
noticed between the measured and the simulated density at the
pipeline outlet. The difference is expectable since the system is
not situated in the operating point where the linearised model
was obtained.

Next, the velocity part of the lumped parameters model
will be validated and compared to the model presented in [3].
The latter was obtained based on assumption that the density
of the fluid being transported is constant all the time. The
model proposed here takes the fluid changes into account.
The comparison will allow us to estimate the benefit of the
extended model. Simulation results of the both models will be
compared to the real plant data.

In Figure 3 three time courses of the fluid velocity at
the inlet of the pipeline are shown: the measured one and
responses of two models (with and without the consideration
of the densityρ). It can be seen that the proposed model
which takes into consideration the densityρ can cope with the
changeable operating conditions whereas the model from [3]
cannot. Note that the latter model performs very well between
7000 s and 14000 s where current density is approximately
equal to the constant density of the simple model. But after the
batch change the simulation results are not very satisfactory.
In Figure 4 a detail of the Figure 3 is depicted, where
the transient phase can be seen in detail. Good coincidence
between the measured data and the proposed model response
can be established.

VI. CONCLUSION

The model of the multi-product pipeline has been derived
in the paper. To accommodate for the changes in the density,
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the latter is included in the model of the pipeline. The
resulting model was the system of partial differential nonlinear
equations. After linearisation and Laplace transformation a
transfer function matrix was obtained that was transcendent.
Simulations of such functions are quite complex and time
consuming. This is why the lumped parameter approximation
was found. The latter enables classical simulation and is
therefore suitable for observer based leakage detection. It
has been shown that the approximative model is capable of
describing real plant dynamics. The experimentation has also
shown that much better results are obtained by that model
than the one proposed in [3] if different fluids are transported
through the pipeline.
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