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Abstract�An explicit formula for the Fourier coef�cients
of the Legendre polynomials can be found in the Bateman
Manuscript Project. However, formulas for more general classes
of orthogonal polynomials do not appear to have been worked
out. Here we derive explicit formulas for the Fourier series
of Gegenbauer, Jacobi, Laguerre and Hermite polynomials.
The methods described here apply in principle to an class of
polynomials, including non-orthogonal polynomials.

Index Terms�Fourier series, Gegenbauer polynomials, Jacobi
polynomials, Laguerre polynomials, Hermite polynomials.

An explicit formula for the Fourier coef�cients of Legendre
polynomials appears in the Bateman Manuscript Project [3, 4,
5, 6]. One �nds that

Pn(x) =
1X

k=�1

bPn (k) eik�x (1)

where

bPn (k) =
1

2

Z 1

�1
Pn(x)e

�ik�xdx

=

(
(�i)np
2k
Jn+ 1

2
(�k); k 6= 0

�0;n k = 0
(2)

The formula follows from either Bateman [5] p. 122 or from
[4] p. 213 after setting � = 1

2 :

However, explicit formulas for the Fourier coef�cients for
Gegenbauer, Jacobi, Laguerre and Hermite polynomials do
not appear to have been worked out. This article derives
formulas for the Fourier coef�cients of orthogonal polynomials
using two methods. One method utilizes the power series
form of the polynomial and known explicit formulas for the
power series coef�cients. Another method uses a change of
basis to Legendre polynomials and known explicit formulas
for the connection coef�cients. The methods apply even to
non-orthogonal polynomials, provided that the power series
coef�cient or connection coef�cients are known in explicit
form.
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I. FORMULAS DERIVED USING THE POWER SERIES FORM
OF THE POLYNOMIALS

Begin with the power series form of a generic orthogonal
polynomial of the form

pn (x) =
nX
j=0

ajx
j : (3)

or of the form

pn (x) =

[n=2]X
j=0

bjx
n�2j (4)

For Gegenbauer-� polynomials, � 6= 0; [7] p. 219;

bj =
1

� (�)

(�1)j � (�+ n� j) 2n�2j
j! (n� 2j)! (5)

and when � = 0;

bj =
(�1)j � (n� j) 2n�2j

j! (n� 2j)! : (6)

For Jacobi-(�; �) polynomials

aj =
(�+ 1)n
2nn!

(�n)j (�+ � + n+ 1)j
(�+ 1)j j!

(7)

�2F1 (�� � n; j � n; a+ j + 1;�1) (�1):j

For Laguerre-� polynomials [7] p. 240

aj =
(�1)j

j!

�
n+ �

n� j

�
(8)

and for Hermite polynomials [7] p. 250

bj = n!
(�1)j 2n�2j
j! (n� 2j)! (9)

Depending on which form is used, the kth Fourier coef�cient
of pn (x) is given either by

bpn (k) =
1

2

Z 1

�1
pn(x)e

�ik�xdx

=
1

2

Z 1

�1

nX
j=0

ajx
je�ik�xdx

=
1

2

nX
j=0

aj

Z 1

�1
xje�ik�xdx

=
1

2

nX
j=0

aj�j (i�k) (10)
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or by:

bpn (k) =
1

2

Z 1

�1
pn(x)e

�ik�xdx

=
1

2

Z 1

�1

[n=2]X
j=0

bjx
n�2je�ik�xdx

=
1

2

[n=2]X
j=0

bj

Z 1

�1
xn�2je�ik�xdx

=
1

2

[n=2]X
j=0

bj�n�2j (i�k) (11)

where �m (z) is a special function de�ned in Abramowitz and
Stegun [1] p. 228 by

�m (z) =

Z 1

�1
xme�zxdx, m = 0; 1; 2; :::: (12)

The function �m (z) can be stated in terms of the incomplete
gamma function as follows:

�m (z) = � (m+ 1; z)� � (m+ 1;�z)

where
� (�; z) =

Z 1

z

t��1e�tdt:

is known as the incomplete gamma function. When � = n,
a positive integer, the incomplete gamma function has an
elementary formula given in Spanier and Oldham [9] p. 438,
by:

� (n; z) = (n� 1)!e�zen�1 (z) (13)

where

en (z) =

nX
j=0

zj

j!
(14)

is referred to as the exponential polynomial function, [9] p.
239.
Therefore the function �m (z) has an elementary explicit

formula which can be used for calculations:

�m (z) = z
�m�1m!

�
ezem (�z)� e�zem (z)

�
(15)

II. FORMULAS DERIVED USING A CHANGE OF BASIS TO
LEGENDRE POLYNOMIALS

An alternative method uses the fact that change-of-basis
coef�cients, known as connection coef�cients, connecting
Gegenbauer, Jacobi, Laguerre and Hermite polynomials to
Legendre polynomials have been worked out. The method
has been formulated using Legendre polynomial because an
explicit formula for the Fourier coef�cients of a Legendre
polynomial happens to be known. In principle, the method
of connection coef�cients can be applied to any polynomial
whose Fourier coef�cients are already known in explicit form.
Begin with a generic orthogonal polynomial pn (x) and

write either:

pn (x) =
nX
j=0

cj;nPj (x) (16)

or

pn(x) =

[n=2]X
j=0

dj;nPn�2j(x) (17)

where cj;n and dj;n are connection coef�cients. For
Gegenbauer-� polynomials, Rainville [8] p. 284,

dj;n =

�
�� 1

2

�
k
(�)n�k (1 + 2n� 4k)
k!
�
3
2

�
n�k

:

For Jacobi-(�; �) polynomials,

cj;n =
�(j + 1)�(n+ j + �+ � + 1)

�(n+ �+ � + 1)�(j + �+ 1)
(18)

� �(n+ �+ 1)

�(2j + 1)(n� j)!

� 3F2
�
�n+ j; n+ j + �+ � + 1; j + 1

j + �+ 1; 2j + 2

���� 1� :
This follows from the general formula in Askey [2] p. 62.
For Laguerre-� polynomials, Rainville [8] p. 216,

cj;n =
(�1)j(1 + �)n(2j + 1)
2j(n� j)!

�
3
2

�
n
(1 + �)j

(19)

�2F3
�

� 1
2 (n� j);�

1
2 (n� j � 1)

3
2 + j;

1
2 (1 + �+ j);

1
2 (2 + �+ j)

���� 14
�
:

For Hermite polynomials, Rainville [8] p. 196,

dj;n =
(�1)jn!1F1

�
�j; 32 + n� 2j; 1

�
(2n� 4j + 1)

j!
�
3
2

�
n�2j

:

(20)
The kth Fourier coef�cient of pn (x) can then be expressed
for k 6= 0 as

bpn (k) =
1

2

Z 1

�1
pn(x)e

�ik�xdx

=
1

2

Z 1

�1

nX
j=0

cj;nPj (x) e
�ik�xdx

=
1

2

nX
j=0

cj;n

Z 1

�1
Pj (x) e

�ik�xdx

=
1

2

nX
j=0

cj;n
(�i)jp
2k
Jj+ 1

2
(�k) (21)

and for k = 0;

bpn (0) =
1

2

nX
j=0

cj;n�0;j

=
c0;n
2
:
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Alternatively, for k 6= 0;

bpn (k) =
1

2

Z 1

�1
pn(x)e

�ik�xdx

=
1

2

Z 1

�1

[n=2]X
j=0

dj;nPn�2j (x) e
�ik�xdx

=
1

2

[n=2]X
j=0

dj;n

Z 1

�1
Pn�2j (x) e

�ik�xdx

=
1

2

[n=2]X
j=0

dj;n
(�i)n�2jp

2k
Jn�2j+ 1

2
(�k) (22)

and for k = 0;

bpn (0) =
1

2

[n=2]X
j=0

dj;n�0;n�2j

=
d[n=2];n

2
:

III. FORMULAS FOR ORTHOGONAL POLYNOMIALS OVER
A SUBINTERVAL

Unlike Gegenbauer and Jacobi polynomials which share the
orthogonality interval of [�1; 1] with the complex exponentials
eik�x, Hermite polynomials are orthogonal over (�1;1)
and Laguerre polynomials are orthogonal over the interval
[0;1) : We offer here formulas for expressing a Hermite or
Laguerre polynomial over a �nite subinterval [a; b] as a Fourier
series. The choice of subinterval can depend on the application
in question, however for Hermite and Laguerre polynomials
there is an interval which may be of particular interest for
approximation purposes called the oscillatory region.
The following lemma found in Spanier and Oldham [9] p.

217, describes the oscillatory region for Hermite polynomials.
Lemma 1: The n zeros,

�
n
2

�
minima, and

�
n
2

�
maxima

of Hn(x), for n > 1, are all located in the interval�
�
p
2n;

p
2n
�
. Outside of this interval jHn(x)j increases

monotonically, bounded globally by

jHn(x)j < 1:09
p
2nn!ex2 (23)

Since the intervals described above are nested as n in-
creases, it is apparent that the resolving power of an N + 1
term Hermite partial sum lies within the oscillatory regionh
�
p
2N;

p
2N
i
.

The next lemma describes the oscillatory region for La-
guerre polynomials.
Lemma 2: The n zeros,

�
n
2

�
minima, and

�
n
2

�
maxima of

L�n(x), n > 1, where � > �1, are all located in the interval
[0; �] where

� = 2n+ �+ 1 +

r
(2n+ �+ 1)2 +

1

4
� �2 (24)

� 4n+ 2�+ 2

Outside of this interval jL�n(x)j increases monotonically,
bounded globally by

jL�n(x)j <
(�+ 1)n
(1)n

ex=2 (25)

when � � 0 and

jL�n(x)j <
�
2� (�+ 1)n

(1)n

�
ex=2 (26)

when �1 < � < 0.
The sources for this lemma are [9] p. 209 for � = 0, [10]

for the value of � when � 6= 0 and [1] p. 786 for the bounds
on L�n(x).
Since the intervals described above are nested as n in-

creases, it is apparent that the resolving power of a Laguerre
partial sum lies within the oscillatory region [0; �] : This
suggests that the subinterval [0; �] could be a useful one to
consider for approximation purposes.
The power series method described above can be used to

develop formulas for the Fourier coef�cients of an orthogonal
polynomial over a subinterval. De�ne �rst a special function
�a;bm (z) which generalizes the function �m (z).
De�nition 3:

�a;bm (z) =

Z b

a

ume�zudu (27)

Then �a;bm (z) has an explicit form given by

�a;bm (z) = z�m�1� (m+ 1; az)�z�m�1� (m+ 1; bz) (28)
which for whole number m has the elementary representation:

�a;bm (z) = z�m�1m!
�
e�azem (az)� e�bzem (bz)

�
: (29)

Lemma 4: Let [a; b] be a subinterval of the orthogonality
interval. Let x = "� + � where

" =
b� a
2

and
� =

b+ a

2
so that � 2 [�1; 1] when x 2 [a; b] : ThenZ 1

�1
("� + �)

m
e�i�k�dx =

1

"
eik�="�a;bm

�
i�k

"

�
: (30)

This lemma will be utilized for the explicit evaluation of
the kth Fourier series coef�cient of pn ("� + �) expanded in
terms of the local variable �: Begin with the power series
form of a polynomial expressed either as

pn ("� + �) =
nX
j=0

aj ("� + �)
j
: (31)

or as

pn ("� + �) =

[n=2]X
j=0

bj ("� + �)
n�2j

: (32)

Then

bpn (k) =
1

2

Z 1

�1
pn("� + �)e

�ik��d�

=
1

2

Z 1

�1

nX
j=0

aj ("� + �)
j
e�ik��d�

=
1

2

nX
j=0

aj

Z 1

�1
("� + �)

j
e�ik��d�

=
1

2"
eik�="

nX
j=0

aj�
a;b
j

�
i�k

"

�
: (33)
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Alternatively,

bpn (k) =
1

2

Z 1

�1
pn("� + �)e

�ik��d�

=
1

2

Z 1

�1

[n=2]X
j=0

bj ("� + �)
n�2j

e�ik��d�

=
1

2

[n=2]X
j=0

bj

Z 1

�1
("� + �)

n�2j
e�ik��d�

=
1

2"
eik�="

[n=2]X
j=0

bj�
a;b
n�2j

�
i�k

"

�
(34)

IV. CONCLUSION
The power series technique and the connection coef�cient

technique can be applied to obtain explicit formulas for the
Fourier coef�cients of any class of polynomial. Once formulas
for the Fourier coef�cients are known, it is then straightfor-
ward to write an explicit Fourier series of the corresponding
orthogonal polynomial partial sum. Although our concern here
has been orthonormal polynomials, the techniques apply to any
class of polynomials: orthogonal or non-orthogonal. This is
provided that the power series coef�cients or the connection
coef�cients can be found in explicit form. Some of the
formulas described here were found to be useful in our own
work and we present them with the hope that others may �nd
them useful as well.
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