
 

 

  
Abstract—The Italian Airport Network (IAN) is considered. The 

description in term of a mathematical graph is given and its 
topological properties are approached by means of a new 
mathematical tool: the multiple addendials.  

The connection degree and the betweenness centrality 
distributions in the IAN follow a power-law behaviour, well known 
in literature like a Double Pareto Law. This leads to the definition of 
the IAN as a scale-free network. Furthermore these distributions 
show the existence of some “hubs” in the network, i.e. nodes with a 
very large number of links.  

Since the mean distance between reachable pairs of airports grows 
at most as the logarithm if the number of airports, the IAN can be 
considered a candidate to represent a small-world network. 
 

Keywords— Airport Network, Complex System, Graph, 
Multiple Addendials. 

I. SOME MATHEMATICAL BACKGROUND 
ITH the aim to ease reading of this paper also to general 

people we report some useful considerations on some 
aspects of  the mathematical approach to complex networks. 
This goal will be accomplished utilizing a non standard point 
of view, whose basic formulation has been already introduced 
in past papers by one of us [1].  

   
A. Multiple Addendials 
Referring to [1] for more details,  here we address just the 

main features of an “addendial”.  
An addendial of  first degree is defined as the sum of the 

first integer numbers: 
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An addendial of  “k”-th degree is, therefore,  the sum of the 
first addendials of  “k-1”-st degree: 
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In a short notation:  
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This relation together with the definition  (1) suggests to 
put:        

 0|nn ≡  .                                                           (3) 

Multiple addendials are integer functions of two integer 
variables and have very remarkable properties [1]. 

 
Besides (2a), which we can rewrite as:               
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Being  1−−≡Δ jjjj

fff ,   
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Σ  turns out to be just its 

inverse operator. In fact  I
jjjj

=ΔΣ=ΣΔ      (7) 

 
B. Maximum Number Of Links  
Let us, now, consider a network consisting of n distinct 

points (n-vertices or n-nodes) between which we can establish 
connections (edges or links) in such a way that any two points 
are connected by links (if each pair of nodes is connected by 
one and only one link, the network is named “simple”). In this 
work we deal only with simple networks. The points 
connected each other in this way will be called “neighbours”. 
Such networks can be mathematically represented by graphs. 

Let us calculate how many links can be drawn among n 
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assigned nodes: M(n). 
 
Then, suppose we already have (n-1) connected nodes  (Fig. 

1a). Among them we have M(n-1) links.  If we  add one more 

node we  have to insert (n-1) new links (Fig. 1b). In formula: 
)n()n(M)n(M 11 −+−= ;          

)n()n(M)n(M 11 −=−− ;                    

)n()n(M 1−=Δ  
Applying  the operator Σ  to both sides: 

)n()n(M 1−Σ=ΣΔ  
Simplifying the two inverse operators in the l.h.s., and 

recalling (3) and (2b),  we finally have:  
 

const|)n()n(M +−= 11  
 
In order to determine the value of the constant we impose 

the initial value condition: 12 =)(f , which means that 
between only two nodes we can draw just one link, and we 
have: 
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So 11 |)n()n(M −=  which also means: 
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For future reference we put X|)n( ≡− 11  
 
C. Maximum number of s-links 
Now we want to extend this analysis  to a wider class of 

mathematical objects. Let us begin calculating the maximum 
number of 2-links  ),n(M 2 .   

 
We call “2-link” a sub-graph with only two links (in 

sequence or not) in an n-nodes graph: 

 
 
Before, we saw that: 
 X|)n(),n(M)n(M ≡−=≡ 111  
Appling  the “zero rule” for independent procedures, we 

can say: 
in a set of  n-nodes, with no link, we can insert  the first link 

in X different ways. Having placed the first link, we can put 
the second one  in (X-1) ways. So, if the two links were 
distinguishable we would have  )X(X),n(M dist 12 −= ,    
but, as  we are interested in studying indistinguishable links, 
we have, theferore, to divide by 2! (permutations): 
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Iterating, we have:  
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Let us now introduce few characteristic features useful in 

the study of complex networks. 
 
Adjacency matrix  
A square matrix ( )nnA × , whose elements ija  take value 

1 if there is a link from node i to node j  and take value 0 
otherwise,  is termed the  adjacency matrix. For the example 
below it is: 

As each link is not directed (undirected network) the matrix 
A turns out to be naturally symmetric. 

 

 
Connection degree   

  
Fig. 1a  and  Fig. 1b 

          In sequence:                  Not in sequence: 
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The connection degree ik  of a node i is the number of 
other nodes to which it is connected, or, shortly, the number 
of its neighbours: 
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Distance matrix  
The distance matrix  ( )nnD ×  has as elements { }ijd , 

which are the number of steps, along the shortest path, linking 
every pair of connected nodes. 

The mean distance of a connected network is defined as: 
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The last equality holds because pairs#  equals the maximum 

number of links, connX .  

When connX  is written in terms of the number of connected 

nodes,  connn , we have:  
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and connL is also named the characteristic distance. 
   For the previous example we obtain: 

 
The diameter  D of the network can be defined as  the 

length of the maximum  “shortest path”. )dmax(D ij= . In 

the previous example D=3. 
 
 
 
 
 
 

Betweennes or centrality   
The betweenness or centrality  iB  of node i is defined as 

the number of  all “shortest paths”  linking any two different 
nodes and passing through i. 

 

 
              .                    

e.g.     52 =B ,   06 =B ,   33 =B  

We define the normalized betweenness B/Bb ii = , 

where B  represents the average betweeness of the network. 

 
Clustering  coefficient 
the clustering  coefficient of node i, iC , [ ]10,Ci ∈ , can 

be defined as the following ratio, where : 
  the numerator is equal to  the number of pairs made 

of neighbours of i which are themselves neighbours, i.e.,  
neighbours of each other or equivalenty themselves 
 connected by a link.  

the denominator is equal to the number of all the possible 
pairs of neighbours that could be in principle constructed from 
the ik  neighbours of node i, i.e. 11 |)k( i − :                                

  32 =k   33 =k    34 =k     35 =k      26 =k  
 

322 /C =  313 /C =   324 /C =   315 /C =  06 =C  
 

II. THE ITALIAN AIRPORT NETWORK 
We investigated the topological properties of the Italian 
Airport Network (IAN), representing it like a mathematical 
graph where to each airport is associated a node and  pairs of 
nodes that are just connected by non-stop passenger flights are 
linked together. In order to accomplish that, we have studied  
the data derived from the OAG Max database [2], compiled by  
OAG Worldwide (Downers Grove, IL) including  all the 
scheduled flights and scheduled charter flights of the world’s 
airlines both for big aircrafts (air carriers) and small aircrafts 
(air taxis) for the period June 1, 2005, to  May 31, 2006 
(period (o)). At the end of this construction, whose full details 
are contained in a previous paper by one of us [3], the data 
corresponding to IAN have been extracted and the resulting 
directed graph has turned out to be made of 42 nodes and a 
total number of links (non-stop flights) equal to 310 (Fig. 2). 
Following the definitions given in sect. 1, let us consider the 
adjacency matrix, ( )nnA × , whose elements ija  , in the case 

20
35Lconn =
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of the IAN, take value 1 if on any day of the week there is a 
flight from node i to node j by any service provider and 0 
otherwise. In order to simplify the following analysis we will 
restrict ourselves just to data pertaining to flights available in 
the period (o). Similar investigations related to other periods 
of time are described in details in [3]. 
 

 
Fig.2: The Italian Airport Network (IAN) 

 
 Then, we calculate for each node i the connection degree  

ik , that is the number of other airports to which airport i is 
connected by a non-stop flight,  and the corresponding  
cumulative distribution cumulative distribution ( )kP > , 
which gives the probability that a node has k or more 
connections to other nodes and it is defined as: 

( ) ( )∑
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kpkP , where ( )kp  is the probability density,               
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n
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 On a log-log scale the normalized cumulative distribution 
( )kP >  versus the degree k  looks like  (Fig. 3).  

 

 
 
 

 
The data distribution suggest that ( )kP >  follows a Double 
Pareto Law [4] 
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where 9=ck  and ( ) ).,.(, 71 2021 =αα .    
 
This behaviour is typical of many complex networks, termed 
“scale-free” [5].   
The fact that the exponent 2α  of the degree distribution is 
greater than one suggest the possibility that the structure of 
our network is fractal as proposed in [6]. The fact that 
networks are scale-free was shown to have important 
implications on network robustness to random failures and 
vulnerability to attack [7]. The distribution reported in Fig. 3 
clearly shows the existence in the Italian Airport Network of 
so-called “hubs”, i.e. nodes with a large number of 
connections: in our case Fiumicino (FCO), Olbia (OLB), 
Milano-Malpensa (MXP) and Catania (CTA). 
The degree of a node is a importance source on its own but, 
however, does not  provide complete information on the role 
played by the single nodes in the network. To detail a bit more 
the role of each node inside the network let us adapt, 
according to the definitions already given in sect. 1,   the so-
called  “betweenness centrality” of cities, introduced in [8-9]. 
Besides the betweenness iB  of each airport  i it is convenient, 
as done in [3, 10],  to introduce the corresponding normalized 
betweenness B/Bb ii = , where B  represents the 
average betweeness of the network and compute the 
cumulative distribution ( )bP >  as 

 

( ) ( )∑
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where ( )bp  is the probability density. For the  period 
considered, we plot, on a log-log scale, the normalized 
cumulative distribution ( )bP >  versus the normalized 
betweenness b  (Fig. 4). As for the degree distribution (Fig. 3) 
the normalized cumulative distribution ( )bP >  follows a 
Double Pareto Law. This behaviour turns out to be again 
typical of a scale-free network [4].  
 

Fig.3: The normalized cumulative distribution ( )kP >   
versus the degree k for period (o). 
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Another property of the IAN network is that it is a small-
world network.  
According to Watts and Strogatz’ [11-12] a network is a 
small-world network when the mean distance among 
reachable pairs of nodes L grows at most as nloge , where n  
is the number of nodes.  
In order to check that, we calculate L , as it has been defined 
previously.  
For the IAN, it turns out to be that  
  971.L =   and 743.nloge =  for period (o). 
These figures indicate that L is closer to 3.74 rather than to the 
number of nodes, n = 42 and show  
that according to the definition [11-12],  the Italian Airport 
Network is a “small-world”  network. 
Another quantity that is worth to check in order to 
characterize the topological properties of a network, is the so-
called network’s clustering  coefficient C, defined previously.  
If we calculate C, according to the definition, for the IAN we 
find that, for the period (o) it turns out to be: 100.C = .  

III. CONCLUSION 
In this paper the topological properties of the system of the 

Italian airports have been investigated from a non standard 
approach  to the theory of complex networks.  The associated  
network, the so-called Italian Airport Network (IAN) have 
been constructed associating a node to each airport and an 
edge to each non-stop connecting passenger flight operating 
between two different airports in any of the seven days of the 
week.  

 The topological properties of the resulting network have 
been carefully examined leading to the evidence of a scale-
free behaviour in the degree of connection distribution, in 
which the existence of “hubs”, i.e. nodes with a high value of 
the degree of connection, clearly manifests. However, the 

scale-free behaviour turned out to be a little bit different from 
the ones already reported in the literature for other air 
transportation networks, suggesting that the formation  
mechanism model underlying the IAN could be pretty 
different from the ones proposed so far.  

 The topological properties of IAN have been investigated 
and confirmed (e.g., the scale-free characteristics) considering 
the data available in different period of time related to 
different seasons of the year. In these cases the well-known 
tourist vocation of some Italian locations really makes the 
difference. From such a kind of analysis some interesting and 
precious results for professional operators of the National 
Airport Infrastructure can be easily extracted. 

Furthermore, IAN satisfies all the requirements prescribed 
by the definition of small-world networks. 
 

REFERENCES   
[1] Quartieri J., “Some mathematical considerations arising in the study of a 

Degenerate Harmonic Oscillator”, Lett. Nuovo Cimento, Vol.  35, N. 14, 
1982, p.p. 433-436.  

 
[2] http://oagdata.com/solutions/max.aspx. 
 
[3] Guida M. and Funaro M., “Topology of the Italian Airport Network”, 

Chaos, Solitons & Fractals, Vol. 31, 2007, p.p. 527-536. 
 
[4] Li W.,  Cai X.,  Phys. Rev. E , Vol. 69, 2004,  046106. 
 
[5] Bàrabasi A. L. and Albert R.,  Science, Vol.  286, 1999, p.p. 509-512. 
 
[6] Song C., Havlin S. and Makse H.A. (2005), “Fractal growth of complex 

networks : repulsion between hubs”. ArXiv: cond-mat/0507216 v1.  
 
[7] Crucitti P., Latora V. and  Marchiori M.,  “Model for cascading failures 

in complex networks”, Phys. Rev. E , Vol. 69, 2004, 045104(R). 
 
[8] Freeman, L. C. (1977),  Sociometry,   Vol. 40, 35–41. 
 
[9] Newman, M. E. J. (2001), Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 

Vol. 64, 016131, 016132. 
 
[10] Guimerà R.,  et al. (2005), “The worldwide air transportation network: 

Anomalous centrality, community structure, and cities’ global roles”, 
Proc. of the Natl. Acad. of Sci. USA, Vol. 102, No. 22, 7794-7799. 

 
[11] Watts D.J., Strogatz S.H. (1998)  ”Collective dynamics of 'small-world' 

networks”,  Nature, Vol. 393, 440-442. 
 
[12] Watts D.J. (1999), “Small Worlds - The Dynamics of Networks Between 

Order and Randomness”. Princeton University Press. 
 
[13] D’Ambrosio S., Guarnaccia C., Guida D., Lenza T.L.L., Quartieri J., 

System Parameters Identification in a General Class of Non-linear 
Mechanical Systems, International Journal of Mechanics, Issue 4, Vol. 
1, pp 76-79 (2007), ISSN: 1998-4448 

 
[14] Steri S., Quartieri J., Volzone G., Guarnaccia C., Evolutionary Processes 

Solved with Lie Series and by Picard Iteration Approach, International 
Journal of Mathematical Models and Methods in Applied Sciences, Issue 
2, Vol. 2, pp 262-268 (2008), ISSN: 1998-0140 

 
[15] Quartieri J., Steri S., Volzone G., Guarnaccia C., A Model on Controlled 

Evolution of Malignant Cells and on Drug Balance between Blood and 
Tumor, International Journal of Biology and Biomedical Engineering, 
Issue 3, Vol.1, pp 62-67 (2007) ISSN: 1998-4520 

Fig.4: The normalized cumulative distribution ( )bP >  
versus the normalized betweenness b for period (o). 
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