
Numerical Analysis of Sliding Dynamicsin Three-Dimensional
Filippov Systems using SPT Method

IVAN ARANGO
Universidad EAFIT

Department of Mechanics Engineering
Kra 42d 50 sur 40 Medellín

Colombia
iarango@eafit.edu.co

JOHN ALEXANDER TABORDA
Universidad Nacional de Colombia
Department Electronics Engineering

Campus La Nubia Manizales
Colombia

yatabordag@unal.edu.co

Abstract: We present the numerical analysis of sliding dynamics on the discontinuity boundary (DB) of three-
dimensional (3D) Filippov systems using an integration-free method denominatedSingular Point Tracking(SPT).
Many physical applications in engineering can be modelled as Filippov systems. Sliding dynamics due to non-
smooth phenomena such as friction, hysteresis or switching are inherent to Filippov systems. The analysis of
sliding dynamics have many mathematical and numerical difficulties. Several well-known numerical problems
can be avoid using integration-free methods. Three-dimensional Filippov systems are being studied extensively
because these systems still have many open problems. In this paper, we present a first attempt to extend the SPT
method to 3D Filippov systems. The discontinuity boundary (DB) is characterized using geometric criterions based
on angular evaluations. Eighteen basic points on DB are distinguished and eight basic scenarios on DB are de-
fined. Finally, local and global bifurcation scenarios are conceptualized with the SPT method and some illustrative
examples are given.
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1 Introduction
Many engineering applications such as electric mo-
tors, power converters, brakes, gears and joints can be
modelled as Filippov systems. Switchings in electri-
cal systems [1], [2], impacting motion in mechanical
systems [3], [4], stick-slip motion in oscillators with
friction [5], [6], [7] and hybrid dynamics in control
systems [8] are being studied with the nonsmooth dy-
namical systems theory.

The classical dynamical systems theory restricts
the analysis to smooth phenomena such as Hopf, flip
and pitchfork bifurcations and excludes the analy-
sis of nonsmooth phenomena such as grazing, slid-
ing and border-collision bifurcations. Understanding
nonsmooth characteristics of the physical systems, we
could minimize undesirable effects such as wear of
components, surface damage, fatigue failure, vibra-
tion and noise [9], [10].

Figure 1(a) shows a block representation of many
nonsmooth systems. In these systems, we can deter-
mine an energy source, an oscillator and a switch-
ing mechanism triggered by the oscillator (see figure
1(b)) [11]. Figure 1(c)presents an example of slid-
ing cycle in planar state-space where the discontinuity
boundary is the liney = 0. The DB in 3D Filippov
systems is a 2D or 3D surface; for example the plane

Σ presented in figure 1(d).

Figure 1:(1.a). Generic block diagram of nonsmooth system.
Three fundamental parts: Energy source, oscillator and switching
mechanism.(1.b). Switched signal with two positions.(1.c).
Example of sliding dynamic.(1.d). Switching manifold or dis-
continuity boundary (Σ) in 3D space

Schemes of electrical and mechanicalFilippov
systems are presented in figure 2. The boost converter
has the three elements described in figure 1. Two basic
states can be distinguished:On-statewhere the induc-
tor current increases andOff-statewhere the energy
accumulated during theOn-stateis transferred to the
load. Sliding dynamics can be detected when the cur-
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Figure 2: Examples of Filippov systems. (a). DC-DC Boost
Converter (Source-Switch-Filter). (b). Undamped dry friction os-
cillator on a rotating belt. (c). Coulomb friction model (d). More
complex mechanical system.

rent through theinductorfalls to zero (iL = 0).
The undamped dry friction oscillator (figure 2(b))

comprises a block resting on a belt, moving with ve-
locity v. The motion of block with massm along
the belt is opposed by a spring (with stiffnessk) con-
nected to a fixed support. The spring exerts a restoring
force on the block that is opposed by the friction force
created by the belt. When the velocity of the block is
less than the velocity of the belt the friction is posi-
tive and constant and when the velocity of the block
is greater than that of the belt the friction is negative.
The flat Coulomb friction model is presented in figure
2(c). This function defines the DB as the liney = v.

When sliding motion on the discontinuity bound-
ary (DB) is possible, the analysis is more complicated
[12]. Moreover, the complexity can increase when
the number of elements with nonsmooth interaction
(as masses) is higher. An example of Filippov system
with this model type is presented in figure 2(d).

The analysis of sliding dynamics has many math-
ematical and numerical difficulties. The number of
specialized software in nonsmooth dynamics is re-
duced [13], [14]. In [15] and [6], two toolboxes are
presented for analysis and continuation of nonsmooth
bifurcations in Filippov systems. The platforms used
in these toolboxes are Matlab and AUTO97.

A LabView toolbox was proposed in [16] for bi-
furcation analysis of Filippov systems denominated
SPTCont 1.0. This software uses integration-free al-
gorithms based on the evaluation of the vector fields
on the discontinuity boundary (DB). The routines
makes uses of the points and events classification on
DB recently proposed [17], [18], [19]. Local and
global bifurcations can be detected using the numer-
ical methodSingular Point Trackingor SPT. Several
well-known numerical problems can be avoid using
integration-free methods.

Figure 3:Example of slidingbifurcation scenario studied with
SPT method. (a). 3D state-space, vector fields and DB.(b).
Analysis of nonsmooth dynamics for different values of parameter
p. (c). Generation of the bifurcation diagram and detection of the
bifurcation pointpcr.

Planar Filippovsystemshave been studied exten-
sively and many results have been studied [12], [6],
[17], [20], [21], [22], [23]. In last years, the number
of interesting results on local and global bifurcations
in 3D systems have increased, however, many open
problems persist [12].

In this paper, we present a first attempt to ex-
tend the SPT method to 3D Filippov systems. Fig-
ure 3 shows an example of sliding bifurcation sce-
nario studied with SPT method. The 3D piecewise-
smooth flows are studied on the discontinuity bound-
ary. This analysis has two principal advantages. First,
integration-free criterions can be used, therefore, the
numerical errors can be reduced. Second, the dimen-
sion of the problem is reduced by one, therefore, a 3D
sliding bifurcation can be detected analyzing a 2D di-
mensional boundary.

The discontinuity boundary (DB) is characterized
using geometric criterions based on angular evalua-
tions. The existence conditions of thecrossing ar-
eas,sliding areasandsingular sliding linesare for-
mulate usingBoolean-valued functionsB(.) based on
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Figure 4: (a). 3D piecewise smooth state-space with two smooth flows:Φi andΦj . (b). Discontinuity boundary (2D grid) when the
vector fields are evaluated in each analysis point.

integration-free geometric criterions.These condi-
tions are easily programmable and they can be used
directly in the detection of nonsmooth bifurcations.

TheBoolean-valued functionsB(.) returnTRUE
or FALSE when their arguments are evaluated. The
logical functions are composed of logical connectives:
AND, OR andNOT denoted by∧, ∨ and¬, respec-
tively. Eighteen basic points on DB are distinguished
and eight basic scenarios on DB are defined. Finally,
local and global bifurcation scenarios are conceptual-
ized with the SPT method and some illustrative exam-
ples are given.

The paper is organized as follows. In section II
we present the background concepts of Filippov sys-
tems and the SPT numerical method. The type of ar-
eas on DB and singular lines on DB are summarized
in the section III. The basic scenarios on DB are pre-
sented in the section IV while local and global bifur-
cation scenarios are discussed in section V. Finally,
illustrative examples using SPT method are presented
in section VI and the conclusions are presented in the
section VII.

2 Filippov Systems and SPT method

Filippov systemsare a subclass of discontinuous dy-
namical systems which can be described by a set of
first-order ordinary differential equations with a dis-
continuous right-hand side [20]. These systems are
modelled as piecewise-smooth systems (PWS) where
the state-space contains two kinds of entities:Smooth
Zones(Z) andDiscontinuity Boundaries(Σ). A repre-
sentation of 3D state-space is presented in figure 4(a).

The set of equations{Fi(x), Fj(x),H(x)} given
by equation (1) represents a 3D Filippov system where
x ⊂ R3 andp ∈ R is the bifurcation parameter.

ẋ =
{

Fi(x, p) if x ∈ Zi

Fj(x, p) if x ∈ Zj

Σ =
{

x ∈ R3 : H(x, p) = 0
}

Zi =
{

x ∈ R3 : H(x, p) < 0
}

Zj =
{

x ∈ R3 : H(x, p) > 0
}

(1)

The discontinuity boundary, (DB) denoted byΣ,
is defined by the scalar functionH(x). The sign of
H(x) indicates a smooth zone that is bounded by the
DB (figure 4(b)). BetweenZi andZj the PWS system
has the discontinuity boundary (DB) that it is assumed
to be a smooth hyperplane.

The system (1) is not invertible because of the or-
bits can overlap on DB with sliding [12]. In sliding
situations, a convex combinationG(x, α) of the vec-
torsFi andFj is defined as the Filippov Method [24].

The vectorG can be written as the equation (2)
where0 6 λ 6 1. The scalar product is denoted by
〈· · · , · · ·〉.

G (x, p) = λFi (x, p) + (1− λ) Fj (x, p) (2)

with

λ = 〈Ht(x),Fj(x)〉
〈Ht(x),Fj(x)−Fi(x)〉

An analysis pointP ontheDB (P ∈ Σ) is defined
and the vectors:HΣW andHΣN (tangent vectors to
the DB inP ) are computed. A perpendicular plane to
Σ is defined with the vectorHΣ⊥.

With reference toHΣN , two anglesθ and ϕ in
anticlockwise direction can be associated to each 3D
vectorFi, Fj or G (see figure 5(a)). The anglesθi,
θj and θG are computed with the projections of the
vectorsFi, Fj and G in the plane generated by the
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vectorsHΣ⊥ andHΣN (see figure 5(b)). The angles
ϕi, ϕj andϕG are computed with the projections of
the vectorsFi, Fj andG in the plane generated by the
vectorsHΣW andHΣN (see figure 5(c)).

Figure 5: (a). Angular definitions (θ, ϕ) for each vector fields
in the analysis point on DB.(b). Projection ofFj onΣ⊥ plane to
computeθj . (b). Projection ofFi onΣ plane to computeϕi.

Without lost of generality and with didactic en-
courage supposes a dynamic system described by
equation (1) and in which the perpendicular vector to
the discontinuity surface is the z reference axis. Also
the influence of the each vector field in the DS is equal
this way

ẋ =
{

Fi ⇒ Fi,3 = Fµ(x1,x2,x3)
Fj ⇒ Fj,3 = −Fµ(x1,x2,x3)

}
(3)

The solution of Filippov has been developed for
nonsmooth systems where the perpendicular vectors
to the trajectories have a component in the direction
of the discontinuity boundary, then what we has in the
inferior part ofλ equation is a sum, and the result is
the percentage of influence between two vector fields.

λ =
Fj,3

Fj,3 + Fi,3
= 0, 5 (4)

and

G(x, α) =
(

Fi,1 + Fj,1

2
;
Fi,2 + Fj,2

2
;
)

(5)

The made supposition converts all the disconti-
nuity surface in a sliding area and lets to manage the
dynamics of the system like smooth. As consequence
it allows us to use analysis tools developed for lineal
and not lineal smooth systems. This way, the results

can be compared with the method SPT developed for
nonsmooth systems.

In the other end, supposes that the components
in the direction of the discontinuity surface changes
continually and in a not synchronous way:

ẋ =
{

Fi ⇒ Fi,3 = Fµ(sin(x1,x2,x3, φ))
Fj ⇒ Fj,3 = Fω(sin(x1,x2,x3, φ))

}
(6)

This supposition makes the coefficientλ in a
trigonometric result and transforms the discontinu-
ity surface into a group of areas where in each,
one of the four possible dynamics are presented.
In this case many sliding dynamic areas are pre-
sented. Three-dimensional nonsmooth vector fields
with closed forms such as spheroids, torus and warped
blankets present this type of dynamics in the disconti-
nuity surface.

Figure 6: Equal lambdavalue regions in a sliding area.

Returning to Filippov solution, the coefficientλ
has a value of 1 or 0 in the borders of a sliding area.
In this border,λ and singular lines composed by sim-
ple tangent points are equivalent. This fact allows to
determine for continuation of a singular point or uni-
tary ( or zero)λ values, the border of a sliding area. In
figure 6 a discrete form ofλ values of a inside sliding
region of a discontinuity surface is appreciated. It is
corroborated that the values inside the area are infe-
rior to 1 and superior to 0. The border values can be
only compound by 1 or 0 values depending of which is
the vector field that exercises bigger influence. If the
λ value is evaluated outside of a sliding area, the val-
ues do not give outstanding information and it value
is always above one or below zero.

The angleϕG of the sliding vectorG(x) is used
to define the direction of sliding motion in the analysis
pointP ∈ Σ.

The numerical method SPT was proposed for 2D
Filippov systems [17], [18], [19]. Next we present the
integration-free conditions based on angular evalua-
tions for 3D case. With this purpose, two main ranges
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of angles are definedΘJ andΘI in the equation (7)
where∆θ is the tolerance angle (∆θ → 0). These
ranges of angles are used to study the type of points
on DB. In the figure 5 we present the rangesΘJ and
ΘI .

{
ΘI = {θ ∈ (∆θ, π −∆θ)}

ΘJ = {θ ∈ (π + ∆θ, 2π −∆θ)} (7)

Figure 7:Crossing Areas(1) Cij Area: theanglesθi andθj are
contained in the rangeΘJ . (2) Cji Area: the anglesθi andθj are
contained in the rangeΘI .

Figure 8:Sliding Areas(3) Ss Area: theangleθi is contained
in ΘJ andθj is contained in the rangeΘI . (4) Su Area: the angle
θi is contained inΘI andθj is contained in the rangeΘJ .

3 Type ofAreas and Lines on 2D Dis-
continuity Boundary

Three types of areas can be distinguished on the dis-
continuity boundary (DB) in 3D Filippov Systems:

Crossing areas(C), Stable Sliding areas(Ss) andUn-
stable Sliding areas(Su). Each area is separated on
DB by singular sliding lines(Ω).

The generalBoolean-valued conditionsB(.) for
the three types of areas on DB and the singular lines
on DB are presented in the equation (8) whereFn

i =
〈Hn, Fi〉 andFn

j = 〈Hn, Fj〉 are the vector field pro-
jections in the normal vectorHn andQ is the condi-
tion for pseudo-equilibrium linesgiven by the equa-
tion (9).





C = B
(
Fn

i Fn
j > 0

)

S = B
(
Fn

i Fn
j < 0

)
∧ (¬Q)

Ω = B
(
Fn

i Fn
j = 0

)
∨Q

(8)

Q =
{

B ((π −∆θ) < |θi − θj | < (π + ∆θ))∧
B ((π −∆ϕ) < |ϕi − ϕj | < (π + ∆ϕ))

(9)
Crossing and sliding flows are the predominant

behaviors of the 3D Filippov systems on the discon-
tinuity boundary (DB). Depending of the direction of
the crossing orbits, two crossing (C) areas are defined
and two sliding (S) areas are determined depending of
the stability condition. Fourteen singular sliding lines
(Ω) exist in the transition ofC andS dynamics on DB.

3.1 Crossing Areas (C)

In the equation (10) we present the Boolean-valued
conditionsB(.) for the crossing areasCij and Cji.
Both (θi andθj) should be contained in the same range
ΘI or ΘJ . The generic representation of the crossing
areas are shown in the figure 7.

{
Cij = C ∧B (θi ∈ ΘJ) ∧B (θj ∈ ΘJ)
Cji = C ∧B (θi ∈ ΘI) ∧B (θj ∈ ΘI)

(10)

3.2 Stable Sliding Areas (Ss)

In the two-dimensional case, the sliding motion was
characterized according to stability and direction
properties [17], [18], [19]. In the first attempt of 3D
characterization, we will consider only the stability
conditions.

A sliding (S) point is stable if the Boolean-valued
functionSs presented in the equation (11) isTrue.

Ss = S ∧B (θi ∈ ΘJ) ∧B (θj ∈ ΘI) (11)

In the figure 8 (a) we present the areaSs with their
respective vector fields. Note that the zenith angles
should be contained in the reciprocal angle range (ΘI

or ΘJ ).
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Figure 9: Singular Sliding Lines(Ω). Four classes: Tangent
lines (T ), Vanished lines (V ), Pseudo-equilibrium lines (Q) and
Tangent-Vanished lines(Ψ)

3.3 Unstable Sliding Areas (Su)

In the same form, a sliding (S) area is unstable if the
Boolean-valued functionSu presented in the equation
(12) isTrue . Note that each B(.) function is exclud-
ing for each analysis pointxb, i.e. if Cij(xb) is True
thenCji, S or Ω areFalse in this point. Also, ifSs

is True in a pointPxy ∈ Σ thenSu is False .

Su = S ∧B (θi ∈ ΘI) ∧B (θj ∈ ΘJ) (12)

In the figure 8 (b) we present the areaSu with
their respective vector fields. The zenith angles (θi

and θj) should be contained in the respective angle
range (ΘI or ΘJ ).

To analyze the singular sliding points (Ω) we de-
fine four subclasses:T , V , Q andΨ. Next, we explain
the general considerations of each subclass. More de-
tails can be found in [17].

3.4 Tangent Lines (T )

The vector fieldsFi and/orFj are tangent on the anal-
ysis pointxb. Five lines can be defined:T ij , T j

s , T i
s ,

T j
u , T i

u. The Boolean-valued condition for Tangent
(T) singular lines is given in the equation (13) where
ΘT = {θ ∈ (π/2 + ∆θ, π/2−∆θ)}(See figure 9).

T =





Ω ∧ (T1 ∨ T2)
T1 = B (θi ∈ ΘT ) ∨B (θj ∈ ΘT )
T2 = B (θi ∈ ΘT ) ∧B (θj ∈ ΘT )

(13)

3.5 Vanished Lines (V )

The vector fieldsFi and/orFj are vanished on the
analysis pointxb. Five lines can be defined:V ij , V j

s ,
V i

s , V j
u , V i

u. The Boolean-valued condition for Van-
ished (V) singular lines is given in the equation (14)
whereθ /∈ Θ implies that the magnitude of the vector
field is zero (r = 0) (See figure 9).

V =





Ω ∧ (V1 ∨ V2)
V1 = B (θi /∈ Θ) ∨B (θj /∈ Θ)
V2 = B (θi /∈ Θ) ∧B (θj /∈ Θ)

(14)

3.6 Pseudo-equilibrium Lines (Q)

The vector fieldsFi andFj are anti-collinear on the
analysis pointxb. Two lines can be defined:Qs and
Qu (See figure 9). The Boolean condition was pre-
sented in the equation (9).

3.7 Tangent-Vanished Lines (Ψ)

A vector fieldFi or Fj is tangent and the other vec-
tor field is vanished on the analysis pointxb. Two
lines can be defined:Ψt

x andΨx
t (See figure 9). The

Boolean-valued condition for Tangent-Vanished (Ψ)
singular lines is given in the equation (15).

Ψ =





Ω ∧ (Ψ1 ∨Ψ2)
Ψ1 = B (θi /∈ Θ) ∨B (θj ∈ ΘT )
Ψ2 = B (θi ∈ ΘT ) ∧B (θj /∈ Θ)

(15)

4 Basic Local Scenarios on DB of 3D
Filippov Systems

The existence of several types of areas on the discon-
tinuity boundary characterizes different scenarios on
DB. Eight basic scenarios are considered. In all sce-
narios, singular sliding lines separate the crossing and
sliding areas. In the figure 10 we present the charac-
teristics of each scenario.





(1, 5, 2) (2, 5, 1)
(2, 15, 1) (1, 17, 2)
(1, 10, 2) (2, 10, 1)
(2, 16, 1) (1, 18, 2)





(16)

– Cij ↔ Cji: Change of direction of crossing
points. The singular sliding line should be:T ij ,
V ij , Qs, Qu, Ψx

t or Ψt
x. According to the numer-

ical codes of the DB points, several characteristic
sequences can be detected. Some examples are
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Figure 10:Examples of basicscenarios on DB in three- dimensional Filippov systems.

presented in equation (16). Figure 10(a) shows
an example of this scenario.





(3, 5, 4) (3, 17, 4)
(4, 10, 3) (4, 18, 3)
(3, 10, 4) (4, 17, 3)
(4, 5, 3) (3, 18, 4)





(17)

– Ss ↔ Su: Change of stability of sliding points.
The singular sliding line should be:T ij , V ij ,
Ψx

t or Ψt
x. Some examples of characteristic se-

quences are presented in equation (17). Figure
10(b) shows an example of this case.

{
(1, 6, 3) (3, 13, 1)
(1, 13, 3) (3, 6, 1)

}
(18)

– Cij ↔ Ss: Change of crossing boundaryCij to
stable sliding boundary and vice versa. The sin-
gular sliding line should be:T j

s or V j
s lines. Four

characteristic sequences of this local scenario are
presented in (18). Figure 10(c) shows an exam-
ple of this scenario on DB.

{
(2, 12, 3) (3, 7, 2)
(2, 7, 3) (3, 12, 2)

}
(19)

– Cji ↔ Ss: Change of crossing boundaryCji to
stable sliding boundary and vice versa. The sin-
gular sliding line should be:T i

s or V i
s lines. Four

characteristic sequences of this local scenario are
presented in (19). Figure 10(d) shows the exam-
ple (2, Ω, 3).

{
(1, 8, 4) (4, 13, 1)
(4, 8, 1) (1, 13, 4)

}
(20)

– Cij ↔ Su: Change of crossing boundaryCij to
unstable sliding boundary and vice versa. The
singular sliding line should be:T j

u or V j
u lines.

The basic sequences are given in (20). Figure
10(e)shows the example(1,Ω, 4).

{
(2, 9, 4) (4, 14, 2)
(4, 9, 2) (2, 14, 4)

}
(21)

– Cji ↔ Su: Change of crossing boundaryCji

to unstable sliding boundary and vice versa.
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The singular sliding lineshould be: T i
u or V i

u
lines. The numerical sequences that SPT method
should detect are given in (21). Figure 10(f)
shows the example(2,Ω, 4).

– Ss ↔ Ss: Change of direction in stable sliding
boundary. The singular line should be:Qs line.
The characteristic sequence of this scenario on
DB is (3, 15, 3). If the sliding direction is consid-
ered, this basic sequence could be decomposed in
other sequences. Figure 10(g) shows the exam-
ple (3, 15, 3).

– Su ↔ Su: Change of direction in unstable slid-
ing boundary. The singular line should be:Qu

line. The characteristic sequence of this scenario
on DB is (4, 16, 4). Figure 10(h)shows the ex-
ample(4, 16, 4).

5 Bifurcation scenarios on DS of 3D
Filippov Systems

In nonsmooth Three-Dimensional systems in the face
of the change of a parameter, the proportion areas
of the different scenarios in the discontinuity surface
(DS) go changing until arriving to a point where the
type of scenario being presented changes generating a
bifurcation that we will call bifurcation of area.

The identification of dynamics, forms and sizes
of a sector in the discontinuity surface could be done
using the singular point mapping method or SPT
method.

The mapping method is brute force method, first it
travels over all the interest discontinuity surface iden-
tifying each point type to form a map of the surface.
Second, it changes a delta the value of the parameter
that are been studied. The process repeats until hav-
ing embraced the wanted range. The result is a 3D nu-
meric map describing the dynamics of the surface. In
figure 11 are shown four volumes with attractive and
repulsive sliding dynamic and different directions.

The SPT method identifies the points belonging to
the peel of the volumes and it travels them forming the
volume with a low computational time consumption.
It should be initialized in a singular point belonging
to one of the volumes to analice. After that, it begins
a continuation tracking finding equal points to initial
point. After an area with a fixed parameter is swept,
the parameter is varied and the process continue this
way until the volume is completed.

Figure 11: 3D-αrepresentationof sliding areas as a
xyα volumen.

Figure 12: Global bifurcationdue to sliding area size
change.

5.1 Bifurcations due to changes of size or po-
sition in sliding areas

Changes in the sliding area characteristics influences
the presence, disappearance or change of cycles that
can leads to sliding cycle global bifurcations. In fig-
ure 12 is presented a sliding area in a decreasing se-
quence due to a change in a parameter that modifies
the type of cycle. From the first to the second step, af-
ter disappearing the sliding areaA1, a half sliding cy-
cle becomes a full sliding cycle and in the third step,
after disappearing the sliding areaA2, it becomes a
crossing cycle. The illustrative sections6.1 presents a
case where in face of a parameter change, the repul-
sive sliding area goes decreasing, and after disappear,
it becomes attractive sliding. See figure 15.

5.2 Bifurcations due to dynamic changes in
sliding areas

As we see before changes in dynamic inside a sector
of the discontinuity surface affects the entere system.
A special case is given when a sliding surface cap-
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tures the whole dynamics.It is the case of a sliding
surface with one or various stable points or limit cy-
cles. In figure 13 is presented a case where a system
is initialized from a pointx0 located in the DS. This
point is crossing fromFj to Fi. For a initial value
in the parameters, the trajectory in the vector field i
drives the evolution toward a sliding sector in the DS.
The sliding sector drives the trajectory through until
abandons it in the other side. From here, a limit cycle
is established. In the inferior part of the same figure
it is appreciate two possible changes in the dynamics
of the sliding sector. In the first one, is presented a
dynamics with one stable equilibrium point. In the
second, a dynamics with a limit cycle is presented. In
both cases, when the trajectory entering in the sliding
sector, it is caught and from now the system becomes
in a two-dimensional with alone the dynamics of the
sliding sector. The contrary case is also possible.

Figure 13: Extinction ofthree-dimensional dynamics
due to stable dynamic inside sliding sector.

5.3 Bifurcations inside sliding areas

The dynamics on the DS is at least as rich as the one
that is presented in a normal smooth two-dimensional
system. All bifurcations presented in smooth systems
are possible. Because equations representing the dy-
namicFs in the DS are the result of the solution of
Filippov, they are more complex that the original cor-
responding to each vector field and it opens the possi-
bility to obtain new bifurcations. A case is presented
in the example 2 of this paper. There, 3D Hopf bi-
furcation equations are used to define the nonsmooth
system and the result is a dynamic with bifurcations
no reported before.

5.4 Bifurcation of multiple sliding areas

Most of systems are compound for several elements
and these interact with position restrictions. When

those are being modeled give as a result multiple Dis-
continuity Sufaces. In each DS it is possible to find
one or several of the 4 basic dynamics or complex in-
teractions among them.

Figure 14: Vectorfield with various discontinuity sur-
faces including sliding areas.

In three-dimensional systems it is the case of the
adding or multiple sliding bifurcations. These, in their
simplest form abandon and return to a sliding surface,
but, in their complex form they form cycles that visit
several sliding surfaces. At the moment a bifurcation
is give, they change the number of surfaces that are
visited just as it is shown in the figure 14.

6 Illustrative examples using SPT
method

6.1 Basic 3D Filippov System

Let the three-dimensional Filippov system presented
in the equation (1) with the configuration (Fi, Fj ,H)
given in (22).

Fi =




0 0 1
0 −0.2 0
−1 −0.1 0







x
y
z


 +




0
0
α




Fj =




0 0 1
0 −0.2 0
−1 −0.1 0







x
y
z


 +




0
0
−α




H = z

(22)

The configuration (22) can be found in mechan-
ical systems as friction oscillators whereα is the bi-
furcation parameter. In the figure 15, the sliding areas
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Figure 15:IllustrativeExample. Crossing and sliding areas on
DB of 3D Filippov System.

are presented in theplanexy bounded byx = ±20
andy = ±20.

For α < 0 (figure 15 (a)), the DB has crossing
areas and unstable sliding areas. Forα = 0 (figure 15
(b)), the system has a DB where the sliding areaSs

appears. Forα > 0 (figure 15 (c)), the system has a
DB where the unstable sliding area disappears.

6.2 Parametric bifurcations on DS based in
3D Hopf bifurcation dynamic

In this section the objective is to show the richness
dynamic in the discontinuity surface between vector
fields when exist sliding in a sector. The studied sys-
tems is a 3D system with equal equation structure that
equation ( 3 ) and described by the vector fieldẋ with
the following equations:

ẋ =
{

Fi,1;Fi,2; Fi,3

Fj,1; Fj,2;Fj,3

}
(23)

with F1, F2 y F3




F1

F2

F1


 =




= ψ1(x1 + α) + δ1(x2 + β)+
σ(x1 + α)

[
(x1 + α)2 + (x2 + β)2

]
= ψ2(x2 + β)− δ2(x1 + α)+
σ(x2 + β)

[
(x1 + α)2 + (x2 + β)2

]
= κ1




(24)
In the event of not having a computational tools

that work directly with nonsmooth systems you can
welcome to the simplification mentioned in the sec-
tion 2 makingFi3 = −Fj3 andFs equal to:

Fs ∗ 2 =
[

= Fi1 + Fj1

= Fi2 + Fj2

]
(25)

Figure 16: Free dynamicof 3D Hopf bifurcation in a
smooth system.

For each vector field i and j, the parameterψ de-
termines the stability. Whenψ has a value equal to
zero as it is presented in the figure 6.2 a Hopf bi-
furcation is presented. For values ofψ over zero the
dynamics forms a limit cycle with radio equal to the
square root ofψ. The CW or CCW turn is determined
by the parameterδ. The advance orientation of the
hairspring in the z direction is determined by the sign
of the parameterκ. If κ > 0 the advance is the posi-
tive direction of z. The parametersα andβ determine
the displacement of the dynamics in the xy plane.

ẋ =
{

Fi(x, α, β, ψ, δ, σ, κ > 0)
Fj(x, α, β, ψ, δ, σ, κ < 0)

}
(26)

As it is appreciated in the equations (24), (23)y
(26), the answer of the system is only conditioned by
the values of the parameters. The following initials
values are selected and changes of its values has been
plotted versus the stability characteristics.

ẋ =





Fi(α = β = 0, ψ1 = ψ2 = 4,
δ = 1, σ = −1, κ = 0, 01)
Fj(α = β = 0, ψ1 = ψ2 = 9,
δ = 1, σ = −1, κ = −0, 01)





(27)
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6.2.1 Vector fieldsi and j with limit cycles

With the initial values, the result is a limit cycle with
trajectory between those original vector fields would
form over the discontinuity surface. See figure 17.
The λ value determines the proximity to anyone of
the two original vector field.

Figure 17: Resulting trajectoryof a nonsmooth sys-
tem with limit cycles vector fields.

• for equal values ofψ1i,ψ1j,ψ2i andψ2j, the re-
sults are limit cyclesC1, C2, C3 with diameter
equal to theψ root.

• for values ofψ1i equal toψ2i andψ2i equal to
ψ2j, the results are:

– Limit Cycles with trajectories in which dy-
namics speed varies depending of ubication
in space state. When trajectory passes the
original cycles intersection, smaller speeds
are presented. PointsE andD in the figure
18 indicate sectors with low speed. These
correspond to values ofψ1i equal to 7.5 and
ψ2i equal to 6.5 and vice versa

– Three equilibrium points, two of them sta-
bles and one unstable in intermediate po-
sition. PointsA and B with values of
ψ1i equal to 9.0 andψ2i equal to 4.0 and
vice versa. Between previous item and this
one, a bifurcation is presented starting with
limit cycle and ending with three equilib-
rium points.

Figure 18: Changes insize and final stabilization point
in relation withψ parameter.

• For valuesδ1 = −δ2 and equal conditions that
the initial ones, it is formed a fictitious cycle
where all trajectories converge but once they ar-
rive to any point of this cycle, they stop forming
a stable point. This situation corresponds to the
diagonal line in figure 19. The location of equi-
librium points in the fictitious cycle depends of
their parameter values.

Figure 19: Changes indirection and final stabilization
point in relation withδ parameter.

• For valuesδ1 6= δ2, it is formed in figure 19 two
sectors where in each one, limit cycles are pre-
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sented but withdifferent turn sense. Limit cy-
cle speed depends of distance from the parameter
static line in the figure 19.

• For α and β values whereψ1,2,i,j are equal to
9.0 andρ =

√
α2 + β2, three stability typesare

presented:

– Forρ values smaller than 2.4 a limit cycle is
presented. With low values, the cycles are
perfect but asρ is increased, they change
speed and become deformed until arriving
to the value where the bifurcation is given.

– For ρ values between 2.4 and 3.0 three
equilibrium points with two stable points
and one unstable point are presented. When
ρ is close to 3.0 both points become closer.

– Forρ values bigger than 3.0 only one equi-
librium point is presented.

Figure 20: Bifurcation dueto value changes ofα and
β parameter.

The phase portraits sequence presented in the
face of parameter changes has not topological
equivalence and therefore this is a nonsmooth bi-
furcation type that had not been reported until the

moment. In figure 20 is shown and schematic se-
quence and some appearances of integration with
big step-size and Filippov solution disabled to
observe the tendency of each vector field.

6.2.2 Vector field i with stable dynamic and vec-
tor field j with limit cycle

• Forψ1i andψ2i values smaller that zero, limit cy-
cles are presented . When the negative absolute
values ofψ1i andψ2i are higher that the positive
values ofψ1j andψ2j, the system presents a sta-
ble point located according to the alpha and beta
parameter values.

7 Conclusions

We have presented the numerical analysis of slid-
ing dynamics on the discontinuity boundary (DB)
of three-dimensional Filippov systems using an
integration-free method denominated Singular Point
Tracking (SPT). The discontinuity boundary (DB) has
been characterized using geometric criterions based
on angular evaluations. Eighteen basic points on DB
have been distinguished and eight basic scenarios on
DB have been defined. Finally, local and global bi-
furcation scenarios have been conceptualized with the
SPT method.

Future work will address the generalization of
SPT method to different 3D sliding bifurcation sce-
narios. Later, the future work will address the analy-
sis of higher-dimensional Filippov systems with more
general vector fields.
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