
 

 

  
Abstract— This work is part of a research activity aiming to 

improve and to optimize environmental parameters monitoring 
system. It is essential in order to preserve the quality, safety and shelf 
life of perishable products.  

The present study reports on the investigation a way to both 
plausibility check and energy management in a wireless sensor 
network established in a closed space container. It introduces a new 
technique to decrease the total power consumption due to measuring 
and transmitting data in a few desired sensor nodes (DSNs). They are 
either failed or inactive (Sleeping) sensor nodes. They can be 
deactivated by some of surrounding key sensor nodes (KSNs) due to 
reduce battery-consumption.  

A new technique of the model making to estimate temperature, 
relative humidity, and air flow as important environmental 
parameters (EPs) instead of the direct measurement and then 
assessment the validity of the proposed model using some 
experiments will be investigated. Introduced estimators use linear 
models between the KSNs and a DSN. These models can be extended 
for possible use in different applications such as EP-controllers in air 
conditioning systems as well as the estimator in fault recognition 
procedures. We can. 
 

Keywords— Estimation, Relative humidity, Grey-box, 
Temperature  

I. INTRODUCTION 
N closed space containers equipped with wireless sensor 
network (WSN), a part of attractive applications in field of 

control systems can be identification, modeling and control of 
temperature (T), relative humidity (H), and air flow (F) as the 
environmental parameters (EPs) and also fault diagnosis in the 
nodes. According with the present study, to achieve these 
objectives using model based methods, a simple and 
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applicable model plays an indispensable role. To do that, we 
are looking for a way to estimate the EPs in some desired 
sensor nodes (DSNs) instead of the direct measurement.  

In addition to [15], [16] and [17] about the energy aware 
strategies in wireless sensor networks there are a lot of papers 
which have studied various methods to save or harvest energy 
for sensor nodes. Our method can be used together with the 
mentioned methods. Then, in this study we’ll only investigate 
our proposed method. It includes model making, energy 
saving and fault diagnosis in one approach. 

There are some white, grey, and black-box models of T for 
air-handling units have been addressed in some previous 
works. It is represented in [1] that, the model of the air 
handling units (AHU) elements is nonlinear and temperature 
and relative humidity as controlled variables are coupled. It 
assumes constant air flow in the AHU as a parameter 
influence on the other parameters. Also it assumes that 
temperature and relative humidity change with a constant 
speed. It uses grey-box approach to combine theoretical 
modeling, parameter identification of discrete models and 
partially known models by using optimization techniques. It 
uses energy balance to achieve to transfer functions of 
transducers. It makes some models for any device and then 
identifies unknown parameters by using some separate tests. 
Under some very special conditions it decouples temperature 
and humidity and uses separate linear transfer functions for 
them. 

They develop in [2] analytical and numerical models to 
describe the dynamics of the cryogenic freezing tunnel system. 
By a composite model, it uses finite difference methods for 
sizing the tunnel freezer. It also talks about freezing and 
freezer dynamics that is useful to have a view of these 
systems. It mentions that heat transfer with phase change is a 
highly non-linear problem.  

Reference [3] is a brief review of numerical models of F in 
refrigerated food applications using (k-ε) model and also a 
data-base mechanistic modeling technique. They obtain partial 
differential equations using computational fluid dynamics 
(CFD) which are without general analytical solution. It is a 
simulation tool for modeling of fluid flow problems based on 
the solution of the governing flow equation. Although this 
method gives high precision, we can’t use it, because this 
process is necessarily iterative and requires the solution of a 
huge number of equations at each step. 
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An online mathematical method (second order model) to 
model the 3-D spatio-temporal temperature distribution in an 
imperfectly mixed forced ventilated room for control purposes 
is presented in [4]. It shows that model based predictive 
controller (MBPC) using data based mechanistic modeling can 
be of significant importance in the development of a new 
generation of climate controllers. It gives very good 
definitions of different models (white, grey and black) in a 
cooling system. It introduces a hybrid between the extremes of 
mechanistic and data based modeling. This so called data-
based mechanistic (grey box) models provide a physically 
meaningful description of the dominant internal dynamics of 
heat and mass transfer. It uses model between inlet and outlet. 

It uses static experiments to examine the effect of the 
ventilation rate on the spatial temperature homogeneity, while 
keeping the average temperature inside the ventilated chamber 
constant. It shows that increasing the ventilation rate decreases 
the standard deviation of temperature in different places. In a 
specific rate maximum uniformity is achieved. It fits a curve 
to temperature in different places. It uses MBPC to optimal 
control of spatial temperature distribution. It doesn’t consider 
relative humidity. 

A combination of CFD and DBM methods is investigated in 
[5]. It outlines a methodology to achieve an accurate model of 
T in a closed space. First of all using k-ε model, turbulence is 
modeled and then a DBM model was formulated from an 
energy balance equation. It can reduce complexity of CFD 
using identification technique. It doesn’t consider relative 
humidity. Some first order models between inlet and 
individual zones, is considered assuming a constant air flow 
rate. 

Paper [6] using neural network presents an NNARX system 
for modeling the internal greenhouse temperature as a function 
of outside air temperature and humidity. Because of slow 
nature of the mentioned system it doesn’t need of frequent 
retuning the parameters. 

Numerical and experimental characterization of air flow 
within a semi trailer enclosure with pallets has been reported 
in [7]. The effect of air flow pattern on T is given by this 
paper. The numerical modeling of air flow is performed using 
CFD code fluent and second–moment closure, the Reynolds 
stress model (RSM). It shows importance of air ducts in 
decreasing temperature differences throughout the cargo. It 
says that prediction using k-ε models are often not accurate. It 
investigates numerically and experimentally the air flow 
pattern throughout a vehicle enclosure loaded with two rows 
of pallets with and without an air duct system. 

Using CFD method flow pattern inside the working area of 
a pilot scale clean room has been numerically investigated in 
[8]. Two versions of the k-ε turbulence model have been 
tested. To solve transport equations the surfaces bounding the 
domain has been defined clearly during this work. Some 
comparisons between turbulence models have been done. 

As mentioned in [9], there are two ways to define a grey 
box model. One way emanates from the black box model 
frame. A priori knowledge is incorporated as constraints on 
model parameters or variables. Second way is to begin with a 

model originating from mathematical relations, which describe 
the behavior of the system. This means the starting point is a 
specific model structure based on physical relations. 

The transport planning for goods with different temperature 
requirements form a special case of a vehicle routing problem 
[14]. The planning can be improved by analysis and prediction 
of local temperature deviations. The assignment of transport 
items to different temperature zones and trucks can be done 
more accurately. The risk for temperature abuse can be 
evaluated based on the predicted temperature curve for the 
position of the item inside the truck or container.  

All models are obtained between system input so-called 
inlet and a point in the corresponding space. With the 
mentioned models, the EPs in some DSNs can be changed due 
to variation in the inlet. Some models introduced in the 
mentioned papers, either linear or nonlinear, do not consider 
interconnections of the EPs. Furthermore, particular 
conditions and limit range of parameter variations of such 
models are necessary.  

Despite the high precision, complexity makes some of them 
impractical and the rest inaccurate in some applications. 
Nonlinear multivariable nature and interconnections between 
the variables of the EPs in addition to the presence of the load 
as an unpredictable, immeasurable disturbance, effects of flow 
dynamic, influence of surfaces and walls inside the container 
increase complexity of the model which we are looking for. 

 Some types of acting disturbances in the container are 
opening the door, changing either direction or rate of F by 
some freights and thermo dynamical influences of the loads 
inside the container. When looking at the previous methods 
with the white-box models, we will see that in addition to 
encounter some complicate conditions while solving such 
model identification problem, disturbance may cause a big 
estimation error.  

Thus, our proposed technique considers the influence of 
disturbance on the EPs estimation using a grey-box model in a 
wireless sensor network. Furthermore, the proposed 
techniques are independent from the type of the ventilation. 
Our method acquires a minimum power consumption of the 
batteries in the DSNs.  

We include a brief introduction of a new grey-box hybrid 
model of the EPs between the inlet and a DSN in the present 
article. Then, we use advantages of a sensor network to 
achieve an independent multi input-single output (MISO) 
simple linear model. Obtained results will be supported with 
the real experiments. At the end, some practical rules to attain 
a near optimal EP-estimation will be introduced. This paper 
will introduce a new method to achieve the best estimation of 
the EPs and it might be helpful in fault diagnosis and energy 
management as well. The work is currently being done and the 
results of this kind of applications will be published later. 

II. PROBLEM FORMULATION  
Fig. 1 shows a symbolic scheme of the container. There is a 

complicate time and place dependent multi variable model 
between the inlet and a spatial position. Coupling among the 
parameters of environment arise difficulties of doing 
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independent experiments and the measurement results 
completely depend on the initial conditions.  

Any change in T, H, and even F in the source (inlet) may 
change both T and H in all positions of the desired space. 
Measurements can be affected by disturbances and they might 
be different even in the same place. We will use an optimal 
combination of several models obtained from surrounding key 
sensor nodes (KSNs) and a DSN so that every non modeled 
disturbance is modeled as an implicit input change, not as a 
pure disturbance.  

 
 
 
 
 
 
 
 
 

 
Fig. 1 Container as an input-output model 

 
The KSNs will be the system estimators. When a 

disturbance acts on the system, it might excite a few sensor 
nodes. After initializing at least one of the estimators with a 
disturbance, parameters of several models are obtained using 
present noise corrupted data of the KSNs and the DSNs and 
also previous data from the DSNs.  

Those models are identified only between some couples of a 
DSN and the selected KSNs. According with Fig. 2 there will 
be a network with several nodes and branches, several KSNs 
(K1, …, Km) as input nodes and a few DSNs (S1 and S2) as 
output nodes. It is noted that in addition to characteristics like 
an ordinary sensor node (SN), KSNs have three major tasks:  

1. They measure EPs in a defined period. 
2. They might evaluate measured values and do estimation 
of the EPs in a few DSNs in some clusters and update 
previous models, based on the new measurements 
(depending on using autonomous or non autonomous 
strategy, main computations can be done by main processor 
or KSNs). 
3. They deactivate the DSNs when all conditions are normal 
and there are no big changes in the EPs.  
The DSNs can be considered in sleeping mode or even 

failed. The KSNs can be located everywhere in to the 
container, near the door, near to inlet or surrounding the 
DSNs, but if they are located in some key points, estimation 
mismatch error due to no considering unpredictable 
phenomenon would be avoidable because while identification 
based on the proposed method, most of uncertainties and 
disturbances are considered indirectly as the input change in 
the KSNs surrounding the DSNs. When speaking about a 
loaded closed space container, with a variation in the inlet or 
even any variation of the environment inside the container, 
signals measured by the DSNs and the KSNs will be different 
with those during a specific off-line identification stage. 
Several MIMO models will be established between the KSNs 

and a DSN (fig. 3). To reduce the estimation error a few 
questions should be answered:  

 
i. How long the achieved models are valid?  
ii. How many KSNs are adequate to do estimation? 
 

 
Fig. 2 Proposed sensor network 

 

 
Fig. 3 Block diagram of a MISO model of the EPs 

 
Whereas we would like to increase the accuracy of the 

estimations and decrease the total power consumption by the 
wireless sensor network, we are interested in turning more 
sensors to longer sleeping mode. Due to decrease the 
calculation, we would like to reduce the number of the KSNs 
contributed in the estimation. But, simulations show that the 
accuracy will be increased with increasing the number of these 
estimators. According with fig. 4, depending on the conditions 
of the EPs, different KSNs have different influences on a 
DSN. Considering an F direction as a simple example in a 
three dimensional space, K1 and K2 can be considered more 
effective than K3. We will obtain a relationship between 
different KSNs to choose the best estimators.  

We will make a group of some effective KSNs with a 
definite priority. Although K3 is not among the impressive 
KSNs, it may have two properties: it has good correlation with 
related DSN. Then, it will improve the accuracy of the 
estimation. Otherwise, it won’t be among the prior estimators. 
 

 
Fig. 4 Impression of the KSNs on a DSN 

 
Because of chaotic direction of the F in the real applications 

and regard to the limitation in number of F sensors, predicting 
the direction and then verifying the effective KSNs is 
impossible. Therefore, there will be a mismatch error due to 
considering non effective KSNs in the estimation process. It 
will be shown that using data of a KSN_DSN to make single 
input-single output (SISO) model cannot present surrounding 
influences completely.  

It can only show the EPs variations in a DSN from side of 
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the mentioned KSN. Estimation using multi input-single 
output model (MISO) will cause better accuracy than that 
using SISO models. As a result, using more effective KSNs is 
better. Furthermore, whenever sensor failure is occurred in a 
KSN, other KSNs will be able to continue the estimation. 
There are also some KSNs which do not have any influences 
on the DSN. Far from the DSN, they could not help to 
increase the accuracy. 

III. PROBLEM SOLUTION (HYBRID MODEL)  
We start with a simple mathematical model to attain an 

estimation of the EPs in a desired place inside the container. 
We will apply then our view points to introduce a more 
precise nonlinear model. We use an argument to solve 
simplified problem. According with fig. 1, beginning with the 
linear transfer function matrix between input (inlet) and 
outputs (SNs), we will have several independent MIMO 
systems for inlet_SN. The arrays of matrix in (1) show the 
effects of variation in inlet on the SN in the domain of Z-
transform. 
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For the sake of simplicity we omitted the operator Z in the 

above matrix relation. (TSN, HSN, and FSN) and (Tinlet, Hinlet, 
and Finlet) are the EPs in a SN and inlet respectively.  

In [12], insufficiency of (1) because of no considering 
nonlinearities has been proven. Omitting index (i) because of 
simplicity, we complete (1) using f and g as nonlinear 
interactions. NT, NH, and NF are measurement Gaussian noise 
in the SN. GT,F and GH,F are transfer functions of T and H, 
influenced by F and GF is transfer function of F between 
inlet_SN. Following formulation is not a real super position. 
That is only an assumption. 
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The influence of variation in F on linear part of the models 
is considered in the place of poles in linear transfer functions 
and we assign an exponential function for determining these 
influences so that their parameters will be determined while 
operation.  References [1], [5] suggest the first order dynamic 
model for the mentioned transfer functions. Then we can use a 
general form in the below for the linear part of the hybrid 
model: 
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We derfine the poles and zeros (Pj and Zi) as functions of F 

so that higher F causes faster response of T and H. According 
with [12] and with Z-1 as unit delay in domain of Z-transform, 
to perform the nonlinear part we use some basic 
thermodynamic relations and we have: 
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Interconnections can be obtained in the following: 
 

)(
)()(ln

2ln
1.10)(

0
1

1

0 HMZ
tNHGZTtT

H

HinH

•
+•

•−=Δ −

−

        (6) 

 

HH

TMZNTGZ

NHMZ
tH

TTinT

+•

•−=Δ
−

•−+•− −−

)(
)12()(

0
1

1.10
)()( 0

11

           (7) 

 
As an example showed in fig. 5, assuming that there are two 

KSNs, one DSN and an inlet (which provides F, T, and H), we 
are looking for the estimation of the EPs in S1. There are a 
few obstacles against the natural path of F and different initial 
conditions in the SNs because of either positions or 
corresponding measurement errors. With variations of T, H, 
and F in inlet at different times, we can see the EPs in K1, K2, 
and S1 including different delays.  

The EPs in K1, K2, and S1 with the initial conditions in 
table I has been illustrated in fig. 6. As the first step in the 
estimation, while the KSNs and the DSN are active and 
measure the corresponding EPs, there are two MISO systems 
for T as well as H with inputs K1, K2, and output S1. All 
unknown parameters in these models should be determined 
using an identification technique.  

Actually, we can assume that KSNs are active and either 
there is a failure on the DSN or it is in sleeping mode. Having 
new inputs we will have the new estimations in the DSNs 
using existing MISO models. The important note is that this 
hybrid model can give a view of system and we will use it for 
the next steps only for making a mathematical model.  
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Fig. 5.  A container with inlet, KSNs (K1, K2), and one DSN (S1) 

 
Using the relation in matrix equation (2) and with the initial 

conditions in Table I, one can observe the simulation results in 
fig. 6. It shows the EPs in a SN when changing T, H and F in 
inlet (Reefer). 
 

Table I. INITIAL CONDITIONS AND DELAYS 

 T0 
(°C) 

Tdelay H0 
 (%) 

Hdelay F0 
(m/s) 

Fdelay 

Inlet 10 --- 30 --- 15 --- 
K1 9 5 28.5 7 13.5 2 
K2 8.5 3 27 4 3 5 
S1 8 8 25.5 2 10 8 
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Fig. 6 Outputs when T, H, and F in inlet change in different times 
(Sample time: Ts= 90 s) 

 
(T0, H0, and F0) and (Tdelay, Hdelay, and Fdelay) are initial 

conditions and delay time of the EPs between inlet and SNs, 
respectively. Accordant with Fig. 6, while reducing T in 
reefer, T in the SNs decreases and because of its reverse effect 
on H, relative humidity increases as well.  

There is the same reverse behavior when reducing H in 
reefer. Changing the rate of F changes the speed of the 
responses of T and H in the SNs. As an alternative state to 
achieve to floating input approach (FIA) as shown in [12], we 
can write (6) and (7) in the new following forms: 
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GT,F and GH,F are identifiable linear transfer functions and   

HT ΔΔ , are nonlinear parts of T and H plus Gaussian white 
noise. We use (5) when obtaining nonlinear parts of (11) and 
(12). To simplify the problem we use the advantages of 
plurality of measuring points in our sensor networks. 
Disturbance might be applied to the input, system and or to the 
output, but in all cases it influences the outputs (KSNs).  

Now, assuming excited KSNs as input nodes, the input in 
defined MISO system will be changed and output nodes 
(DSNs) will be influenced of such new inputs. If the EPs in 
the KSNs and a DSN are close, we can have some 
approximate linear models written for KSN_DSN.  

We will see later some of the KSNs have this property more 
than the others and can be considered as the estimators so that 
we can assign identifiable linear models for KSN-DSN. 
Models of KSNs_DSN can be split into a set of SISO transfer 
functions and there will be a new multivariable matrix 
equation to solve: 
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 (UTi, UHi), (GTi, GHi), and (TDSN, HDSN) are measured 

inputs, linear transfer functions of the KSN (Ki)_DSN and 
values of T and H in the DSN respectively. M(.) and P(.) are 
functions for combining effects of different KSNs on a DSN.  

One of the advantages of the new formulation of the 
problem is capability to diagnose disturbances. To show this, 
we used ARMAX model identification method according with 
[10], written in (14).  

As shown in Fig. 7, when there is a variation of T near to 
K1 as disturbance at the time 25000 s. We suppose that 
because of vicinity, it influences only on K1 and S1 not K2. 
To compare output estimation of the regular model achieved 
from inlet_S1 with our model using KSNs_S1, we have 
plotted both estimations in S1.   

Despite of the model obtained from inlet_S1, suggested 
method detects its influence on S1. We do not use models with 
order more than three, whereas those models arises some 
difficulties in the application. 
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Fig. 7 (a) T, measured in inlet, K1 and K2; (b) estimation using inlet 

and K1with a disturbance at 25000 s with sample time: Ts= 150 s 

IV. ESTIMATION BASED ON MEASUREMENTS 
We used ARMAX model instead of ARX and output error 

method (OE) to include flexibilities to define colored-noise in 
the model. Fig. 8 shows the difference, when applying ARX 
and ARMAX model identification methods. With the OE 
method, some time the same performance as ARMAX method 
is obtained, but ARMAX is better for our system.  

In the mentioned test we used 300/ 400 samples of data for 
estimating unknown parameters of the model in (15) and the 
rest data samples for validation.  

We will identify a linear transfer function for T and H for 
any pair of KSN-DSN. It is noted that q in the following 
formula is the same operator as Z-transformation method. A, 
B and C are unknown polynomials and nk shows the number 
of delays included in input signal u(t). Signal e(t) represents  
white-noise disturbance value. 
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Fig. 8 Performance of the outputs of ARX and ARMAX models in 

compare with actual measurement (Sampling time: Ts= 150 s). 

)()()()()()( teqCnktuqBtyqA •+−•=•            (15) 
 
This approach was applied to T, measured during field tests 

in cooperation with a German food retailer [11]. Up to 40 data 
loggers were mounted at the walls of the compartment for fish 
and meat. A 2-point control turned on the ventilation if T 
below the refrigeration unit rose above a given set point. As 
said before, models of T, H, and F can be independent if we 
use proper KSNs as estimators. Fig. 8 shows the measurement 
results in three SNs (700 points). The curve with the less 
variation is related to a node far from the inlet or behind a fruit 
box, reduces the F rate. The first part of the curves is related to 
loading and turning-on the ventilation system and the last part 
is related to its permanent turning-off, opening the door and 
unloading the freight. Although we could omit the first and 
last part of the data, we consider them to show capability of 
the proposed techniques. 
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Fig. 9 Actual T inside the container in three points (Ts= 150 s) 

 
Refer to fig. 9 as the measured signals in three points (three 

SNs) we got some important points: 
1. In the portion of estimation, we have some correlations 

and in some points we don’t have that. It means that 
some input-output data of KSNs-DSN which is 
correlated can help the model to be completely fit with 
the related data, but in some periods of time we have 
no correlation. These data will make the ultimate 
model weaker. This behavior comes from 
nonlinearities that we didn’t considered while model 
making. This kind of nonlinearities showed in fig. 13 
may be produced by some SNs which either are: 

1. Far from each other  
2. Some of them are inside the closed space 

boxes and etc. 
3. Failed sensors. 

2. In prediction stage, if the new input data have good 
correlation with the obtained linear model from 

Estimation zone 
Predictio
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previous stage, we will have accurate prediction, else 
we’ll achieve to some incorrect predictions. 

3. It would be better if we can sort the best KSNs 
(estimators) to use as predictors in the next steps. 

4. As shown in fig. 12, if we use several KSNs instead of 
one, we will be sure that we catch the effects of the 
EPs from different sides around the DSN. 

5. One may wants to predict a DSN using average of two 
or many KSNs. Fig. 12 represents that when data of  
KSNs are close and different with the DSN, average 
method doesn’t give good results. 

Fig. 10 and fig. 11 show the prediction using only one KSN. 
The measured signals were chose such that there are 
approximately linear relations between KSNs-DSN. In both 
cases, third order transfer functions show better performance 
than first order. To show our goals, the first part which we 
removed from original measurement, was about the starting 
time that sensors had different temperature (between the 
steady state). Also we deleted the last part that was the 
measured values in opening the door mode. We’d like to have 
good conditions to present the behavior of the approach in 
normal situation and later we will see various situations.  
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Fig. 10 Estimation using K1 compare with actual measurements. 
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Fig. 11 Estimation using K2 compare with actual measurements. 
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Fig. 12 Estimation using MISO system containing K1, K2 compare 

with actual measurements (sampling time: Ts= 150 s). 
 
As the first step, covariance matrix (C) of the measured 

values of K1, K2, …, Km, with S1 should be determined and 
to compare the covariance of the different signals, they should 
be normalized (NC) as shown in the following as an example: 
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Table II. Normalized Covariance in Different Situation 

NC compare with S1 models 
Order (1) Order (3) 

Estimation using K1 0.739 0.834 
Estimation using K2 0.72 0.735 

K1 0.52 
Average of K1 and K2 0.625 

K2 0.699 
MISO Estimation using K1, K2 0.749 0.922 

 
Table 2 shows that different estimations in S1 using 

different KSNs have different correlations with the actual 
measurements.  

Fig. 12 and table II illustrate that K2_S1 has more 
correlation than K1_S1 both in measurement and estimations 
of S1. Estimation using SISO model of K2_S1 is better than it 
by K1_S1. The obtained results show that higher order models 
cause better estimation (higher covariance). 

 Therefore, using K2 is prior to using K1. Because of the 
time consuming processes and causing over fitting problems 
the model orders more than three are not suitable in this 
application. Although K1_S1 has less covariance than K2_S1, 
covariance of MISO system using both K1 and K2 is more 
than each of them lonely and then MISO estimation using K1 
and K2 to estimate S1 is more accurate than SISO models. 

 Increasing the number of estimators will increase 
covariance of the response. Another important result is that 
using average method has less covariance than both proper 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 2, 2008 309



 

 

KSN (K2) and MISO estimation using K1, K2. It is better than 
estimation using only one KSN.  
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Fig. 13 Measured temperatures by three sensor nodes far away. 

  
Fig. 13 shows the experimental results in three points, one 

near to inlet which has big and fast variations (K1). Second 
(K2) and third (S1) are located far from each other and far 
from K1. Although K1 and S1 differ from each other with 
respect to variations, K1 can make better fit in prediction than 
K2. It comes from this fact that our model is a linear dynamic 
model, a low pass filter, and then it damps the variations of 
K1-S1. However, model of K2-S1 is actually a nonlinear 
model (with lower covariance and lower sum of squared error) 
and we force to fit a linear model to it. As an example, we use 
500 samples of data for model making and 50 remained data 
to validate the model. It illustrates, although K2 is better than 
K1 with respect to the normalized covariance, in prediction 
stage a high order model of K1-S1 acts better. This result is 
supported with the sum of squared-error method (SSE). The 
more normalized covariance, the better fit,the less SSE. 

 
Used Nr. of Samples= 500   ,      Total Samples= 550 

Normalized covariance:  
Measured K1= 0.217 
Measured K2= 0.431 
……………………..… 
Ave (K1, K2)= 0.323 
Lo w order (K1-S1)= 0.870 
High order (K1-S1)= 0.896 
Low order (K2-S1)= 0.695 
High order (K2-S1)= 0.745 
Low order MISO= 0.866 
High order MISO= 0.848 

Sum of squared error:  
Measured K1=78.9 
Measured K2=28.6 
……………………... 
Ave (K1, K2)= 48.2 
Low order (K1-S1)= 15.2 
High order (K1-S1)= 13.2 
Low order (K2-S1)= 22.2 
High order (K2-S1)= 20.5 
Low order MISO=14.8 
High order MISO=15.7 

 
As a result, it would be better we choose some sensor nodes 

in vicinity as a group. When we don’t choose proper KSNs, 
we can not introduce an index to determine the best KSN. In 
this case we can choose all KSNs as estimators. But if we 
choose the KSNs near to each other, we will have linear 
dynamic relation between KSNs and a DSN, we can sort them 
based on an index like sum of squared error or covariance. 
Then we can choose one or several with respect to their 
priorities. We may use electromagnetic waves power 
measured by the SNs to make groups of KSNs and a DSN. If 
one of the KSNs is failed, it must be considered as a new DSN 
in addition to the previous DSN in the related group. Whereas 
the calculation is being done after ending a period of time, if 
diagnosing any fail in the KSNs, failed sensor nodes will be 
removed from the list of the KSNs and move to the DSNs’ list.  

In case of enough previous data of the failed sensor, they 
should be considered as output data in the new identification 
procedure between the rest KSNs and the failed KSN as a new 
DSN.  If the number of data is not sufficient, it can be made 
by average method. It needs some if –then –else protocol to 
program the identifier applicable in different situations. 
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Fig. 14 Estimation using K1 (low and high order models) compare 

with actual measurements. (Sampling time: Ts= 150 s) 
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Fig. 15 Estimation using K2 (low and high order models) compare 

with actual measurements. (Sampling time: Ts= 150 s) 
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Fig. 14 and fig. 15 show that although K2_S1 has more 
covariance than K1_S1 in the estimation stage, as showed in 
fig. 13, better prediction is achieved by using K1 as predictor. 

 

V. ESTIMATION PROCEDURE AND FLOWCHART 
Fig. 16 represents the flowchart of predictor, including 

direct relationship with the fault diagnosis and routing. To use 
either one or more KSNs provided that there are no additional 
conditions, one should follow these steps: (1) Large number of 
data of primary group of estimators (KSNs) and related DSN, 
enough to estimation is necessary (in our case 600 samples of 
K1, K2, and S1. (2) Covariance matrix for KSNs_DSN should 
be computed. (3) After sorting the normalized covariance the 
best estimators are those with bigger NC. (4) Picking up the 
number of the estimators for each DSN depends on the 
number of all KSNs and the DSNs and capability of the 
processor and required accuracy. 
 

 
Fig. 16 Flowchart for proposed estimation technique 

VI. CONCLUSION 
This paper evaluated some important factors affected on 

near optimal modeling of the EPs in a constant volume closed 
space container. A simplified multivariable model using 
surrounding sensor nodes to estimate the EPs in some DSNs 
was introduced. Analysis of the proposed approach illustrated 
its high capability in diagnosis disturbances and reducing 
power consumption as a nature of the definition.  

Developing additional approaches to choose the best KSNs, 
particularly, when there are some KSNs from different places 
which have nonlinear relation with the DSNs, could be a part 
of the future works. Other interesting task may be done to find 
the required minimum number of the KSNs to attain the best 

estimations. A comparison between the proposed method and 
the existing battery management techniques might be the other 
interesting activity. 
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