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Simulation of Multi-product Pipelines

Drago Matko, S&o Blazic, and Gerhard Geiger

Abstract— The problem of modelling and simulating pipelines Ill the model is linearised, and in Section IV a simplified
that are used for transporting different fluids is addressed in  model with lumped parameters is given. The obtained models
the paper. The problem is solved by including fluid density in is compared to the one derived in [3] that assumes constant

the model beside pressure and velocity of the medium. First, . . .
the system of nonlinear partial differential equations is derived. density of the fluid. The results are validated on the real

Then, the obtained model is linearised and transformed into industrial pipeline in Section V. At the end some conclusion
the transfer function form with three inputs and three outputs. are given.

Admittance form of model description is presented in the paper.

Since the transfer function is transcendent, it cannot be simulai Il. MATHEMATICAL MODEL OF THE PIPELINE

using classical tools. Rational transfer function approximation of . . . )
the model were used and validated on the real industrial pipeline. The classical solution for unsteady flow problems is ob

It was also compared to the model that does not take the changest@ined by using the equations for continuity, momentum, gnq
in fluid density into account. The latter model cannot cope with energy. These equations correspond to the physical princi-

batch changes whereas the proposed one can. ples of mass, momentum, and energy conservation. Applying
Index Terms— Pipeline, Fluid dynamics simulation, Transcen- these equations leads to a coupled nonlinear set of partial
dent transfer function, Lumped parameter model differential equations and hence, they are very difficult to

solve analytically. To date, there is no general closedifor
solution. Further problems arise in the case of turbulemt, flo

Real time transient model (RTTM) based leak monitorin hich mtr_oduces_ sto_chasUc flow behaviour. Th_eref_ore,_ the
thematical derivation for the flow through a pipeline is a

systems require a sophisticated mathematical model of . .
4 a P nixture of both theoretical and empirical approaches.

flow in pipelines. The so called "water hammer equation§n . . L
are relatively simple mathematical models assuming ispittr The following assumptions for the derivation of a mathe-

I. INTRODUCTION

1) Fluid is compressible.Compressibility of fluid results

in an unsteady flow.

Flow is viscous. Viscosity causes shear stresses in a

moving fluid.

Flow is adiabatic. No transfer of energy between fluid

and pipeline will be considered.

4) Flow is isothermal. Temperature changes due to pres-
sure changes can be neglected for liquids. Under these
circumstances, temperature changes could only be the
result of friction effects, but these effects will also be
neglected. Therefore, the temperature along the pipeline
is constant.

5) Flow is one-dimensional. All characteristics of the

momentum conservation [1].

However, in the case when different fluids are transported
through the same pipeline, the above model is not adequate?)
The water hammer equation can easily be extended, and
this enables simplified description of multi-product-flowih )
multiple products or batches being transported at the sanee t
in one pipeline. Up to now, there is no analytical solution fo
this nonlinear, partial differential equation system klae.
Instead, numerical solution techniques like the method of
characteristics can be used [2].

Another possibility to solve the problem is to use lineari-
sation and Laplace transformation techniques in order to ge
a frequency domain description [3]. This leads to a simlifie o :
pipeline model with lumped parameters. We hereby get some pipeline suc;h as velocity and_pre.ssur@ depend only
advantages: the classical system theory for Multi-InputtMu on the x-axis laid along the pipeline. _
Output (MIMO) systems can be used, e.g. for controller Consider now a pipeline of length, with constant diameter
design and system identification. The resulting algoritiames D = D(x) = 2R = const. (1)
less time-consuming and hence better suited for critical re
time applications. Additionally, the analysis of fluid tskents
caused by leaks is much easier.

In Section Il the nonlinear model of a pipeline is derived tha dp + 9 -0 )
takes into account multiple fluids being transported. IntiSac dt Oz

with density p(z), velocity v(z), and with the substantial or
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with pressurep(x). The quantitygsin « is the z-component 0) which yields the following set of ordinary differential
of the standard gravity vect®. The pressure logs;, rely on equations (with respect te):
the shear stressgz. The formula from Darcy and Weisbach dp  _dv

[5] states that Vs TP =0 7
Opr _ Ay (5) dv  dp . pAD| |
or "D po o+ o pgsina + —=o= =0 (18)
with the dimensionless friction coefficiea{v). This equation 5P n agﬁ@ —0 (19)
holds for laminar flow as well as for turbulent flow. Laminar dz dz
flow is described by [5] This set of equations cannot be solved analytically. It was
64 solved by MATLAB - SIMULINK for the pipeline used for
A=A(v) = T (6) the verification of the model (see Section V). The results for
P, v and p are shown in Fig. 1.
if the dimensionless Reynolds number The convective termgv 2 andv 32 in Egs. (15) and (16),
D respectively, are small compared to the derivatives wisheet
Re=— v (") to time p2* and 2, respectively, and will be neglected.

_ ) ) L _ .. Next, Egs. (15) and (16) will be linearised around steadyest
is smaller than 23201is the kinematic viscosity of the fluid). solution. In order to do this, new variables will be introddc
For larger values of the Reynolds number, flow is assumed

to be turbulent. In that case, Eq. (6) can be replaced by o(z,t) = v(z,t) — v(2) (20)
an appropriately mixed theoretically and empirically ded p(z,t) = p(x,t) — p(x) (22)
formula such as the formula of Colebrook [5] pla,t) = px,t) — p(z) (22)
1 _ _210g< 2.51 +0.27k_3) 8) After linearising Egs. (15) and (16), and taking into acdoun
VA ReV/A D Egs. (18) and (19), the following is obtained:
with roughness heightp as a measure of the roughness of ,@ @ - pA[D . Avfo| .
commercial pipes. Por oy TPISMAT vt o= 0
Using Egs. (4) and (5) we obtain . 9 (23)
D 5_00 5. dv
1 — +a’p— +a‘p— =0 24
dt 9 2D The last term in Eq. (24) can be neglected due to the fact that
The model of the pipeline is completed by % is very small (see Fig. 1). Using notations that are common
) in the analysis of electrical transmission lines:
p=a’p (10) _
L = p (25)
with the (isentropic) speed of sounrdof the fluid. Egs. (2), R A7 26
(9), and (10) lead to the following mathematical model that - D (26)
. i i 1
will be treated in the paper: c - aTﬁ @7)
dp Ov
o TPe, =0 (11) and by denoting
dv 10p v|v] . 7|7
bl 4 = 12 =
dt+p8x+gbl + 5D 0 (12) T gsina + 5D (28)
we get
%—aZ%zO (13) g 9% o5
LS 4 Ro+Tp=—L (29)
ot ox
I1l. L INEARISATION OF THE MATHEMATICAL MODEL dp  0v (30)
By replacing total derivatives with partial ones, multiply _ ot Ox _ _
Eq. (12) withp, and by inserting Eq. (11) into Eq. (13) we Since the fluid in the pipeline is almost incompressible, the
get dynamics ofp in Eq. (14) are relatively slow, compared to
those ofv and p in Egs. (15) and (16). As a consequence,
9 , Op  Ov the velocity profile along the pipeline i | tant
I et I S (14) e velocity profile along the pipeline is nearly constan
ot~ Oz " Ox within each time instant. Due to a special reason that will be
p@ + pv@ Lo pgsina + pilol (15) explained later, the derivativg” will not be neglected in Eq.
ot z Oz 2D (14). Rather, it will be approximated with a very small cmt
@ + U@ + an@ =0 (16) Awv,. Linearising (14) and considering (22) then yields:
or or o or op(a.t) | dp(a)
_ In or_der to simplify this sys_tem of partial diffe_rential e ot + U(wvt)w +
tions, first the steady state will be evaluated. It is obtdibg 95
. Stare Wit D€ Ve " . pla,t)
setting to zero all partial derivatives with respect to tige := (@) + =5 + Az, t) Avy =0 (31)
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Fig. 1. Steady state solution of the pipeline: presgureelocity v, and densityp

Note that% is very small (see Fig. 1). It could be neglectedinserting Eq. (37) into Eq. (33), and taking into account
in Eq. (31), but it will not be at this point since its influence dm s+ Auv, do m dv

is similar to the influence ofZ (see Eq. 17). - = — =——— (38)
. . S da . . dx v dx U dx
The first step in obtaining analytical solution of the sys'[emIeIdS
is to solve Eq. (31) by applying Laplace transformation on i
It is assumed that it is permissible to interchange the oofler ~ dp'(%,5) _ma J (2, $)e=™ (—m — pm) 4
differentiation with respect ta@ and the taking of the Laplace dx ’ d
transform. The consequence is that the first order ordinary o —ms _ _dp(z) 9(z, s)
differential equation is obtained [6] ’ der  (x)
. . . dp(z dp'(z,s) zdv . dp(x) O(z,s)
s, ) = i, 0) + i, ) L) T = el msym T e TS
dp 39
+0(x) plz,s) + Avgp(x,s) =0 (32) ) . 39)
dx Since j—; and j—z are very small, it follows from Eqg. (39)

It is assumed here that the system rests at ime 0, i.e. that ' can be regarded as independentzofat least on the
p(x,0) = 0, p(x,0) = 0, v(x,0) = 0. Equation (32) can then interval of interestz € [0, L,]). Therefore, the solution (34)

be transformed to will be treated in the paper. Similarly, dependence of ptajsi
dp(x, s) 48 + Av, 3z, 5) = _dp(z) 0(z, s) parameters of the pipelind.( R, C, T, andm) on z shall be
dz o(x) P8 = " e v(x) neglected in the rest of the paper since they are only fumgtio

(33) of v andp.
In the following, only the deviation model will be con-

The solution of the homogenous part of Eq. (33) would be sidered. To simplify the notation, the tildes will be omitte

p(x,s) = po(s)e™ ™" (34) in the equations. The varaiblgs v, and p will stand for
_ the deviations of the respective variables from the statipn
with values.
po(s) = p(0, s) (35) The next step in the derivation of a simple model of the
s+ Av, pipeline is the analytical solution of linear Egs. (29) aBa)(
= (z) (36) Performing the Laplace transformation on them yields
?f m (or o) did not depehd or. Since the latter assumption (Ls+ R)V(z,s) = _dP(x,S) — Tp(z, s)
is violated and Eq. (33) is not homogenous, the candidate for dx
the solution is e (40)
x,S
plz,s) = ol (@, s)e™™ (37) Cs-Plas) = ——p— (41)
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where stationary initial conditions andp were assumed, i.e. The termZ is called thecharacteristic impedance. The com-
v(z,0) =0, p(x,0) = 0. By differentiating Egs. (40) and (41) plete solution is obtained applying the boundary condgion

with respect tar First, using the boundary conditions for= 0
2 Tpo(s)m
(Ls + R) dV((iw,s) _ _d 1;(:2, s) _poglx,s) P(0,s) = Py(s)=Cy(s)+ Cas) — %
T X X
Tpo(s)m
dP(z, ) &V (z,5) " = ZlGals) = Cals)) - % ®3)
Cs—p™ = ~—ga— (43) C5Tpofs)
dz dz V(0,5) = Vo(s) = Cs(s) + Cu(s) — ey
the following equations are obtained using Eqns. (40) add (4 (54)
d*P(z, s) dp(z, s) the coefficients”;(s) andC4(s) are obtained in the following
(Ls+R)-Cs-P(z,s) = +T
dr2 dz form
(44) 1 1 T 1
d*V (x,s) Cs(s) = 5‘/0(5) + —QZKPO(S) + 2/)255) T
L R)-Cs-V = —22 _(CsT -
(Ls+R)-Cs-V(z,5) P P s (55)
Culs) = % o(s) — %Po(s) + T;g(s) . %
Taking into account Eq.(34) we obtain: K Ko m(56)
(Ls + R) - Cs- Pla.s) = d2];(5;, s) T po(s)me "™ Negt,(Atfr;? boundary conditions far= L,, are used in Egs. (46)
x an
d*V (x,s) e L
(Ls + R) - Cs - V(x,5) = —— 5= — CsTpo(s)e P(Lys) = Pu(s)=Zx[Cs(s)e ™" = (87)
Tpo(s)m _,,
which are known as wave equations. Their solutions are —  Cu(s)e"r] — néJo_( 7312 =
_ —na R 4 L — V(Lp,s) = Vi(s)=Cs(s)e ™" + (58)
P(z,s) = Ci(s)e™"" + Ca(s)e™ — S L Cals)ere — CsTpo(s) _mr,
(46) als W —m2
V(z,5) = Cy(s)e™"® + Cy(s)e"™® — CsTpo(s) Lo By introducing (55, 56) into (57, 58) the inverse chain repre
’ n2 —m?2 sentation of the pipeline is obtained
47
(47) Pr(s) = —ZgVy(s)sinh(nLy) + Py(s) cosh(nL,) +
T
where TLO(SQ) [cosh(nL,) — Zsinh(nLy,) — e_mL”]
n?=(Ls+R)-Cs (48) ne—m

(59)
The four expressionsy; (s), C2(s), Cs(s), andCy4(s) are not v, —V hWinL.) — LP h(nL
completely independent. By introducing (47) into (40) ayd b 2(s) o(s) cosh(nLy) ZK o(s)sinh(nLy) +
differentiating (46) with respect to, we obtain Tmpo(s)

T 7] Lncosh(nly) = sinh(nLy) = e~

m

(LS + R) [Cg(s)efn‘r + C’4(S)8nz — (60)
CSTPO(S) —mx —nx n . . e .
a2 © | =nCi(s)e™™" —nCy(s)e™ — Expressions (59) and (60) can be simplified by the evaluation
Tpo(s)m? of - using Egs. (36), (48), (25), (26), and (27):
O e Ty (s)e e (49) —
n< —m \/<p5+p);:|)v %S
From Eq. (49), the following relations betweéR(s), C5(s), no_ (LSZ R)(’js = x - ’
and Cy(s), C4(s), respectively, are obtained m (s + Avg) /v (s + Avg) /v
Ci(s Ls+ R Ls+ R = A" (61)
o IstR ) Note that| > | < 1 since the sound speed is much bigger than
a(s) _ _Ls+ R _ Y S (51) the fluid speedd > 7). Consequently, the terms witf} in
Ca(s) n Cs square brackets in Egs. (59) and (60) can be neglected. By
since taking into account
1 _
. [(Ls+R)Cs m2 1 - . ~—ml = _%
Tpo(s)e I _1_n2—m2 =0 n2—m m((%) 71) 5+ Av,
(52) (62)
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and where
r 1
o cosh(nL ) ZK tanh(an)
Zi Cs (63) Az = |-t tanh(an ) —Cosh(lan)
Egs. (59) and (60) take the following form g ( 0 . 0
ﬂ 1 _ 7677'8
. s cosh(nLp) )
PL (S) = —ZK‘/O(S) s1nh(an) + PO (S) COSh(an) - A4 = E_;)f; tanh(an)pefTs
T7 ’ —TS
- vpz(s) (cosh(nL,) — e~ ™) (64) - €
S+ Al ) 2) Hybrid representation: Inputs V7, Py, po, outputs V,
Vi(s) = Vo(s) cosh(nL,) — Z—Po(s) sinh(nLy) — P, pr:
K
To
_Z(%O(Asl) (—sinh(nL,)) (65) P Py
k e Vo | =[As Ae]|VL (70)
The constantAv, is very small but positive (what can be PL P0
seen from Fig. 1). ConsequentIyA— is a stable transfer where
function. In the time scope of interest this transfer fumetis - 1
oL —Zk tanh(nL,)
equivalent to an integrator, and will be replaced by one @ th Ar — . » )
equations of the model. This is the reason why, was not 5 = |z, tanh(nly) cosh(nL,)
neglected in the early phase of the model derivation. Sityjla 0
the terme—™L» in Eq. (64) becomes — gm — e‘”)
A » As = —2% tanh(nL,)
e~ MLy — 6_$LT’ R~ e_LTS =e 7 (66) L Zks e—TS< b

and can be interpreted as a pure delay systens the time

3) Impedance representation: InputsVy, Vi, po, outputs

needed for the fluid to reach the outlet from the inlet of the  Fo, Pr pr:
pipeline — transport delay). P, Vo
Apart from Eqgs. (64) and (65), an additional equation Pl =[Ar Ag]|VL (71)
is needed for the complete description of the system. This oL 00
equation defines the density at the pipeline outlet and can be h
obtained by setting: to L, in Eq. (34): where ) )
. ZK COth(an) —ZKm
p(Lyp,s) = pr(s) = po(s)e” """ = po(s)e™™° (67) A7 = ZKm —Z coth(nLy)
. . L 0 0
Finally, we arrive to the noncausal (the transfer functicatnin T
goes tooo ass — oo) representation of the pipeline: A Tuo® —rs
S
Pr(s) Py(s) | e
Vi(s) | =[A1 Az] | Vo(s) (68) 4) Admittance representation: Inputs Py, Py, po, out-
/)L(S) /)0(5) pUtS Vo, VL, prL-
where Vo Py
cosh(nL,) —Zk sinh(nLy) Vi | =[As Aw]|PL (72)
A, = —i sinh(nL,) cosh(nL,) PL Po
i 0 0 where
[ *7;1/0 (cosh(nL,) —e™7%) ﬁ coth(nL,) —i—smh(lan)
A2 = ?)g blnh(’l’LL ) A9 = im —ﬁ COth(an)
i e~ TS 0 P
Tv 1 — T
The linearised model of the pipeline (68) can be written in —Zs \coth(nLy) — SR C
one of the following four forms which differ from each other Ao = —Lw ﬁ — coth(nL,)e™ "
kS Sin n p

with respect to the model inputs (independent quantitiad) a

—TS

e

outputs (dependent quantities):

1) Hybrid representation: Inputs V;, Pr, po outputs V7,
Py, pr:

P() PL
Vi | =[As A4l | W (69)
PL Po
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It should be noted that the form (72) represents causal
models, whilst Eqn. (68) represent a noncausal model. There
fore, the latter cannot be realised by means of simulation.
This completes the derivation of the transfer functions of
the linearised pipeline. The resulting transfer functiere
transcendent. In the next section, their approximations by
rational transfer functions will be given.
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Fig. 2. The time courses of the densjty- measure at the inlet (dash-dot line), measurpdat the outlet (solid line) and simulatgd(dotted line)

IV. SIMPLIFIED PIPELINE MODEL WITH LUMPED current operating conditions meet the chosen operatingt.poi
PARAMETERS However, during the first change some miss-agreement can be

will be refered to since such transfer functions are muckeeasPiPeline outlet. The difference is expectable since theesyss

to simulate, e.g. when designing real time transient mod@®t Situated in the operating point where the linearisedehod
based leak monitoring systems. There are two different traff@s obtained.

scendent functions=( ™ is the third one, but this one will be Next, the velocity part of the lumped parameters model

left as it is, since it can be simulated direcﬂg:» coth(nL,), will be validated and compared to the model presented in [3].
and L 1 Their approximations with r;tional transfer! Ne latter was obtained based on assumption that the density
3

Z sinh(nL,

functions (obtained by expanding the transcendent transfd the fluid being transported is constant all the time. The

functions into a Taylor series) can be found in [3]. model proposed here takes the fluid changes into account.
The comparison will allow us to estimate the benefit of the
V. VALIDATION OF THE SIMPLIFIED MODEL extended model. Simulation results of the both models veill b

. L . compared to the real plant data.
The models were validated on a real pipeline with the In Figure 3 three time courses of the fluid velocity at

following data: length of the pipeliné, = 9854 m, velocity the inlet of the pipeline are shown: the measured one and

of sounda = 1059 m/s, friction coefficientA = 0.0158, . . . -
ravity constanty — 9.81 m/s?, diameterD — 0.2065 m responses o_f two models (with and without the consideration
9 ' ' ; ' . of the densityp). It can be seen that the proposed model

and inclinationa = —0.00256 rad. Simulations of the plant — . . : ; . ,

. ... which takes into consideration the densitgan cope with the
were performed on the lumped parameter model in admittance . o
form changeable operating conditions whereas the model from [3]

_— : . . cannot. Note that the latter model performs very well betwee
The most significant change in the fluid densityoccurs ?1%00 s and 14000 s where current density is approximately

durmg. a batch change, so the data was recorgied n te ual to the constant density of the simple model. But affier t
operation phase where the batch was changed twice. Dueogt?

. N OI;:h change the simulation results are not very satisfacto

operational reasons the pipeline must be stopped before and_. : . . )

) . Figure 4 a detail of the Figure 3 is depicted, where
after a batch change. The stationary operation between §0 ﬁ . : ; o

. . . transient phase can be seen in detail. Good coincidence
and 14000 s was chosen as the operating point. Flgurebg
. . etween the measured data and the proposed model response

shows the time courses of the (measured) densigt the can be established
inlet (dash-dot line) and outlet (measured density — satie; | '
model response — dotted line) of the pipeline, respectively
The batch changes (1000 s to 5300 s and 14800 s to 19000 s) VI. CONCLUSION
can be seen clearly. The model response corresponds perfectThe model of the multi-product pipeline has been derived
to the measured data for the second batch change, whereiththe paper. To accommodate for the changes in the density,
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