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Abstract: - This paper presents a procedure for the identification of two types of a continuous-time linear 
system interconnected by direct and feedback memoryless nonlinearities. The first case is the continuous time 
Hammesrstein system and the second is a specific case of the continuous time Wiener system. The direct and 
feedback nonlinear elements, described by bounded unknown functions, are expressed as a linear combination 
of some base functions. Both the parameters of the linear system and of the nonlinear elements representation 
are identified. To improve the representation of the nonlinear functions, the set of basis functions is iteratively 
refined. It is possible to identify the dominant nonlinearities, applying the singular value decomposition to the 
input matrix. In our approach, the linear dynamic subsystem is described by a transfer function of a given 
order and the distribution based identification method is applied. The DCHI (Distribution based Continuous 
time Hammerstein system Identification equations (DCHI) and the DCNFI (Distribution based of Continuous 
time Nonlinear Feedback Identification) equation are obtained. The consistency of the identification is 
analyzed and experimental results are presented. 
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1   Introduction 
Identification of continuous-time systems has a great 
practical importance because the actual physical 
processes are characterized by continuous-time 
models.  
In many applications, the structure and parameters 
of those continuous-time models must be known.  
For linear models there are numerous frequency-
domain and time-domain identification methods for 
both continuous-time and discrete-time models. 
Also there are many results for discrete-time 
nonlinear systems identification.  
Unfortunately there are no direct correlations 
between the parameters of the physical continuous-
time systems and its discretized model.  
There are well known different approaches for the 
identification of nonlinear systems, split into two 
main categories: nonparametric and parametric 
methods.  
Nonparametric methods are mainly frequency-
domain based, including techniques for identifying 
Volterra kernels or time-domain constructing state-
space realizations.  
The parametric methods usually are time-domain 
using both structured and unstructured models. As 

presented in [1], [2], structured models are 
expressed as interactions of the linear and nonlinear 
subsystems.  
One of these structures is the so called Hammerstein 
model, represented by series interconnection of a 
static nonlinear map , followed by a linear 
dynamic model 

N
L as in Figure 1, [13], where the 

intermediate variable is not measurable. Only 
information accessible for identification purposes 
are the input  and the output . 

( )z t

( )u t ( )y t
 
 
 
 
 
 ( )u t ( )
 
 
 
 
Fig. 1. The Hammerstein model 
 
The Hammerstein models, proposed first by 
Narendra and Gallman in 1966, [3], are successfully 
utilized to model a large class of nonlinear systems.  
As mentioned in [4], in the 1970s and 1980s, the 

y t
N

( )z t  L  

Linear part Nonlinear part 
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problem of identifying Hammerstein systems was 
investigated by a number of authors [5], [6], where 
the identification algorithms assume that the 
unknown memoryless nonlinear characteristic is a 
polynomial of a finite and known order.  
Other parametric identification methods describe the 
static nonlinearity by a finite number of basis 
functions superposition. Usually the linear system is 
discrete time ARX model.  
A continuous time Hammerstein system 
identification algorithm are presented in [7], [8], 
[13]. These papers assume that a priori information 
about both subsystems, that means the nonlinear 
characteristic is a polynomial of a finite known 
degree and the order of the linear dynamic system is 
known too. 
The main problem in all these approaches is the 
nonlinear map representation. Generally it can be 
expressed as a linear combination of a given set 
basis functions.  
If the selected basis functions do not fit to the 
unknown nonlinearity structure, the validation errors 
are high, especially for large ranges of input 
variations.  
Without prior knowledge of the nonlinear mapping 
form, a large number of basis functions are 
necessary. 
To circumvent these difficulties, based on [13], in 
this paper an adaptive base identification procedure 
for continuous-time Hammerstein systems is 
proposed. It follows the procedure presented in [9] 
which is applied for discrete time systems only, 
using the subspace identification method. 
To improve the representation of the nonlinear 
functions, the set of basis functions is iteratively 
refined. It is possible to identify the dominant 
nonlinearities, applying a singular value 
decomposition to the input matrix [9], [10]. 
In our approach, [13], the linear dynamic subsystem 
is described by a transfer function of a given order 
and the distribution based identification method is 
applied [11], [12].  
Another structure approached in this paper is the so 
called CNF (Continuous time Nonlinear Feedback) 
systems, [15], represented by a feedback 
interconnection between a feedforward linear 
dynamic model L  and a feedback static nonlinear 
map , as in Figure 2. Both the error N ( )tε and the 
feedback variable are not measurable.  ( )z t
Also the only pieces of information accessible for 
identification purposes are the input  and the 
output . 

( )u t
( )y t

 
 

 
 
 ( )u t ( )y t

 
 
 
 
 
 
 
Fig. 2. The Continuous time Nonlinear Feedback 

system structure. 
 
Such a structure can express a control system whose 
transductor characteristic is unknown and nonlinear, 
possible because it changes in time.  
As the authors know, this is the first time an 
identification algorithm is proposed in [15], for such 
a structure.  
This is possible due to the distribution based 
identification methods as developed by the authors 
in [11], [12], [13], [14], [16].  
There are many papers related to the identification 
of interconnections between a static nonlinearity and 
a linear dynamical system as Hammerstein, Wiener, 
Uryson.  
Unfortunately these algorithms consider from the 
beginning discrete-time models for the dynamical 
part. 
 
 
2 Continuous time Hammerstein 
model 
Consider the time invariant state space 
representation of a single-input single-output 
nonlinear continuous-time Hammerstein system [8], 
[13], that cascades a static nonlinearity 

 1( ) [ ( )]z t N u t=    , (1) 

followed by an asymptotic stable linear dynamic 
system  

 ( ) ( ) ( ), ( ) Cx t A x t b z t Aσ −= ⋅ + ⋅ ∈  (2) 

 ( ) ( ) ( )Ty t c x t d z t= ⋅ + ⋅ ,  (3) 

where ( )x t  is an n-dimensional state vector,  
and  are the scalar control input and output of 
the overall system. 

( )u t
( )y t

A , , , are respectively 
nxn, nxl, 1xn and 1x1, constant matrices.  

b Tc d

Next, we assume that the memoryless nonlinear 
function (1) can be expanded as a linear 
combination of p basis functions 1:{ ( )}j j pg u = , with 

N  

( )t
Linear system 

Nonlinear feedback 

L  
ε

( )z t

+ 

- 

( )y t  
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the coefficients 1:{ }j j p=γ  so, 

1
1

( ) [ ( )] ( ( )) ( )
p

T
j j

j

z t N u t g u t g uγ γ
=

= = ⋅ = ⋅∑ , (4) 

where, 

    (5) 1[ ... ... ]T
j p=γ γ γ γ

  (6) 1( ) [ ( )... ( )... ( ) ]T
j pg u g u g u g u=

 
Depending of the prior information about the 
nonlinearity, basis functions such as polynomials, 
splines, sigmoids, sinusoids, or radial basis functions 
can be used. 
The linear part can be expressed by a transfer 
function with unitary proportional factor  

   (7) 1( ) ( )TH s c sI A b d−= ⋅ − ⋅ +

1

1

... ... 1( )( ) ,
( ) ... ... 1

m i
m i

n i
n i

b s b s b sY sH s n m
Z s a s a s a s

⋅ + + ⋅ + + ⋅ +
=

⋅ + + ⋅ + + ⋅ +
≥

=

       (8) 

  (9) 1(0) 1TK H c A b d−= = − ⋅ ⋅ +

 
This does not limits the generality because the 
inaccessible intermediate variable  can be 
considered upstream or downstream of a 
proportional factor.  

( )z t

For example denoting 

 , (10) 1', ' [ ' ... ' ... ' ]T
j pK= ⋅ =γ γ γ γ γ γ

a new intermediate variable  can be considered 
as the output of the equivalent nonlinear part 

'( )z t

 

1
1

'( ) '[ ( )] ' ( ( )) ' ( )
p

T
j j

j
z t N u t g u t g uγ γ

=

= = ⋅ = ⋅∑ .(11) 

 
 
 
 
 
 
 
 
 
Fig. 3. The equivalent Hammerstein model 

3 Continuous time CNF model 
Consider the structure depicted in Figure 1 where 
the feedback static nonlinearity is described by an 
unknown function, [15] 

 2( ) [ ( )]z t N u t= .   , (12) 

The feedforward element is a single-input single-
output linear continuous-time system, as (13), (14), 
asymptotic stable, having a state space 
representation  

 ( ) ( ) ( ), ( ) Cx t A x t b t Aε σ −= ⋅ + ⋅ ∈  (13) 

 ( ) ( )Ty t c x t= ⋅ ,    (14) 

where ( )x t  is an n-dimensional state vector,  
and  are the scalar control input and output of 
the overall system. 

( )u t
( )y t

A , , , are respectively 
nxn, nxl, 1xn and 1x1, constant matrices.  

b Tc d

This feedforward element can represent a cascade 
connection between a continuous time controller and 
the controlled process in a control system structure. 
The system error is  

 ( ) ( ) ( )t u t z tε = − .    (15) 

As in the case of the above Hammerstein  system, 
we assume, [15], that the memoryless nonlinear 
function (12) can be expanded as a linear 
combination of p basis functions 1:{ ( )}j j pg u = , with 

the coefficients 1:{ }j j p=γ  so, 

2
1

( ) [ ( )] ( ( )) ( )
p

T
j j

j
z t N y t g y t g yγ γ

=

= = ⋅ = ⋅∑ , (16) 

where, 

    (17) 1[ ... ... ]T
j p=γ γ γ γ

  (18) 1( ) [ ( )... ( )... ( ) ]T
j pg y g y g y g y=

Depending of the prior information about the 
nonlinearity, basis functions such as polynomials, 
splines, sigmoids, sinusoids, or radial basis functions 
can be used. 

1 '( )N u  
'( )z t  ( )z t  H(s)  

H(0)=1 
K 

1( )N u  

( )y t( )u t  

The linear part can be expressed by a transfer 
function with the proportional factor K  

 1( ) ( )TH s c sI A b−= ⋅ − ⋅   (19) 

1 0

1

... ...( )( ) ,
( ) ... ... 1

m i
m i

n i
n i

b s b s b s bY sH s n m
Z s a s a s a s

⋅ + + ⋅ + + ⋅ +
= >

⋅ + + ⋅ + + ⋅ +
       (20) 
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 .  (21) 1(0) TK H c A b−= = − ⋅ ⋅

The task of identification is to identify both the 
feedback nonlinear function and the linear model 
from input-output measurement data { ( on 
a finite time interval .  

) , ( )}u t y t

0 1[ , ]t t t∈
The internal variables { ( ) , ( )}t z tε  are inaccessible 
for measurements.  
In our approach it is possible uniquely to identify all 
these parameters without the unitary gain condition 
on the dynamical element. 
Considering the transfer function (20) and the 
nonlinearity expressed by (16), the structure of the 
CNF model utilised for identification is illustrated in 
Figure 4. 

( )T g yγ ⋅  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The CNF model structure for identification 
 
 
4   Distribution based continuous time 
Hammerstein system identification 
equations (DCHI) 
The input-output differential equation of the system, 
based on (4) and (8) is 

( ) ( )

1 1 1 1
( ) ( ) ( ) ( ( )) ( ( ))

p pn m
i i

i i j j
i i j j

a y t y t b g u t g u t
= = = =

+ = ⋅ +∑ ∑∑ ∑γ γ j j

       (22) 

Let us denote by  the fundamental space from 
distribution theory, of the real testing functions 

nΦ

kϕ , 
with continuous derivatives at least up to the 
order , and compact support T , where, 

 

n
a b

kt= ⊆

T

k

[ , ]k kT t

: , ( ); ( ) 0,k kt t t t→ → = ∀ ∈ −ϕ ϕ ϕ , (23) 

Let  

  : ,q t→ → ( )q t

be a function that admits a Riemann integral on any 
compact interval T from .  

Using this function, a distribution  

 ( ) : , ( )k n k kQ QΦ → →ϕ ϕ ϕ  

can be built by the relation 

 ( ) ( ) ( ) ,k k kQ q t t dt n= ⋅ ⋅ ∀ ∈Φ∫ϕ ϕ ϕ . (24)  

The i-order derivative, of , , 
generates, for 

( )q t ( ) ( ), 0 :iq t i n=

k

Linear system 

Nonlinearity model 

( )u t  ( )y t

( )T g yγ  

( )tε    H(s)  

( )z t  ( )y t  

+ 

- 

n∀ ∈Φϕ , a distribution 

( ) ( )( ) ( ) ( ) ( 1) ( ) ( )i i
i k k kQ q t t dt q t ti dt= ⋅ ⋅ = − ⋅ ⋅∫ ∫ϕ ϕ ϕ

       (25) 

where the derivative burden is undertaken by the 
known testing function kϕ . For the zero derivatives, 
we write 

  0( ) ( )k kQ Q=ϕ ϕ . 

Considering  as being the output signal , 
the functionals (24), (25) become 

( )q t ( )y t

  (26) ( )( ) ( 1) ( ) ( ) , 0 :i i i
k kY y t t dt i= − ⋅ ⋅ =∫ϕ ϕ n

m j p= =ϕ

p

Also, considering 

  , ( )( ) ( ( ))i
jq t g u t=

 functionals (24), (25) become 

  U i  ( ), 0 : ; 1:i
j k

( )( ) ( 1) ( ( )) ( ) , 0 : ; 1:i i i
j k j kU g u t t dt i m j= − ⋅ = =∫ϕ ϕ

       (27) 

For a given testing function kϕ , by using (26), (27), 
the differential equation (22) is transformed to an 
algebraic equation 
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0 ( )

1 1 1 1
( ) ( ) ( ) ( ) ( )

p pn m
i i

i k k i j j k j j k
i i j j

aY Y b U U
= = = =

+ = +∑ ∑∑ ∑ (0)ϕ ϕ γ ϕ γ ϕ

T

kG

       (28) 

 
Defining the linear part parameter vectors  

  (29) 1 1[ ... ... ] ; [ ... ... ]T
n i m ia a a a b b b b= =

and taking account of (5), (28) becomes, 

0 0( ) ( ) ( ) ( )T
k k ka Y b⋅ + = ⋅ + ⋅ ⋅Y Gϕ ϕ ϕ γ ϕ γ

n×

p

,(30) 

where 
1( ) [ ( )... ( )... ( ) ], 1n i

k k k kY Y Y=Y ϕ ϕ ϕ ϕ  (31) 

1( ) [ ( )... ( )... ( ) ], 1i i i i
k k j k p kU U U= ×G ϕ ϕ ϕ ϕ . (32) 

1( ) [ ( ) ... ( ) ... ( ) ] ,T i T m T T
k k k k m p= ×G G G Gϕ ϕ ϕ ϕ  

       (33) 

Equation (30) expresses relations between 
parameters , ,a b γ and the functionals ( )kY ϕ , 

( )i
kG ϕ , 0 ( )kY ϕ  evaluated for one experiment, 

generated by the testing function kϕ .  
Repeating this experiment for  testing functions N

1:{ }k k N=ϕ  and defining the matrices, 
 

1[ ( ) ... ( ) ... ( ) ] ,T T T T
k N N n= ×Y Y Y Yϕ ϕ ϕ  (34) 

0 0 0 0
1[ ( )... ( )... ( )] , 1T

k NY Y Y Y N= ×ϕ ϕ ϕ  (35) 

0 0 0 0
1[ ( ) ... ( ) ... ( ) ] ,T T T T

k N N p= ×G G G Gϕ ϕ ϕ  (36) 

1( ) [ ( ) ... ( ) ... ( ) ] ,T T T T
k Nb b b b= ×W G G Gϕ ϕ ϕ N p

0

0Y

 (37) 

the Distribution based Continuous time 
Hammerstein system Identification equation (DCHI) 
is obtained 

 . (38) 0 ( ) 0a b Y⋅ − ⋅ − ⋅ + =Y G Wγ γ

An equivalent form of (38) is  

 . (39) 0 ( ) 0a b⋅ − ⋅ − ⋅ + =Y G Vγ γ

where ( )V γ  is similar to .  ( )bW
 If b  is known, from (38), a linear equation in 
parameters  

 [ ]T T T
a a=γθ γ  

can be obtained.  
Also if γ  is known, then can be 
easy obtained. If both vectors and 

[ T T T
ab a b=θ ]

b γ  are 
unknown, the following vectors are defined, 

 0, 0 : ,i ic b i m c= ⋅ = =γ γ   (40) 

  (41) 0 1[ ... ... ]T T T T T T
i ma c c c c=θ

From (30) one obtain, 

 0( ) ( )k kY⋅ = −H ϕ θ ϕ  (42) 

where ( )kH ϕ is a 1 q× matrix, , ( )q n m m p= + + ⋅

0 0 0 0( ) [ ( ) ( ) ( ) ... ( ) ... ( )]k k k k k k=H Y G G G Gϕ ϕ ϕ ϕ ϕ ϕ
       (43) 

Considering  testing functions N 1:{ }k k N=ϕ  from 
(43) the general DCHI equation is built, 

 ⋅ =H Fθ  (44) 

where 

1[ ( ) ... ( ) ... ( ) ] ,T T T T
k N N q= ×H H H Hϕ ϕ ϕ  (45) 

0 0 0
1[ ( )... ( )... ( )] , 1T

k NY Y Y N= − − −F ϕ ϕ ϕ ×

T

 (46) 

The least squares estimation  

  (47) 0 1
ˆ ˆ ˆ ˆ ˆ ˆ[ ... ... ]T T T T T T

i ma c c c c=θ

is given by 

 1ˆ ( )T −= ⋅ ⋅ ⋅H H H Fθ . (48) 

The estimation  results directly from (40)Taking 
into consideration (47), but 

â
γ̂ and  

 ,  ˆ , 1:ib i m=

are given by relations, 

 0ˆ ĉ=γ ; . (49) 1
0 0 0

ˆ ˆ ˆ ˆ[ ] , 1:T
ib c c c i m−= ⋅ ⋅ =
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5   Distribution based continuous time 
nonlinear feedback identification 
equations (DCNFI) 
 
The input-output differential equation of the system, 
based on (12) and (20) is 

( ) ( ) ( )

1 0 0

( ) ( ) ( ) ( )
n m m

i i
i i

i i i

a y t y t bu t bz t
= = =

+ = −∑ ∑ ∑ i
i

i

  (50) 

or 

( ) ( ) ( )

1 0 0
( ) ( ) ( ) [ ( ( ))]

n m m
i i

i i i
i i i

a y t y t bu t b N y t
= = =

+ = −∑ ∑ ∑
 (51) 

The model of CNF system considering the 
approximation (16) is 

( ) ( ) ( )

1 0 0 1
( ) ( ) ( ) ( ) ( ( )) ( )

pn m m
i i i

i i i j j
i i i j

a y t y t bu t b g y t tγ ξ
= = = =

+ = + ⋅ +∑ ∑ ∑∑
 

       (52) 
where ( )tξ is a noise expressing the modelling 
errors.  

Let us denote by  the fundamental space from 
distribution theory, of the real testing functions 

nΦ

kϕ , 
with continuous derivatives at least up to the order 

, having a compact support , where, 

 

n kT
[ , ]a b

k k kT t t= ⊆

: , ( ); ( ) 0,k kt t t t→ → = ∀ ∈ −Tϕ ϕ ϕ , (53) 

Let  

    (54) : ,q t→ → ( )q t

be a function that admits a Riemann integral on any 
compact interval T from . Using this function, a 
distribution  

 ( ) : , ( )k n k kQ QΦ → →ϕ ϕ ϕ   (55) 

can be built by the relation 

 . (56) ( ) ( ) ( ) ,k k kQ q t t dt= ⋅ ⋅ ∀ ∈∫ϕ ϕ ϕ nΦ

n

The i-order derivative, of , , 
generates, for 

( )q t ( ) ( ), 0 :iq t i n=

k∀ ∈Φϕ , a distribution 

( ) ( )( ) ( ) ( ) ( 1) ( ) ( )i i
i k k kQ q t t dt q t ti dt= ⋅ ⋅ = − ⋅ ⋅∫ ∫ϕ ϕ ϕ

       (57) 

where the derivative burden is undertaken by the 
known testing function kϕ . For the zero derivatives, 
we write 

 0( ) ( )k kQ Q=ϕ ϕ . 

Considering  as being the output signal  
and the input signal , the functionals (56), (57) 
become respectively 

( )q t ( )y t
( )u t

  (58) ( )( ) ( 1) ( ) ( ) , 0 :i i i
k kY y t t dt i= − ⋅ ⋅ =∫ϕ ϕ n

m

p

p

 . (59) ( )( ) ( 1) ( ) ( ) , 0 :i i i
k kU u t t dt iϕ ϕ= − ⋅ ⋅ =∫

Also, considering 

 ,     (60) ( )( ) ( ( ))i
jq t g y t=

the functionals (56), (57) become 

  ( ), 0 : ; 1:i
j kG i n jϕ = =

( )( ) ( 1) ( ( )) ( ) , 0: ; 1:i i i
j k j kG g y t t dt i n jϕ ϕ= − ⋅ =∫ =

 (61) 

For a given testing function kϕ , by using (58), (61), 
the differential equation (52) is transformed to an 
algebraic equation 

0

1 0 0 1
( ) ( ) ( ) ( ) ( ) ( )

pn m m
i i i

i k k i k i j j k k
i i i j

aY Y bU b Gϕ ϕ ϕ γ ϕ
= = = =

+ = − +Ξ∑ ∑ ∑∑ ϕ

       (62) 

where ( )kϕΞ  is the distribution image of the noise 

( )tξ pointed out by the testing kϕ , 

 ( ) ( ) ( ) ,k k kt t dtϕ ξ ϕ ϕ nΞ = ⋅ ⋅ ∀ ∈∫ Φ

0

k

 (63) 

Defining the linear part parameter vectors  

  (64) 1 1[ ... ... ] ; [ ... ... ]T T
n i m ia a a a b b b b b= =

and taking account of (17), (62) becomes, 
0( ) ( ) ( ) ( ) ( )T

k k k kY a b bϕ ϕ ϕ ϕ γ= − ⋅ + ⋅ − ⋅ ⋅ + ΞY U G ϕ
       (65) 
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where 

1( ) [ ( )... ( )... ( ) ], 1n i
k k k kY Y Y=Y ϕ ϕ ϕ ϕ n×

+

p

p×

 (66) 

0( ) [ ( )... ( )... ( )], 1 ( 1)m i
k k k kU U U mϕ ϕ ϕ ϕ= ×U  (67) 

1( ) [ ( )... ( )... ( ) ], 1i i i i
k k j k p kG G Gϕ ϕ ϕ ϕ= ×G  

0( ) [ ( ) ... ( ) ... ( ) ] , ( 1)m T i T T T
k k k k mϕ ϕ ϕ ϕ= +G G G G  (68) 

Equation (65) expresses relations between 
parameters , ,a b γ and the functionals ( )kY ϕ , 

( )kϕU , ( )i
kϕG , 0 ( )kY ϕ  and the residuum 

( )kϕΞ evaluated for one experiment, generated by 
the testing function kϕ . It can be expressed as, 

 0( ) [ , , , ] ( )k kY a b kϕ γ ϕ ϕ= +F Ξ  (69) 

Repeating this experiment for  testing functions N
1:{ }k k N=ϕ  and defining the matrices, 

1[ ( ) ... ( ) ... ( ) ] ,T T T T
k N N nϕ ϕ ϕ= ×Y Y Y Y  (70) 

1[ ( ) ... ( ) ... ( ) ] , ( 1)T T T T
k N N mϕ ϕ ϕ= × +U U U U

N p

 (71) 

0 0 0
1[ ( )... ( )... ( )] , 1T

k NY Y Y Nϕ ϕ ϕ= ×0Y  (72) 

1[ ( )... ( )... ( )] , 1T
k N Nϕ ϕ ϕ= Ξ Ξ Ξ ×Ξ  (73) 

1( ) [ ( ) ... ( ) ... ( ) ] ,T T T T
k Nb b b b= ×W G G Gϕ ϕ ϕ  (74) 

the Distribution based of Continuous time Nonlinear 
Feedback Identification equation (DCNFI) is 
obtained 

 . (75) ( )a b b γ= − ⋅ + ⋅ − ⋅ +0Y Y U W Ξ

An equivalent form of (75) is  

  . (76) ( )a b bγ= − ⋅ + ⋅ − ⋅ +0Y Y U V Ξ

where ( )V γ  is similar to .  ( )bW

 If b  is known, from (75), a linear equation in 
parameters [ T T T

a a=γ

Also if γ  is known, then can be 
easy obtained. If both vectors and 

[ T T T
ab a b=θ ]

b γ  are 
unknown, the following vectors are defined, 

 , 0 :i ic b i mγ= ⋅ =    (77) 

  (78) 1 1[ ... ... ]T T T T T T T T
m m ia b c c c c cθ −= 0

k

From (65) one obtain, 

 0( ) ( ) ( )k kY ϕ ϕ θ ϕ= ⋅ + ΞH   (79) 

where ( )kH ϕ is a 1 q× matrix, where 

 ( 1 ( 1)q n m m p)= + + + + ⋅ ,  (80) 

0( ) [ ( ) ( ) ( ) ... ( ) ... ( )]m i
k k k k kϕ ϕ ϕ ϕ ϕ= −H Y U G G G kϕ

       (81) 

Considering  testing functions N 1:{ }k k N=ϕ  from 
(81) the general DCNFI equation is built, 

 θ= ⋅ +0Y H Ξ     (82) 

where 

1[ ( ) ... ( ) ... ( ) ] ,T T T T
k N N q= ×H H H Hϕ ϕ ϕ  (83) 

0 0 0
1[ ( )... ( )... ( )] , 1T

k NY Y Y Nϕ ϕ ϕ= = 0F Y ×

0

 (84) 

The least squares estimation  

  (85) 0
ˆ ˆ ˆ ˆ ˆ ˆ[ ... ... ]T T T T T T

m ia c c c cθ =

is given by 

 1ˆ ( )T T−= ⋅ ⋅ ⋅H H H Fθ .   (86) 

The estimations  and  result directly from (86) 
and (78). Taking into consideration (77), 

â b̂
1m+  

expressions îγ  for the same vector γ  are obtained,  

 .    (87) ˆˆ ˆ / , 0 :i i ic b i mγ = =

The least squares approximation of the vector γ  is  
given by the relation, 

 ; (88) 1
1 0

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) [T T T
mb b b c c cγ −= ⋅ ⋅ ⋅ ]T

]θ γ  can be obtained.  
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    (89) 2

0 0

ˆˆ ˆ /
m m

i i i
i i

b c bγ
= =

= ⋅∑ ∑ ˆ

6  Algorithm for the base refining 
As we can see, from (86) and (87) simultaneously 
there are estimated , ,a b γ  assuming given the set of 
base functions (18).  
The choice of them is not an easy task. If the base 
functions are properly chosen, that means the 
identification model is consistent, for the case of 
free noise estimation, instead of (87), would have 

 .  (90) ˆ ˆˆ ˆˆ ˆ/ ,i i i ic b c b i mγ γ= ⇒ = ⋅ = 0 :

because as the true value of the vector γ  is unique. 
This determines the set of vectors  from 
(77) to be collinear, that means  

ˆ , 0 :ic i m=

 ˆ 0, 1:i i m= =α ,     (91) 

where ˆiα  is the angle between  and 0ĉ ˆ , 0 :ic i m= , 

 (92) 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ , } arccos{( } / / }T
i i i ic c c c c c= = ⋅ 0α

1=

If the base functions (18) contain some free 
parameters, they can be optimized by minimizing 
the criterion,  

     (93)  2
1

ˆ( )m
ii

J
=

=∑ α

which is the identification consistency criterion. 
The selective refinement algorithm proposed in [9], 
can be directly applied to above DCNFI. To do this, 
consider an initial set of basis functions (18) 'p

 .  (94) 1 ''( ) [ '( )... '( )... '( ) ]T
j pg y g y g y g y=

Building DCNFI as (86), the vectors 
are evaluated. Define  0

ˆˆ ˆ'; ', ', 1:i ic c b i m=

    (95) 0
ˆ ˆˆ ˆ' '/ ', 0 : ; 'i i ic b i m b= =γ

 .  (96) 0 1ˆ ˆ ˆ ˆ' [ ' '.. '.. ] , ( 1) 'T
i m m pΓ = + ×γ γ γ γ

Performing the singular value decomposition of 'Γ , 

 ' ' ' 'M NΓ = ⋅Σ ⋅     (97) 

we retain the largest singular values in 'q p ' 'Σ . 
So it is possible to approximate 

ˆ ˆ' ' ' ', { '} 'L R rank qΣ ≈ Σ = ⋅ Σ = ,   (98) 

where the ' matrix ( 1)m q+ × 'L has a full column 
rank and the ' matrix ( 1)m q+ × 'R  has a full row 

rank. As mentioned in [9], the retained ' largest 
singular values can be incorporated into either 

q
'L  or 

'R . We can write, 

ˆ' '( ) ' ' ' ' ' 'g u M N M NΓ ⋅ = ⋅Σ ⋅ ≈ ⋅Σ ⋅ =  

( ' ') ( ' ' '( )) " ''( )M L R N g u g u= ⋅ ⋅ ⋅ ⋅ = Γ ⋅ .  (99) 

In such away  can be viewed as dominant 
nonlinearities, as the rank of the nonlinear map. 

''( )g u

Following the same procedure, the nonlinear map 
can now be refined to  and so on. ''( )g u '''( )g u

 
 
7   Experimental results 
The identification procedure developed in this paper 
has been implemented in Matlab. Considering the 
structure from Figure 1, the linear part is described 
by the transfer function 

 2

3 1( )
4 0.2

sH s
s s 1

+
=

+ +
   (100) 

and the feedback nonlinear element is described by  

 1 2atan( / )*2 /z r y r π= ⋅   (101) 

where  and  are unknown parameters. In the 
simulation, they were considered  

1r 2r

  1 20.1; 1r r= = . 

The input output variables obtained from this system 
and utilised for identification are depicted in Figure 
5.  
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Fig. 5. The measured variables for identification. 
 
Twelve types of testing functions ( )tϕ , 
characterized by a bounded support  

 [ , ],a b a bT t t t t= <     (102) 

are considered.  
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All of these accomplish the condition 

 ( ) 0tϕ = , . (103) ( , ] [ ,a bt t t∀ ∈ −∞ ∪ ∞)

The nonzero restriction, is of the form 

( ) ( , ) ( , , )a b a b nt t t t t tϕ α β= ⋅ ⋅Ψ ∈Φ   (104) 

where  

( ) ( , , ) C [( , )]n
a b a bt t t t t tΨ = Ψ ∈   (105) 

is one of the four types, with .  1p n≥ +
1.Exponential: 

 ; ( ) exp[| | / ( ) ( ) ]a b a bt t t t t tΨ = ⋅ − ⋅ − t

t

2. Sinusoidal:  

 ,  ( ) sin [ ( ) / ( ) ]p
b b at t t tπΨ = ⋅ − −

3. Polynomial : 

 , ( ) ( ) ( )p p
a bt t t t tΨ = − ⋅ −

4. Product :  

  ,  ( ) ( ) ( )a bt f t f tΨ = ⋅

where  

C [( , )], C [( , )]n n
a a b b a bf t t f t t∈ ∈ ; 1a b, p p n≥ +  

( ) ( ) 0 , 0 :k
a a af t k= = ( ) ( ) 0 , 0 :k

b b bp ; f t k p= = . 

 
For each of the four types, three variants can be 
implemented with respect to the coefficient 

 ( , )a bt tβ β= .  

In (104), α is a scaling factor. 
a. Free amplitude:  

 ( , ) 1, ,a b a bt t t tβ = ∀  

b. Normalized peak: 

 ( , ) 1 / max | ( , , ) |, ,a b a b a bt T
t t t t t t tβ

∈
= Ψ ∀  

c. Normalized area: 

  ( , ) 1/ ( , , ) , ,b

a

t

a b a b a bt
t t t t t t tβ = Ψ ∀∫

The nonlinear feedback function is approximated by 
a six order Bezier function [17] 

 
6

5 min
1

1 max min

( ) j j
j

y yz y B
y y

γ −
=

⎛ ⎞−
= ⋅ ⎜ −⎝ ⎠
∑ ⎟  (106) 

where  is the j-Bernstein function of the 
degree n, 

( )n
jB s

!( ) (1 ) , [0,1]
! ( )!

n j n j
j

nB s s s s
j n j

−= ⋅ ⋅ − ∈
⋅ −

 (107) 

 
The following results are obtained: 

 

2 1 2 1ˆ ˆ ˆ[ ] [4 0.2]; [ ] [3.678 0.846];a a a a a a= = = =

1 0 1 0
ˆ ˆ ˆ[ ] [3 1]; [ ] [2.878 0.967];b b b b b b= = = =  

 

1 2 3 4 5 6[ ]
 [ 0.0937 0.0895 0.0705 0.0705 0.0895  0.0937];

γ γ γ γ γ γ γ= =
= − − −

 

1 2 3 4 5 6ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]
 [ 0.0881  0.0935 0.0653 0.0731 0.0913  0.0987];

γ γ γ γ γ γ γ= =
= − − −

 

Figure 6 shows the real and identified feedback 
nonlinearities. 
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Fig. 6. The real and identified feedback 
nonlinearities. 
 
 
5   Conclusions 
Using techniques from distribution theory it is 
possible to obtain algebraic equations with respect to 
unknown parameters for continuous time systems 
with nonlinear feedback.. The base functions can 
now be refined using the method of singular value 
decomposition and the consistency condition. 
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