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Abstract—In this paper the usage of neural networks and Design 

of Experiments methodology in order to control and optimize the 
technological process of aluminium anodic oxidation is presented. 
The influence of the input factors on the resulting AAO (anodic 
aluminum oxide) film thickness was monitored at defined current 
density of 4.00 A·dm-2, 5.00 A·dm-2 and 6.00 A·dm-2.The thickness of 
the formed AAO layer has been investigated as the relationship of 
physical and chemical factors acting during the anodic oxide process. 
A higher-order neural unit based on the iterative Levenber-Maquardt 
algorithm was used to evaluate experimentally obtained data in order 
to predict the thickness of the resulting AAO layer and determine the 
optimum selection of process conditions.  
 

I. INTRODUCTION 
URE aluminum and its alloys, such as weight-saving 
materials, play an increasingly important role of technical, 

technological and economic terms [1] in the aerospace and 
automotive industries [2], where lightweight and rigid 
structure are preferred [3].The usage of these materials for 
moving parts is limited due to their low abrasion and wear 
resistance. To improve tribological properties of such 
materials, the surface of these components is treated by anodic 
oxidation process, which also improves the corrosion 
resistance [1], [2]. The thickness of the AAO film formed on 
the aluminum substrates is one of the main indicators of 
corrosion protection and overall durability of so prefinished 
profiles. For these reasons the anodic oxidation of aluminum 
has received great attention of considerable amount of 
researchers. For example, the formation of AAO layers was 
studied in [4], growth rate of the oxide was studied in [5] and 
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structure of the formed AAO layer was investigated in [6]. The 
basic tool that allows us to observe the effect of input variables 
(factors) on output variable (response) is Design of 
Experiments [7, 8, 9, 10]. The optimum selection of process 
conditions is an extremely important issue as the sedetermine 
surface quality of the manufactured parts [11, 12, 13, 14]. The 
mathematical modeling of the process involves several 
parameters that may lead to difficult analytical solution [15, 
16, 17, 18, 19]. On the other hand, the use of artificial 
intelligence (neural networks theory) for evaluating the 
experiment results is justified mainly due to higher speed and 
accuracy of behavior prediction of  observed process 
compared to conventional statistical evaluation methods [20, 
21, 22, 23, 24]. 

II. EXPERIMENTAL 

A. Preparation of samples 
Alloy EN AW 1050 - H24 with dimensions 101x70x1 mm 

was used for the specimens. Each applied specimen was 
degreased in a 38.00% solution of NaOH at 55.00 to 60.00 ° C 
for 2 minutes and stained in a 40.00% solution of NaOH at the 
temperature 45.00 ° -50.00 ° C for 0.50 min. Consequently, the 
specimen was immersed in a nitric acid bath (4.00% HNO3) at 
the temperature 18.00 to 24.00 ° C for 1.00 minute. Between 
each operation, the sample was rinsed with distilled water. 

B. Anodizating conditions 
The electrolyte solution containing sulphuric acid p.a., 

oxalic acid p.a. and alumina oxide p.a. was used for anodic 
oxide process. Individual concentrations were based on the 
Design of Experiments (DoE) methodology corresponding to 
the central composite design for six factors, which determined 
operating conditions of anodizing process (the electrolyte 
temperature, the size of an applied voltage and duration of 
oxidation). Tab. 1 presents the conversion of factor levels 
between coded scale and natural one. Such areas of the sample 
surface where the current density was 4 A·dm-2, 5 A·dm-2 
or 6 A·dm-2 were indicated after the anodizing process was 
finished. Furthermore, 9 points were indicated at a distance of 
5mm, 10mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm and 
45 mm from the bottom edge of each sample. The thickness of 
the formed anodic oxide films was measured in these points. 
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A higher-order neural unit (HONU), especially the 3rd order 

HONU [26] based on the iterative Levenberg-Marquardt (LM) 
algorithm [27] was used to determine the influence of input 
factors on the thickness of the final AAO layer. This algorithm 
is often used for training technique of the neural unit. It is a 
process of updating individual weights w in a predetermined 
number of steps to achieve a minimum difference between the 
actual and calculated values of observed variable [28]. This 
process is described by (1) – (8). The vector u of neural inputs 
is created by taking the partial derivatives of each output in 
respect to each weight (1) – (3). The equation describing the 
investigated model is the characteristic equation of given type 
of neural unit (1storder HONU, 2ndorder HONU a 3rdorder 
HONU) for observed factors x1, x2, x3, x4, x5, x6 . The 
Levenberg-Marquardt algorithm consists in solving (4), where 
the Jacobian J is the matrix of dimension n×m (5), where n is 
the length of the input vector u of the neural unit (n is the 
number of neural inputs) and m is the total number of 
parameters intended for the learning procedure. The vector of 
neural inputs as well as the Jacobian is defined in the first step 
of the learning procedure and they remain constant in all 
subsequent steps of learning. In (4) there is the weight update 
vector Δw that we want to find, e is the error vector containing 
the output errors for each input vector used on training the 
network, 1/ μ is the Leveberg’s damping factor which tell us 
by how much we should change our network weights to 
achieve a (possibly) better solution. The JJ ⋅T  matrix can 
also be known as the approximated Hessian, the I is an identity 
matrix of diagonal length equal to the number of neural 
weights (matrix of dimension n×n), μ is the learning rate. 

The vector y' of neural outputs is defined as the dot product 
of vectors w and u (6), the size of the individual weight is set 
in the first step randomly. After calculating the output vector is 
calculated error vector e as the difference between the actual 
value of the observed variable and the calculated one by the 
neural units (6).  Then the weight update vector Δw is 
determined by (4). The size of the learning rate μ depends on 
how quickly and how accurately the neural unit is able to 
learn. At higher values of learning rate the neural unit will 

learn faster but there is a risk of instability respectively a risk 
of model oscillation. At lower values of learning rate the 
calculation is more accurate but the learning process requires a 
larger number of iterations [16]. After calculating the weight- 
updates, the adaptation of the weights of input factors occurs. 
This is the end of first step (respectively the first iteration) of 
the learning process of neural unit using iterative Levenberg-
Marquardt (LM) algorithm optimization. The learning process 
of neural units continues by calculating the vector of neural 
outputs y using the new (adapted) weights. 
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After the learning process of neuron unit is done, we get 
a computational model that describes the thickness of AAO 
layer with equation 9 and equation 10 for linear neural unit, 
equation 11 and equation 12 for quadratic neural unit and 
equation 13 and equation 14 for cubic neural unit. 

Table 1conversion of factors levels between coded scale and 
natural one 

Factors 
denotation 

Factor level 

-2.37 -1 0 +1 +2.37 

x1-H2SO4 
[mol·l-1] 0.34 1.33 2.04 2.75 3.74 

x2-C2H2O4 
[mol·l-1] 0.01 0.07 0.12 0.16 0.23 

x3-Al3+ 
[mol·l-1] 0.01 0.19 0.32 0.46 0.62 

x4-T 
[°C] -1.78 12.00 22.00 32.00 45.78 

x5-t  
[min] 6.22 20.00 30.00 40.00 53.77 

x6-U 
[V] 5.24 8.00 10.00 12.00 14.76 
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Where th is final thickness of oxide layer, α is preliminary 
thickness of oxide layer, ui is a combination of input factors 
levels (in coded scale), wi are weights for combinations of  
input factors and stdy is standard deviation of real values 
(measured layer thickness vector y) divided by 3. Calculated 
thickness of oxide layer is expressed in mm·10-3. 

III. RESULTS AND DISCUSSION 
Setting of simulation was used as follows. Letter y means a 

mean value of the layer thickness measured in points at a 
distance of 10.00 mm, 20.00 mm, 30.00 mm and 40.00 mm 
from bottom margin of each testing sample. Current density 
was set at 4.00, 5.00 and 6.00 A·dm -2. For learning process 
were used 36 values of randomly measured thickness for one 
setting of the current density. Ten remaining values of the 
thickness were used during model validation process. That 
value ratio was chosen experimentally, according to goal to 
find the lowest possible number of training values sufficient 
enough to provide the prediction model with adequate 
precision. With the greater amount of training data we were 
not able to clearly validate the model. During evaluation of the 
experiment results, it was possible to mathematically describe 
an influence of the input factors on the resulted thickness of 
the AAO layer via neural unit. The unit used cubic model with 
small number of data. According to the theory of the neural 
networks the third order HONU is able to surely describe 
highly nonlinear model only via large amount of training data. 
Respectively, with smaller amount of training data is necessary 
to choose a neural unit with lower order. When we tried to use 
lower order neural unit (linear model, quadratic model) a big 
error of prediction model occurred. The error occurred during 
the training process and became even greater during validation 
process. In Tab. 2 it is possible to see how much is the model 
able to describe the influence of state values, which were not 
in training data. In the table are statistical stats of correctness 
of cubic, quadratic and linear model. The table 2 also contains 
suitability (or correctness) of usage the particular evaluation 
models for estimating of the AAO layer thickness. The sum of 
square errors of 3rd Order HONU was 7.50 times lower than 
the sum of square errors of 2nd Order HONU at the current 

density of 4.00 A·dm-2. At the current density of 5.00 A·dm-2 
the sum of square errors was even 8.33 times lower, and 7.40 
times lower at the current density of 6.00 A·dm-2. Usage of 3rd 

Order HONU is 5.93 times more accurate than 1st Order 
HONU at the current density of 4.00 A·dm-2, 10.41 times more 
accurate if the current density was 5.00 A·dm-2 and 10.67 times 
more accurate at the current density of 6.00 A·dm-2. While 3rd 

Order HONU neural unit was used, correlation index of the 
input factors and the AAO result thickness reached levels 
96.67 %, 97.56 % and 98.33 % at the current densities of 
4.00 A·dm-2, 5.00 A·dm-2 and 6.00 A·dm-2. In comparison with 
2rd Order HONU the correlation index is approximately 7.14% 
higher and about 12.64% in comparison with results of 1rd 

Order HONU. 

 
Fig.1, Fig.2 and Fig .3 show the simulation error (a 

difference between measured and calculate value of the AAO 
layer thickness) of individual mathematical model (1st order 
HONU neural unit Fig.1, 2nd order HONU neural unit Fig.2,  
3rd order HONU neural unit Fig.3) developed for the current 
density of 4.00 A·dm-2. 

 

 

Fig. 1.  Simulation error of 1st order HONU neural unit at 
observed current density of 4.00 A·dm-2 

 

Table 2. Selected inicators of the accuracy of developed models 

Model 
Current  
density  
[A·dm-2] 

SSE 
[-] 

MSE 
[-] 

R2 

[%] 
R 
[%] 

Cubic 
3rd Order  
HONU 

4.00 87.51 2.37 93.45 96.67 
5.00 62.42 1.69 95.17 97.56 
6.00 45.31 1.22 96.69 98.33 

Quadratic 
2nd Order 
 HONU 

4.00 656.75 17.75 78.79 88.76 
5.00 519.70 14.05 81.03 90.02 
6.00 335.50 79.07 85.30 92.36 

Linear 
1st Order  
HONU 

4.00 518.69 14.02 68.31 82.65 
5.00 649.87 17.56 78.91 88.83 
6.00 496.92 13.43 69.16 83.16 
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As we can see in the figures, the biggest errors appear in 

the estimation of AAO layer thickness via 1rd Order HONU, 
which describes the influence of input parameters using only 
linear function (Fig. 1). The 2rd Order HONU (Fig. 2) shows 
lower error of estimation the AAO layer thickness. This neural 
unit describes the impact on the response by using quadratic 
function. Usage of that kind of neural unit could be useful in 
industry to obtain approximate information about input factors 
influence on the result of technological process. Unfortunately, 
that neural unit shows the highest absolute calculation error in 
comparison with other tested neural units. Particularly in 
estimation of the AAO layer thickness of sample no. 20 the 
evaluated value is about 18.67 mm·10-3 greater than the actual 
value of measured thickness of the AAO layer. That means 
a big chance for similarly high error during calculation with 
the input factors which were not included in the experiment. 
For that reason, the 2ndOrder HONU neural unit is insufficient 
for real industry control. The best results are shown by using 
the 3rdorder HONU neural unit (Fig.3), which describes the 

influence of input factors on the AAO layer thickness by using 
cubic function. In other words, that neural unit is the most 
nonlinear from tested units and that cause its ability to 
estimated so complicated model with high precision. 

 Fig. 4, Fig. 5 and Fig. 6 describe the results of training 
process of neural units of 3rdorder HONU of the obtained 
prediction model at current density 4.00 A·dm-2 (Fig.4), 
5.00 A·dm-2 (Fig.5) and 6.00 A·dm-2(Fig.6). From these figures 
it is clearly seen how all points (values of the AAO layer 
thickness) used for training are laying on ideally straight line. 
That means, that the neural unit was able to learn how the 
input factors influence the resulting AOO layer thickness with 
almost absolute precision. The sum of square errors reached 
the value of 1.20·10-11 mm2·10-6 during training process at the 
current density of 4.00 A·dm-2, the value of 1.60·10-10 mm2·10-

6 at current density of 5.00 A·dm-2 and value of 8.38·10-

9 mm2·10-6 at current density of 6.00 A·dm-2.  

 

 

 

Fig. 5. Training process of 3rd order HONU at current density of 
5.00 A·dm-2   

 

 

Fig. 4. Training process of 3rd order HONU at current density of 
4.00 A·dm-2   

 
 

Fig. 3.  Simulation error of 3rd order HONU neural unit at 
observed current density of 4.00 A·dm-2 

 

 

Fig. 2.  Simulation error of 2nd order HONU neural unit at 
observed current density of 4.00 A·dm-2 
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Fig. 7, Fig. 8 and Fig. 9 describe the results of the 
verification process of the obtained prediction model at current 
density 4.00 A·dm-2 (Fig.7), 5.00 A·dm-2 (Fig.8) and 
6.00 A·dm-2(Fig.9). During the validation process, it results in 
a difference between the measured value of AAO layer 
thickness and predicted value of AAO layer thickness, because 
the neural unit was not trained for that sort of combinations of 
the input factors. Those untrained values are close to error free 
straight line of prediction so we can conclude that the neural 
units are able to correct prediction of untrained inputs. It 
means that we do not need so much training data respectively 
specimens if we want describe influences of input factors to 
output of examined technological process of anodic oxidation 
of aluminum. 

 

 

 

 Tab. 3 shows the chosen statistical stats of correctness of 
used models through the validation process for the current 
densities of 4.00, 5.00 and 6.00 A·dm-2. As is shown, the sum 
of square errors within model validation process for cubic 
neural unit reaches the values of 87.51 mm2·10-6, 62.42 
mm2·10-6 and 45.31 mm2·10-6 according to the individual 
current densities. The sums of squared errors when using the 
cubic neural units are generally ten times less than the sum of 
squared errors when using linear or quadratic neural units. 
Mean squared errors (MSE) of estimations are 1.90 mm·10-6, 
1.36 mm·10-6 and 0.98 mm·10-6 for individual current densities 
4.00, 5.00 and 6.00 A·dm-2 and those errors are also ten times 
less than MSE when using the linear neural unit or quadratic 
neural unit. The confidence interval of cubic neural unit is 
70.23 %, 72.57 % and 82.05 % according to the individual 
current densities of 4.00, 5.00 and 6.00 A·dm-2. These values 
also mean the accuracy of estimation of formed AAO layer 
thickness based on various combinations of the input factors. 

 

Fig. 9. Validating process of 3rd order HONU at current density 
of 6.00 A·dm-2   

 

 

Fig. 8. Validating process of 3rd order HONU at current density 
of 5.00 A·dm-2   

 

 

Fig.7. Validating process of 3rd order HONU at current density 
of 4.00 A·dm-2   

 

 

Fig. 6. Training process of 3rd order HONU at current density of 
6.00 A·dm-2   
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Using the developed computational models it is also 

possible to monitor the influence of individual input factors on 
the final thickness of AAO layer. To illustrate it, the graphical 
interpretation of dependencies, describing the effect of 
individual factors on the final thickness of AAO layer at 
current densities of 4:00, 5:00 and 6:00 A·dm -2, was created. 
The level of only one factor was varied; the level of the 
remaining five factors was set at level 0. Fig. 10 – Fig. 15 
display the effect of these factors.  

The effect of factor x1 is displayed in Fig. 10, the effect of 
factor x2 in Fig. 11, the effect of factor x3 in Fig. 12, the effect 
of factor x4 in Fig. 13, the effect of factor x5 in Fig. 14 and the 
effect of factor x6 in Fig. 15. As seen in Fig. 10 – Fig. 15, the 
size of the current density has no noticeable effect on the 
thickness of the AAO layer in those areas where formation of 
the layer occurs. Respectively, the effect of current density is 
minimal (for boundary conditions, the difference in thickness 
of the AAO layer is less than 2mm·10-3).  

Fig. 10 shows influence of factor x1 on AAO layer 
thickness. Factor x2, x3, x4, x5 and x6 are set to zero factor 
level.We can see that with increasing of amount of sulphuric 
acid is also increasing AAO layer thickness. It is because with 
an increasing amount of sulphuric acid in an electrolyte also 
rises an amount of dissociated ions. Oxygen, which is bound to 
a part of these ions, is used to create a layer of an aluminium 
oxide. Thus, more dissociated oxygen ions means coarser 
AAO layer thickness. 

Fig. 11 shows influence of factor x2 on AAO layer 
thickness. Factor x1, x3, x4, x5 and x6 are set to zero factor level. 
We can see that with increasing of amount of oxalic acid is 
also increasing AAO layer thickness until it is reach zero 
factor level. After that the created AAO layer thickness starts 
decreasing. It is because the molecules of oxalic acid need a 
bigger inner energy to dissociate. Applied voltage is not big 
enough to raise their inner energy. So the molecules of oxalic 
acid take the energy from an electrolyte including from 
sulphuric acid molecules. Thus, the molecules of sulphuric 

acid cannot dissociate and amount of oxygen in electrolyte is 
decreasing. Fortunately the amount of oxalic acid is not very 
big so the maximum possible difference of layer thickness is 
just up to 5 mm·10-3.  

 

 
In Fig. 12 it is presented the influence of factor x3 on the 

thickness of the formed aluminium anodic oxide layer. Factors 
x1, x2, x4, x5 and x6 are set to zero factor level. From the Fig. 12 
it can be deduced that low levels of factor x3 lead to the 
dissolution of the oxide layer and to the saturation of the 
electrolyte of aluminum cations Al3+. If the concentration of 
the aluminum cations in the electrolyte is higher than at the 
steady state, it results in their migration to the cathode where 
they are reduced to atomic aluminum and the system energy is 
decreased. It is similar to the impact of the concentration of 
oxalic acid in electrolyte on the resulting thickness of the 
formed anodic aluminum oxide layer. 

 

Table 3. Selected inicators of the accuracy of developed models 

Model 
Current 
density 

[A·dm-2] 

SSE 
[-] 

MSE 
[-] 

R2 

[%] 
R 

[%] 

Cubic 
3rd Order  
HONU 

4.00 87.51 1.90 0.89 0.94 

5.00 62.42 1.36 0.86 0.93 

6.00 45.31 0.98 0.87 0.93 

Quadratic 
2nd Order 
 HONU 

4.00 656.75 14.28 0.82 0.90 

5.00 519.70 11.30 0.80 0.90 

6.00 335.50 7.29 0.82 0.90 

Linear 
1st Order  
HONU 

4.00 518.69 11.28 0.64 0.80 

5.00 649.87 14.13 0.64 0.80 

6.00 496.92 10.80 0.64 0.80 
 

 

 

Fig. 11 Effect of factor x2 on the thickness of AAO layer at given 
conditions x1=0 (2.04·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 

(22.00 °C), x5=0 (1800.00 s), x6=0 (10.00 V) 

 
Fig. 10 Effect of factor x1 on the thickness of AAO layer at given 
conditions x2=0 (1.22·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 

(22.00 °C), x5=0 (1800.00 s), x6=0 (10.00 V) 
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Fig. 13 shows influence of factor x4 on AAO layer 

thickness. Factor x1, x2, x3, x5 and x6 are set to zero factor level. 
The electrolyte temperature influences the speed of chemical 
reactions at the interface metal-electrolyte. Those reactions are 
creating AAO layer thickness and dissolving already created 
AAO layer thickness. The speed of chemical reactions which 
creating and dissolving the AAO layer is different during 
anodizing, but generally with increasing of electrolyte 
temperature is speed of chemical reactions increasing too. It 
means that with increasing of electrolyte temperature will be 
AAO layer thickness coarser. 

 
Fig. 14 shows influence of factor x5 on AAO layer 

thickness. Factor x1, x2, x3, x4 and x6 are set to zero factor level. 
The anodizing time influences how long are chemical reactions 
go on. With increasing of anodizing time is AAO layer 
thickness rising. But speed of AAO layer thickness rising 
depend on speed of chemicals reactions at metal-electrolyte 
interface. 

 
Finally Fig. 15 shows influence of factor x6 on AAO layer 

thickness. Factor x1, x2, x3, x4 and x5 are set to zero factor level. 
Applied voltage levels are proportional to the electric 
potential. Electric potential is proportional to electrodynamics 
forces. These electrodynamics forces determine the force with 
which are positively charged ions attracted to the negatively 
charged electrode (cathode) and the force with which are 
negatively charged ions attracted to the positively charged 
electrode (anode). So with increasing of applied voltage also 
increase an AAO layer thickness.  

 

IV. CONCLUSION 
As shown by the evaluation of experimental results 

presented above, the use of neural networks based on the 
iterative Levenberg-Marquardt (LM) optimization algorithm 
provides a wide range of options to control the anodizing 
process.  There are several reasons for this. First and foremost, 
there is a pressing need to produce the right product at the 

 
Fig. 13 Effect of factor x4 on the thickness of AAO layer at given 
conditions x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x3=0 

(3.15·10-1 mol·l-1), x5=0 (1800.00 s), x6=0 (10.00 V) 

 

 

Fig. 15 Effect of factor x6 on the thickness of AAO layer at given 
conditions x1=0 (2.04·10 – 1 mol·l 1), x2=0 (1.22·10-1 mol·l-1), x3=0 
(3.15·10-1 mol·l-1), x4=0 (22.00 °C), x5=0 (1800.00 s) 

 

Fig. 14  Effect of factor x5 on the thickness of AAO layer at given 
conditions x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x3=0 

(3.15·10-1 mol·l-1), x4=0 (22.00 °C), x6=0 (10.00 V) 

 

 

Fig. 12 Effect of factor x3 on the thickness of AAO layer at given 
conditions x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x4=0 

(22.00 °C), x5=0 (1800.00 s), x6=0 (10.00 V) 
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right time, and here the use of neural networks comes in very 
handy. We can quickly and simply describe the behavior of the 
monitored system. By using the neural unit of 3rd order HONU 
it was possible to describe the influence of input factors on the 
thickness of final AAO layer at defined current densities 4.00 
A·dm-2, 5.00 A·dm-2 and 6.00 A·dm-2 with confidence interval 
of 93.45%, 95.17% and 96.69%. This neural unit allowed us to 
monitor the impact of input factors on the final thickness of the 
AAO layer. It also provide us another way of understanding 
and expressing the process behavior by graphical 
representation of how a response (the thickness of AAO layer) 
may change due to changing values of factors x1 – x6 and their 
interactions. 
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