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Abstract: We present the numerical analysis of sliding dynamics on the discontinuity boundary (DB) of three-
dimensional (3D) Filippov systems using an integration-free method denomiBietgalar Point TrackindSPT).

Many physical applications in engineering can be modelled as Filippov systems. Sliding dynamics due to non-
smooth phenomena such as friction, hysteresis or switching are inherent to Filippov systems. The analysis of
sliding dynamics have many mathematical and numerical difficulties. Several well-known numerical problems
can be avoid using integration-free methods. Three-dimensional Filippov systems are being studied extensively
because these systems still have many open problems. In this paper, we present a first attempt to extend the SF
method to 3D Filippov systems. The discontinuity boundary (DB) is characterized using geometric criterions based
on angular evaluations. Eighteen basic points on DB are distinguished and eight basic scenarios on DB are de
fined. Finally, local and global bifurcation scenarios are conceptualized with the SPT method and some illustrative
examples are given.
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1 Introduction %, presented in figure 1(d).

Many engineering applications such as electric mo-

tors, power converters, brakes, gears and joints can be

modelled as Filippov systems. Switchings in electri- (18] |ERewr AeaLATeR

cal systems [1], [2], impacting motion in mechanical

systems [3], [4], stick-slip motion in oscillators with " iy

friction [5], [6], [7] and hybrid dynamics in control (1-h) '| MECHANISM

systems [8] are being studied with the nonsmooth dy- %

namical systems theory. (e R =
The classical dynamical systems theory restricts I K = )” AT Z

the analysis to smooth phenomena such as Hopf, flip — xfl—")

and pitchfork bifurcations and excludes the analy-

sis of nonsmooth phenomena such as grazing, slid- _

ing and border-collision bifurcations. Understanding F!9uré 1:(1.a). Generic block diagram of nonsmooth system.

nonsmooth characteristics of the physical systems, we |"e€ fundamental parts: Energy source, oscillator and switching
VR . mechanism. (1.b). Switched signal with two positions(1.c).

could minimize undesirable eﬁeCtS such _as Wea_lr of Example of sliding dynamic(1.d). Switching manifold or dis-

components, surface damage, fatigue failure, vibra- continuity boundaryx) in 3D space

tion and noise [9], [10].

Figure 1.@) shows a block representation of many
nonsmooth systems. In these systems, we can deter-  Schemes of electrical and mechaniéalippov
mine an energy source, an oscillator and a switch- systems are presented in figure 2. The boost converter
ing mechanism triggered by the oscillator (see figure has the three elements described in figure 1. Two basic
1(b)) [11]. Figure 1(c)presents an example of slid-  states can be distinguishedn-statewhere the induc-
ing cycle in planar state-space where the discontinuity tor current increases ar@ff-statewhere the energy
boundary is the lingg = 0. The DB in 3D Filippov accumulated during th@n-stateis transferred to the
systems is a 2D or 3D surface; for example the plane load. Sliding dynamics can be detected when the cur-
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Source Switch RLC Filter

(2.3)

(2.¢)
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Figure 2: Examples of Filippg systems. (a). DC-DC Boost
Converter (Source-Switch-Filter). (b). Undamped dry friction os-
cillator on a rotating belt. (c). Coulomb friction model (d). More
complex mechanical system.

rent through thénductorfalls to zero {;, = 0).

The undamped dry friction oscillator (figure 2(b))
comprises a block resting on a belt, moving with ve-
locity v. The motion of block with mass: along
the belt is opposed by a spring (with stiffnégscon-
nected to a fixed support. The spring exerts a restoring
force on the block that is opposed by the friction force
created by the belt. When the velocity of the block is
less than the velocity of the belt the friction is posi-
tive and constant and when the velocity of the block
is greater than that of the belt the friction is negative.
The flat Coulomb friction model is presented in figure
2(c). This function defines the DB as the lipe= v.

When sliding motion on the discontinuity bound-
ary (DB) is possible, the analysis is more complicated
[12]. Moreover, the complexity can increase when
the number of elements with nonsmooth interaction
(as masses) is higher. An example of Filippov system
with this model type is presented in figure 2(d).

The analysis of sliding dynamics has many math-
ematical and numerical difficulties. The number of
specialized software in nonsmooth dynamics is re-
duced [13], [14]. In [15] and [6], two toolboxes are
presented for analysis and continuation of nonsmooth
bifurcations in Filippov systems. The platforms used
in these toolboxes are Matlab and AUTO97.
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A LabView toolbox was proposed in [16] for bi-
furcation analysis of Filippov systems denominated
SPTCont 1.0. This software uses integration-free al-
gorithms based on the evaluation of the vector fields
on the discontinuity boundary (DB). The routines
makes uses of the points and events classification on
DB recently proposed [17], [18], [19]. Local and
global bifurcations can be detected using the numer-
ical methodSingular Point Trackingor SPT. Several
well-known numerical problems can be avoid using
integration-free methods.

@

(b).

z Slldmg A:E\ED

p>pfl p(;,fl

Figure 3:Example of slidingifurcation scenario studied with
SPT method. (a). 3D state-space, vector fields and D@).
Analysis of nonsmooth dynamics for different values of parameter
p. (c). Generation of the bifurcation diagram and detection of the
bifurcation pointp,..

Planar Filippowystemshave been studied exten-
sively and many results have been studied [12], [6],
[17], [20], [21], [22], [23]. In last years, the number
of interesting results on local and global bifurcations
in 3D systems have increased, however, many open
problems persist [12].

In this paper, we present a first attempt to ex-
tend the SPT method to 3D Filippov systems. Fig-
ure' 3 shows an example of sliding bifurcation sce-
nario studied with SPT method. The 3D piecewise-
smooth flows are studied on the discontinuity bound-
ary. This analysis has two principal advantages. First,
integration-free criterions can be used, therefore, the
numerical errors can be reduced. Second, the dimen-
sion of the problem is reduced by one, therefore, a 3D
sliding bifurcation can be detected analyzing a 2D di-
mensional boundary.

The discontinuity boundary (DB) is characterized
using geometric criterions based on angular evalua-
tions. The existence conditions of tlweossing ar-
eas,sliding areasandsingular sliding linesare for-
mulate using3oolean-valued functionB(.) based on
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Figure 4: (a). 3D piecewise smooth state-space with two smooth flolusand ®;. (b). Discontinuity boundary (2D grid) when the

vector fields are evaluated in each analysis point.

integration-free geometric criterionsThese condi-

tions are easily programmable and they can be used

directly in the detection of nonsmooth bifurcations.

The Boolean-valued functionB(.) return TRUE
or FALSE when their arguments are evaluated. The
logical functions are composed of logical connectives:
AND, OR andNOT denoted byA, vV and -, respec-
tively. Eighteen basic points on DB are distinguished
and eight basic scenarios on DB are defined. Finally,
local and global bifurcation scenarios are conceptual-
ized with the SPT method and some illustrative exam-
ples are given.

The paper is organized as follows. In section Il
we present the background concepts of Filippov sys-
tems and the SPT numerical method. The type of ar-
eas on DB and singular lines on DB are summarized
in the section Ill. The basic scenarios on DB are pre-
sented in the section IV while local and global bifur-
cation scenarios are discussed in section V. Finally,
illustrative examples using SPT method are presented
in section VI and the conclusions are presented in the
section VII.

2 Filippov Systems and SPT method

Filippov systemsre a subclass of discontinuous dy-
namical systems which can be described by a set of
first-order ordinary differential equations with a dis-
continuous right-hand side [20]. These systems are

)'(—{ Fi(x,p) if X€Z
o F]’(X,p) Zf XEZj
Y ={xeR:H(x,p)=0} (1)
Zi={xeR*: H(x,p) <0}
Zj={x € R®: H(x,p) >0}

The discontinuity boundary, (DB) denoted hy
is defined by the scalar functioH (x). The sign of
H(x) indicates a smooth zone that is bounded by the
DB (figurel4(b)). BetweerZ; andZ; the PWS system
has the discontinuity boundary (DB) that it is assumed
to be a smooth hyperplane.

The system (1) is not invertible because of the or-
bits can overlap on DB with sliding [12]. In sliding
situations, a convex combinatid®(x, «) of the vec-
torsF; andF; is defined as the Filippov Method [24].

The vectorG can be written as the equaticn (2)
where0 < A < 1. The scalar product is denoted by

(cee o)

with
A\ = (He(x),F5(x)
(He(x),F; () —F:(x))

An analysis poin® ontheDB (P € X)) is defined
and the vectorsHyy andHyy (tangent vectors to

modelled as piecewise-smooth systems (PWS) where the DB in P) are computed. A perpendicular plane to

the state-space contains two kinds of entitfésiooth

Zoneg Z) andDiscontinuity Boundarie&). Arepre-

sentation of 3D state-space is presented in figure.4(a
The set of equationgF;(x), F;(x), H(x)} given

by equationi(1) represents a 3D Filippov system where

x C R? andp € R is the bifurcation parameter.
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Y is defined with the vectddy | .

With reference tdHyy, two anglesd and ¢ in
anticlockwise direction can be associated to each 3D
vectorF;, F; or G (see figure 5(¢). The angled;,

8; and s are computed with the projections of the
vectorsF;, F; and G in the plane generated by the
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vectorsHy, | andHyy (see figure B)). The angles
@i, ¢; andyg are computed with the projections of
the vectors=;, F; andG in the plane generated by the
vectorsHyy andHy v (see figure 5(c)).

Figure 5:(a). Angular definitions ¢, ¢) for each vector fields
in the analysis point on DBb). Projection ofF; onX | plane to
computed;. (b). Projection ofF; on X plane to compute;.

Without lost ofgenerality and with didactic en-

courage supposes a dynamic system described by

equation|(1) and in which the perpendicular vector to
the discontinuity surface is the z reference axis. Also
the influence of the each vector field in the DS is equal

this way
b oo

|

The solution of Filippov has been developed for

F; = Fi3 = Fu(21,32,23)
Fj = Fj3=—F,(z1,22,73)

can be compared with the method SPT developed for
nonsmooth systems.

In the other end, supposes that the components
in the direction of the discontinuity surface changes
continually and in a not synchronous way:

b e

|

This supposition makes the coefficieatin a
trigonometric result and transforms the discontinu-
ity surface into a group of areas where in each,
one of the four possible dynamics are presented.
In this case many sliding dynamic areas are pre-
sented. Three-dimensional nonsmooth vector fields
with closed forms such as spheroids, torus and warped
blankets present this type of dynamics in the disconti-
nuity surface.

F; = F;3 = F,(sin(x1,22,73, ¢))
F; = Fj3 = F,(sin(r1,22,23, ¢))

"4

Figure 6: Equal lambdealue regions in a sliding area.

Returning to Filippov solution, the coefficient
has a value of 1 or 0 in the borders of a sliding area.
In this border\ and singular lines composed by sim-
ple tangent points are equivalent. This fact allows to

nonsmooth systems where the perpendicular vectors determine for continuation of a singular point or uni-

to the trajectories have a component in the direction
of the discontinuity boundary, then what we has in the
inferior part of A equation is a sum, and the result is

the percentage of influence between two vector fields.

F4
S B

— e 4
Fi3+ Fi3 @)

and

G(x, )

Fiix+Fj1 Fio+ Fjo
— ) L, ) 2, 5
(Pt h) @

The made supposition ceerts all the disconti-
nuity surface in a sliding area and lets to manage the

tary (or zero)\ values, the border of a sliding area. In
figure/6 a discrete form of values of a inside sliding
region of a discontinuity surface is appreciated. It is
corroborated that the values inside the area are infe-
rior to 1 and superior to 0. The border values can be
only compound by 1 or 0 values depending of which is
the vector field that exercises bigger influence. If the
A value is evaluated outside of a sliding area, the val-
ues do not give outstanding information and it value
is always above one or below zero.

The angleps of the sliding vectoiG(x) is used
to define the direction of sliding motion in the analysis
point P € 3.

The numerical method SPT was proposed for 2D

dynamics of the system like smooth. As consequence Filippov systems [17], [18], [19]. Next we present the

it allows us to use analysis tools developed for lineal

integration-free conditions based on angular evalua-

and not lineal smooth systems. This way, the results tions for 3D case. With this purpose, two main ranges
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of angles are define®; and©; in the equation[(7)
where Ay is the tolerance angle’y — 0). These

Crossing areas('), Stable Sliding area&S;) andUn-
stable Sliding area$sS,). Each area is separated on

ranges of angles are used to study the type of points DB by singular sliding lineq(2).

on DB. In the figure 5 we present the ranggs and
Oy.

(7)

{ @[: {96 (AQ,TI‘-A@)}
@J:{9€ (7T+A9,27T—A9)}

Figure 7:Crossing Areagl) C;; Area: theanglesd; andd; are
contained in the rang® ;. (2) C;; Area: the angled; andd; are
contained in the rang®;.

Figure 8:sliding Areas(3) Ss Area: theangled; is contained
in © ; andd; is contained in the rang®@;. (4) S, Area: the angle
0; is contained ir®; andd; is contained in the rang® ;.

3 Type ofAreas and Lines on 2D Dis-
continuity Boundary

The generaBoolean-valued condition8(.) for
the three types of areas on DB and the singular lines
on DB are presented in the equation (8) whefe=
(Hn,Fi) and F}' = (H,,, F;) are the vector field pro-
jections in the normal vectdd,, and@ is the condi-
tion for pseudo-equilibrium linegiven by the equa-
tion (9).

C=B(FF>0)
S=B <F"F]" < 0) A (=Q)
Q=B (FF=0)vQ

(8)

Q= { B ((m—Ag) < |0; —6;] < (m+ Ap)) A
B((r = Ag) < lpi = 5] < (m+ A,))

Crossing and sliding flows are the predominant
behaviors of the 3D Filippov systems on the discon-
tinuity boundary (DB). Depending of the direction of
the crossing orbits, two crossing (C) areas are defined
and two sliding (S) areas are determined depending of
the stability condition. Fourteen singular sliding lines
(€2) existin the transition of’ and,S dynamics on DB.

3.1 Crossing Areas ()

In the equation/(10) we present the Boolean-valued
conditions B(.) for the crossing area€’;; and Cj;.
Both (¢; andd;) should be contained in the same range
O or © ;. The generic representation of the crossing
areas are shown in the figure 7.
Cij:C/\B(HiGGJ)/\B(HjGGJ) (10)
Cji:C’/\B(HZ- E@[)/\B(Qj 6@[)

3.2 Stable Sliding Areas )

In the two-dimensional case, the sliding motion was
characterized according to stability and direction
properties [17], [18], [19]. In the first attempt of 3D
characterization, we will consider only the stability
conditions.

A sliding (S) point is stable if the Boolean-valued
function S, presented in the equatian (11)Tisue.

Se=SAB(0; €0,)AB(6; €0;)  (11)

In the figure 8 (a) we present the argawith their
respective vector fields. Note that the zenith angles

Three types of areas can be distinguished on the dis- should be contained in the reciprocal angle rartgge (

continuity boundary (DB) in 3D Filippov Systems:
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3.5 Vanished Lines {)

. e TR
@77 @ / Y The vector fields~; and/orF; are vanished on the
S é—‘ QZ analysis poinks. Five lines can be defined:"/, V¢,

= . Vi, Vi, Vi The Boolean-valued condition for Van-
8) 7/ 9) 7! 10) 174 1 s Tu Ty
( )Tu ) /% z R e i V_sj Vb ished (V) singular lines is given in the equation (14)
. %/ < e wheref ¢ © implies that the magnitude of the vector
field is zero ¢ = 0) (See figuré 9).

(12) A3y Ay @80,

@%/ o/ © ® . { QA VAV V)

7 = Vi=B(0;¢0©)VB(0¢0) (14)
WG, » [PTE,.|UH Voo B(6 ¢ O)AB (0, ¢ O)
/® o | —

3.6 Pseudo-equilibrium Lines (0)

Figure 9: Singular Sliding Lines2). Four classes: Tangent Thel VQC'[OI‘ .ﬂeldSFi an? Fj are agtl_((:jo”.mear on tge
lines (I), Vanished lines (), Pseudo-equilibrium lines)) and analysis p_O'mXb' Two lines can be efl_n_edf;)s an
Tangent-Vanished linek) Q. (See figure 9). The Boolean condition was pre-
sented in the equation!(9).

3.3 Unstable Sliding Aras ©,,) 3.7 Tangent-Vanished Lines ¥)

In the same form, a sliding (S) area is unstable if the A vector fieldF; or F; is tangent and the other vec-
Boolean-valued functioss,, presented in the equation  tor field is vanished on the analysis poit Two
(12) isTrue . Note that each B(.) function is exclud-  lines can be defined¥;, and U7 (See figure 9). The
ing for each analysis point, i.e. if C;;(x;) is True Boolean-valued condition for Tangent-Vanishe) (
thenC;;, S or Q areFalse in this point. Also, ifs, ~ Singular lines is given in the equatian (15).

isTrue ina pointP,, € X thensS, is False .

v, =28 (91 §é @) vV B (9j € @T) (15)

\IIQZB(QiGGT)/\B(Qj¢@)

Q/\(\I/l\/\I/Q)
S,=SAB(; cO)AB(0,€0;) (12 v =

In the figure 8 (b) we present the ar8a with

their respective vector fields. The zenith anglés ( 4 Basic Local Scenarios on DB of 3D
and6;) should be contained in the respective angle

range (Q or ). Filippov Systems
To analyze the singular sliding point@)we de- _ _
fine four subclassed’, V, Q and¥. Next, we explain The existence of several types of areas on the discon-

tails can be found in [17]. DB. Eight basic scenarios are considered. In all sce-

narios, singular sliding lines separate the crossing and
sliding areas. In the figure 10 we present the charac-

3.4 Tangent Lines () teristics of each scenario.

The vector field$=; and/orF; are tangent on the anal- (1,5,2)  (2,5,1)

ysis pointx,. Five lines can be defined™™, T¢, T, (27’15’7 1) (1”17” %)

T3, Ti. The Boolean-valued condition for Tangent (1,10,2) (2,10,1) (16)
(T) singular lines is given in the equaticn (13) where (2,16,1) (1,18,2)

Or = {0 € (1/2 4 Ag, /2 — Ag)}(See figure 9). ’

— Cj; < Cj;: Change of direction of crossing
points. The singular sliding line should b&?’,

QA (T1 \Y Tg) Iy . .
_ _ VY, Qs, Qu, ¥¥ or Ul . According to the numer-
= { Ty =B(0; € 1) v B(0; € Or)  (13) ical codes of the DB points, several characteristic
Ty = B(6; € ©1) A B (0; € Or) sequences can be detected. Some examples are
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(.J"". - , Y F F
Yy /S FF F
Z, V4 (€2 Z; 2
i P 1 .71 A8 272 &7 72 2 72 118 \‘Ifj?r._'i_i _’3 3 <3 7
. | .l Tl ) Z 7 y - J K] 2 kI P
€ ) RV s s 22"222&2’2" () B s, S o, S i B B W B i B S
Z i K i ’ Zr‘ bl

/ R = R W) & LS B LS TR I )
* LA K : f y i 2 ;
I ) i e 'l G e el Bt S (d) L5252 %z 42

F F,
7, 4 7% co /
> 3 3¢ "3 3 3373 34 3 3 i3
(e) ! -4 U ) e e R i e e i e 331'\7&3j s s vl
Z, z, 'F, \r,
Z'{ (S q 4 i 4
0 52 7 (h) i
Z

Figure 10:Examples of basiscenarios on DB in three- dimensional Filippov systems.

presented in equatioid§). Figure 10a) shows
an example of this scenario. (2,12,3) (3,7,2) (19)
(2,7,3) (3,12,2)

(3,5,4) (3,17,4) — Cj; — Ss: Change of crossing bounda€y;; to
(4,10,3) (4,18,3) (17) stable sliding boundary and vice versa. The sin-
(3,10,4) (4,17,3) gular sliding line should beT or V¢ lines. Four
(4,5,3) (3,18,4) characteristic sequences of this local scenario are
presented in (19). Figure 14) shows the exam-

S, <+ S,: Change of stability of sliding points. ple (2,€,3).

The singular sliding line should beT, Vi,

U7 or U¢. Some examples of characteristic se- (1,8,4) (4,13,1) (20)

guences are presented in equation (17). Figure (4,8,1) (1,13,4)

10(b) shows an example of this case. _
— Cj; < S,: Change of crossing bounda€y;; to

unstable sliding boundary and vice versa. The
{ (1,6,3)  (3,13,1) } (18) singular sliding line should beT? or Vi lines.
(1,13,3) (3,6,1) The basic sequences are given|in/ (20). Figure
10(e) shows the examplél, €2, 4).
C;; < Ss: Change of crossing bounda€y;; to

stable sliding boundary and vice versa. The sin- (2,9,4) (4,14,2)

gular sliding line should bel’? or V¢ lines. Four { (4,9,2) (2,14,4) } (21)
characteristic sequences of this local scenario are

presented in (18). Figure 16 shows an exam- — Cj; + S, Change of crossing boundaiy;;

ple of this scenario on DB. to unstable sliding boundary and vice versa.
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The singular sliding lineshould be: 7% or V!
lines. The numerical sequences that SPT method
should detect are given in (21). Figure(}0
shows the example, 2, 4).

Ss « S5. Change of direction in stable sliding
boundary. The singular line should b@; line.
The characteristic sequence of this scenario on
DBis (3, 15, 3). If the sliding direction is consid-

ered, this basic sequence could be decomposed in

other sequences. Figure! 10(ghows the exam-
ple (3,15, 3).

S <> Sy: Change of direction in unstable slid-
ing boundary. The singular line should b&:,
line. The characteristic sequence of this scenario
on DB is(4,16,4). Figure 10(h)shows the ex-
ample(4,16,4).

Bifurcation scenarios on DS of 3D
Filippov Systems

In nonsmooth Three-Dimensional systems in the face
of the change of a parameter, the proportion areas
of the different scenarios in the discontinuity surface
(DS) go changing until arriving to a point where the

type of scenario being presented changes generating a

bifurcation that we will call bifurcation of area.

The identification of dynamics, forms and sizes
of a sector in the discontinuity surface could be done
using the singular point mapping method or SPT
method.

The mapping method is brute force method, first it
travels over all the interest discontinuity surface iden-
tifying each point type to form a map of the surface.

Figure 11: 3D-arepresentationf sliding areas as a
Xya volumen.

Figure 12: Global bifurcationue to sliding area size
change.

5.1 Bifurcations due to changes of size or po-
sition in sliding areas

Changes in the sliding area characteristics influences
the presence, disappearance or change of cycles that
can leads to sliding cycle global bifurcations. In fig-

ure 12 is presented a sliding area in a decreasing se-
guence due to a change in a parameter that modifies

Second, it changes a delta the value of the parameter the type of cycle. From the first to the second step, af-
that are been studied. The process repeats until hav- ter disappearing the sliding arela, a half sliding cy-

ing embraced the wanted range. The resultis a 3D nu-
meric map describing the dynamics of the surface. In
figure/11 are shown four volumes with attractive and

repulsive sliding dynamic and different directions.

The SPT method identifies the points belonging to
the peel of the volumes and it travels them forming the
volume with a low computational time consumption.
It should be initialized in a singular point belonging
to one of the volumes to analice. After that, it begins
a continuation tracking finding equal points to initial
point. After an area with a fixed parameter is swept,

cle becomes a full sliding cycle and in the third step,
after disappearing the sliding arel, it becomes a
crossing cycle. The illustrative sectiofid presents a
case where in face of a parameter change, the repul-
sive sliding area goes decreasing, and after disappear,
it becomes attractive sliding. See figure: 15.

5.2 Bifurcations due to dynamic changes in
sliding areas

As we see before changes in dynamic inside a sector

the parameter is varied and the process continue this of the discontinuity surface affects the entere system.

way until the volume is completed.
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tures the whole dynamicdt is the case of a sliding those are being modeled give as a result multiple Dis-
surface with one or various stable points or limit cy- continuity Sufaces. In each DS it is possible to find
cles. In figure 13 is presented a case where a systemone or several of the 4 basic dynamics or complex in-
is initialized from a pointz, located in the DS. This teractions among them.

point is crossing from¥}; to F;. For a initial value

in the parameters, the trajectory in the vector field i
drives the evolution toward a sliding sector in the DS.
The sliding sector drives the trajectory through until
abandons it in the other side. From here, a limit cycle
is established. In the inferior part of the same figure
it is appreciate two possible changes in the dynamics
of the sliding sector. In the first one, is presented a
dynamics with one stable equilibrium point. In the
second, a dynamics with a limit cycle is presented. In
both cases, when the trajectory entering in the sliding
sector, it is caught and from now the system becomes ‘

in a two-dimensional with alone the dynamics of the >
sliding sector. The contrary case is also possible.

FTToE T ‘H

- S L/—\J ) Figure 14: Vectofield with various discontinuity sur-
faces including sliding areas.

il e < W

*J,,,.T,..-fof_v______,- . In three-dimensional systems it is the case of the
F T / adding or multiple sliding bifurcations. These, in their

_ I - simplest form abandon and return to a sliding surface,

e = S but, in their complex form they form cycles that visit

4 il o I

S several sliding surfaces. At the moment a bifurcation
is give, they change the number of surfaces that are
visited just as it is shown in the figure/14.

Figure 13: Extinction othree-dimensional dynamics
due to stable dynamic inside sliding sector. 6 lllustrative examples using SPT

method

5.3 Bifurcations inside sliding areas 6.1 Basic 3D Filippov System

The dynamics on the DS is at least as rich as the one
that is presented in a normal smooth two-dimensional
system. All bifurcations presented in smooth systems
are possible. Because equations representing the dy-
namicF, in the DS are the result of the solution of

Let the three-dimensional Filippov system presented
in the equation (1) with the configuratiof,( F;, H)
givenin (22).

Filippov, they are more complex that the original cor- T 0 0o 11721 )
responding to each vector field and it opens the possi- FE=| 0 —02 0 yl+]o0

bility to obtain new bifurcations. A case is presented 1 —01 0 .

in the example 2 of this paper. There, 3D Hopf bi- - 4= -

furcation equations are used to define the nonsmooth o 0 1 x 0 (22)
system and the result is a dynamic with bifurcations F;=| 0 —0.2 0 y|+] O

no reported before. | -1 01 0] [ 2] | -«

5.4 Bifurcation of multiple sliding areas ] _ _
The configuration/(22) can be found in mechan-

Most of systems are compound for several elements ical systems as friction oscillators wheteis the bi-
and these interact with position restrictions. When furcation parameter. In the figure/15, the sliding areas
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Figure 15:lllustrative Example. Crossing and sliding areas on
DB of 3D Filippov System.

are presented in thplanezy bounded byxr = +20
andy = +20.

For o < 0 (figure(15 (a)), the DB has crossing
areas and unstable sliding areas. &ot 0 (figurel15
(b)), the system has a DB where the sliding afea
appears. Fotr > 0 (figurel15 (c)), the system has a
DB where the unstable sliding area disappears.

6.2 Parametric bifurcations on DS based in
3D Hopf bifurcation dynamic

In this section the objective is to show the richness
dynamic in the discontinuity surface between vector
fields when exist sliding in a sector. The studied sys-
tems is a 3D system with equal equation structure that
equation (_3 ) and described by the vector fikldith

the following equations:

|

with Fi, Fy yF3

Fiq1; Fio; Fi3 } 23)

Fj1; Fjo; Fis
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= ¢1($1 + Oé) + 61(ZE2 + ﬂ)"‘

I\ o(z1 +a) [(z1+ a)? + (z2 + )%
Fy | = | =v2(x2+ f) = d2(21 + )+
F o(z2+ B) [(z1 4+ @) + (z2 + 6)?]

= K1
(24)
In the event of not having a computational tools
that work directly with nonsmooth systems you can
welcome to the simplification mentioned in the sec-

tion 2 makingF;3 = —F};3 andF, equal to:
=Fa+ Fj
Fox2= ! J 25
- [ZFi2+Fj2] (25)

Figure 16: Free dynamiof 3D Hopf bifurcation in a
smooth system.

For each vector field i and j, the parametede-
termines the stability. Whety has a value equal to
zero as it is presented in the figure 6.2 a Hopf bi-
furcation is presented. For valuesfover zero the
dynamics forms a limit cycle with radio equal to the
square root ofy). The CW or CCW turn is determined
by the parametes. The advance orientation of the
hairspring in the z direction is determined by the sign
of the parametek. If x > 0 the advance is the posi-
tive direction of z. The parametetsand3 determine
the displacement of the dynamics in the xy plane.

|

As it is appreciated in the equations (24), /(23)y
(26), the answer of the system is only conditioned by
the values of the parameters. The following initials
values are selected and changes of its values has been
plotted versus the stability characteristics.

Fi(xaaaﬁvw75707’% > 0) }

Fj(xﬂa767¢75,0,ﬁ<0) (26)

Fi(a:ﬁ:07¢1:w2:47
§=1,0=—1,r=0,01)
Fj(Oé:ﬁ:O,@Z)l:@ZJQ:g,
§=1,0=—1,r=—0,01)

(27)

X =
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6.2.1 Vector fieldsi and j with limit cycles

With the initial values, the result is a limit cycle with
trajectory between those original vector fields would
form over the discontinuity surface. See figure 17.
The X value determines the proximity to anyone of
the two original vector field.

Figure 17: Resulting trajectorgf a nonsmooth sys-
tem with limit cycles vector fields.

o for equal values of);,115,92; andayj, the re-
sults are limit cycles”y, Co, C3 with diameter
equal to they root.

e for values ofyq; equal toys; andy; equal to
195, the results are:

— Limit Cycles with trajectories in which dy-
namics speed varies depending of ubication
in space state. When trajectory passes the
original cycles intersection, smaller speeds
are presented. Poinfs and D in the figure
18 indicate sectors with low speed. These
correspond to values af;; equal to 7.5 and
104 equal to 6.5 and vice versa

Three equilibrium points, two of them sta-
bles and one unstable in intermediate po-
sition. Points A and B with values of
11; equal to 9.0 and)y; equal to 4.0 and
vice versa. Between previous item and this
one, a bifurcation is presented starting with
limit cycle and ending with three equilib-
rium points.
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Figure 18: Changes ize and final stabilization point
in relation with« parameter.

e For valuesi; = —d, and equal conditions that
the initial ones, it is formed a fictitious cycle
where all trajectories converge but once they ar-
rive to any point of this cycle, they stop forming
a stable point. This situation corresponds to the
diagonal line in figuré 19. The location of equi-
librium points in the fictitious cycle depends of
their parameter values.

4.0

Figure 19: Changes idirection and final stabilization
point in relation withd parameter.

e For valuesy; # ds, itis formed in figure 19 two
sectors where in each one, limit cycles are pre-
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sented but withdifferent turn sense. Limit cy-
cle speed depends of distance from the parameter
static line in the figure 19.

e For o and 3 values where); o ;; are equal to

9.0 andp = /a2 + (32, three stability typesre
presented:

— Forpvalues smaller than 2.4 alimit cycle is
presented. With low values, the cycles are
perfect but a is increased, they change
speed and become deformed until arriving
to the value where the bifurcation is given.

— For p values between 2.4 and 3.0 three
equilibrium points with two stable points
and one unstable point are presented. When
p is close to 3.0 both points become closer.

— For p values bigger than 3.0 only one equi-
librium point is presented.

Limit eycle

Stable Point

ra

E o
Lnstable Poin s
= C;?/

z
Stabie Point //F

F
{ h
{ /
N

LA
N SR
//:;W
KJ&(QH

/

=
AN

<N

Stable Point

Figure 20: Bifurcation duéo value changes of and
(B parameter.

The phase portraits sequence presented in the [4]

face of parameter changes has not topological
equivalence and therefore this is a nonsmooth bi-
furcation type that had not been reported until the
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moment. In figure 20 is shown and schematic se-
guence and some appearances of integration with
big step-size and Filippov solution disabled to
observe the tendency of each vector field.

6.2.2 \Vector field i with stable dynamic and vec-
tor field j with limit cycle

e Forin; andys; values smaller that zero, limit cy-
cles are presented . When the negative absolute
values ofy)1; andwy; are higher that the positive
values ofi)1; andi)y;, the system presents a sta-
ble point located according to the alpha and beta
parameter values.

7 Conclusions

We have presented the numerical analysis of slid-
ing dynamics on the discontinuity boundary (DB)
of three-dimensional Filippov systems using an
integration-free method denominated Singular Point
Tracking (SPT). The discontinuity boundary (DB) has
been characterized using geometric criterions based
on angular evaluations. Eighteen basic points on DB
have been distinguished and eight basic scenarios on
DB have been defined. Finally, local and global bi-
furcation scenarios have been conceptualized with the
SPT method.

Future work will address the generalization of
SPT method to different 3D sliding bifurcation sce-
narios. Later, the future work will address the analy-
sis of higher-dimensional Filippov systems with more
general vector fields.
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