
 

 

  

Abstract— A dynamic approach of two widely applied 
techniques has been used in predicting the typical 28-day 
compressive strength of Portland cement: Multiple linear regression 
(MLR) and artificial neural networks (ANN). Eight totally ANNs 
were built involving three layers with one or two nodes in the hidden 
layer and a cascade ANN as well, using sigmoid, hyperbolic tangent 
and radial basis functions. The comparison is based on the mean 
square residual error (MSRE) of testing sets.  The ANNs of higher 
performance are the simplest ones, with only one node in the hidden 
layer and sigmoid or hyperbolic tangent function. An optimization of 
the future testing period was performed and the optimal value was 
equal to one day. Consequently the implementation of the dynamical 
model in the daily strength prediction needs an updating of the 
equations, every day that new results appear.   
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I. INTRODUCTION 

EURAL NETWORKS consist an attractive tool to model 
non-linear processes and phenomena. In the cement 

industry artificial neural networks (ANN) are mostly used to 
describe and control the main production operations: Burning 
[1]-[4] and grinding [5]-[7].   Predicting cement typical 
compressive strength from earlier analyses results on the same 
sample remains a challenging issue. Mainly linear and 
polynomial models have been developed or techniques that 
can be reduced to such models. Extensive reviews of these 
techniques exist in [8]-[9]. Neural networks have successfully 
used for the prediction of the concrete strength and various 
ANN types have been developed. Examples of such 
implementation of ANN in concrete are referred in [10]-[19]. 
But there are relatively few studies based on ANN 
methodology or generally evolutionary and genetic algorithms 
(GA), correlating cement typical 28-day strength with other 
cement properties. 

Akkurt et al. [20] developed a GA – ANN model of cement 
compressive strength by collecting and processing 6 months 
industrial data of chemical, physical and mechanical properties 
of the cement. Their results indicated that an increase of C3S, 
SO3 and specific surface leads to increased strength. 
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Baykasoglu et al. [21] and Thamma et al. [22] utilized gene 
expression programming (GEP) and neural networks for the 
prediction of strength of Portland composite cement.  Zhang et 
al. [23] introduced an algorithm named Double-layer Multi-
expression Programming (DMEP). They applied the DMEP 
model to the prediction of 28-day Portland cement strength 
and they compared this model with other four computing 
models namely Multi-Expression Programming model (MEP), 
Gene Expression Programming model (GEP), Neural 
Networks model (NN) and Fuzzy logic model (FL).  Madsen 
et al. [24] applied FL and GA techniques to predict the 
strength of CEM I cement of all the possible strength classes. 
Ren et al. [25] applied generalized regression neural network 
(GRNN) techniques to predict the heat of hydration and 
compressive strength of cement. A model combining principal 
components analysis (PCA) and ANN algorithms was 
developed by Yongzheng et al. [26]. The predictions are 
accurate inside their field of application. If the value of a 
parameter not contained in the set of the independent variables 
during the cement production process changes noticeably, the 
predictive model could fail. Consequently most of the models 
could be called “static” as the parameters are estimated by a 
given data set and the future strength is predicted. 

Tsamatsoulis [9] performed a comparison of the static 
polynomial equations referred in [27] and movable time 
horizon models based on linear regression methods. The latter 
models incorporate the uncertainty due to the time variability 
of non involved factors during the modeling, thus they are 
dynamic. In [28] the particularities of these two classes of 
models have been investigated in detail and the superiority of 
the dynamic models was proved. This study aims at comparing 
two types of dynamic models: The multiple linear regression 
(MLR) technique with a second wide range of models based 
on several types of ANN. Criterion of the comparison is the 
capability of a model to predict the future cement strength. 
Considering the linear model as the basic one, the 
generalization ability [29] of the selected ANN is to be 
checked.  Some simple steps have been also implemented to 
enhance the mentioned ability of the ANNs. An effort was also 
made to study the problem of over-fitting, frequently 
encountered during the ANN development and implementation 
and referred also by Haykin in an excellent and comprehensive 
foundation of neural networks [30]. 
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Two Portland cement types produced according to EN 197-
1:2011 were studied: CEM II A-L 42.5 N and CEM II B-M 
(P-L) 32.5 N. The modeling is based on the results of the daily 
average samples of cement produced in two cement mills 
(CM) of Halyps plant from 2006 to 2014. The following 
analyses data were utilized: (i) Residue at 40 µm sieve, R40 
(%), measured with air jet sieving; (ii)  Specific surface, Sb  
(cm2/gr), measured according to EN 196-6; (iii)  Loss on 
ignition, LOI (%), and insoluble residue, Ins_Res (%) of the 
cement measured according to EN 196-2; (iv)  SO3 (%) 
measured with X-ray fluorescence; (v)  Compressive strength 
at 1 and 28 days (MPa). The preparation, curing and 
measurement of the specimens were made according to EN 
196-1.    The modeling predicting the 28-day strength was 
based on more than 3400 data sets.  

II. MATHEMATICAL TECHNIQUES 

A. Multiple Linear Regression 

The common independent variables in all models are: LOI, 
SO3, Ins_Res, Sb , R40 and one day strength, Str_1. The three 
chemical analyses characterize the cement composition. These 
six variables are named XI with I=1 to N and N=6, where: 
X1=LOI, X2=SO3, X3=Ins_Res, X4=Sb, X5=R40, X6=Str_1. 
The dependent variable is the 28 days strength, Y=Str_28 and 
then algorithm proceeds as follows: 

- For the experimental data set, the minimum and 
maximum values of XI and Y, XI,MIN, XI,MAX, YMIN, YMAX 
respectively, are computed. 

- The variables XI, Y are normalized. The set of the new 
variables XNI, YN is calculated by (1) and (2): 
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- The normalized 28 days strength, YN, is given by (3): 
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- The calculated 28 days strength, Str_28Calc, is provided 
by (4): 
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The coefficients AI, I=0 to N are determined by 

minimizing the residual error sRes calculated by (5): 
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where Str_28act = actual 28 days strength, M = number of 
data sets.  

B. Dynamic Models 

The common feature among the linear regression and neural 
network techniques is the dynamic modeling which is 
described by the subsequent algorithm: 

(i) A date t is assumed where a 28-day strength result 
appears. The specimen was prepared 28 days ago. The 
production date is in distance t-29 days from date t.  

(ii) A time interval of TD days and the samples belonging to 
the period [t-29-TD, t-29] are presumed. The dynamic data set 
consists of this population of samples. 

(iii) Using the selected model (MLR or ANN) an optimum 
set of parameters A optimizing the respecting sres is computed. 

(iv) At day t, the chemical and physical results of the cement 
produced in the previous day and the 1 day strength of the 
cement produced 2 days ago have been measured.  

(v) Using the set A, the 28 days strength of cement produced 
at t-2 day is estimated, by applying the respecting model.  

(vi) The steps (iv), (v) are repeated for all the next dates up 
to t+TF-1, where TF is a predetermined time interval without 
new parameters estimation. Consequently TF is ≥ 1. 

(vii) According to step (vi) for the dates belonging to the 
interval [t, t+TF-1], the future strength of the cement produced 
in the time interval [t-2, t+TF-3] is computed according to the 
equation of step (v). Otherwise if the date is greater than t+TF-

1, new parameters estimation is performed starting from step 
(i). 

(viii) As the time span remains TD, when the results of TF 
days are completed, then, the time interval is moved on by TF 
days. Thus the future 28-day strengths are calculated using 
models applied to data sets of movable time span TD and in 
steps of length TF.  

(ix) For a pair (TD, TF), the classes of models, MLR and 
ANN, shall be optimized according to the following two 
criteria: (a) minimum mean square residual error MSREPast 

during modeling and (b) minimum error MSRE Futur during the 
future application of the models. These two MSRE are 
calculated by (6), (7): 
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For each model and for each past and future time interval, a 

set (A, sRes,TD, sRes,TF ) is computed from the samples belonging 
to this interval. Depending on TD and TF values, the number of 
the consecutive sets (A, sRes,TD, sRes,TF ) is KTD, the number of 
data sets in each past interval I is MTD(I) and in each future 
interval I is MTF(I).  The errors sRes,TD, sRes,TF are computed 
from (5) where M is replaced by MTD(I) and MTF(I) 
respectively. 
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C. Neural Networks 

Two main kinds of neural networks were implemented: The 
usual three layers feed-forward ANN and the more 
complicated cascade neural network. The back propagation 
method was applied in batch mode.  In the hidden layer of the 
three layers ANN the modeling included one and two nodes. 
The non-linearity of the activation function was approached 
using, the sigmoid, hyperbolic and radial basis functions. The 
modeling also involves ANN with and without bias. The result 
of these combinations is an elevated number of models with 
nomenclature presented in Table I. 

Table I. Types of ANN 
 Three Layers ANN 

 Number of Nodes 

in Hidden Layer 

Number of 

Parameters 

Activation 

Function 

Bias 

S_1N 1 7 Sigmoid NO 
S_1N_B 1 8 Sigmoid YES 
HT_1N 1 7 Hyperbolic 

Tangent 
NO 

HT_1N_B 1 8 Hyperbolic 
Tangent 

YES 

RBF_1N 1 13 Radial Basis 
Function 

NO 

S_2N 2 14 Sigmoid NO 
RBF_2N 2 20 Radial Basis 

Function 
NO 

Cascade ANN 

 Number of Hidden 

Layers 

Number of 

Parameters 

Activation 

Function 

Bias 

CASC 4 12 Sigmoid NO 
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Fig. 1 Three layers ANN with one and two nodes in the hidden layer  
 

The three layers ANNs with one and two nodes in the 
hidden layer are depicted in Fig. 1. The one node ANN 

accepts and processes all the data. In the case of two nodes, 
each one takes as inputs the data of each cement type (CEM B-
M 32.5 and CEM A-L 42.5). A specific algorithm has been 
developed and incorporated in the software to recognize the 
cement type according to chemical analyses data. In each node 
the linear combination between the inputs and the synaptic 
weights is performed and introduced to the activation function.  
In the input layer the data are normalized. If the sigmoid or 
radial basis functions are used, equations (1) and (2) are 
applied for normalization, leading to normalized data 
belonging to the interval [0, 1]. In case of hyperbolic tangent 
activation function, data are normalized according to (8)-(9): 
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In this case XNI, YN belong to the interval [-1, 1]. Then the 

calculated Str_28 is back calculated from its normalized value 
by applying (10): 
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The non-linear equations describing the activation functions 

are given by (11) – (13). 
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Where o(J) is the output of the node J. In case of one node 

in the hidden layer J=1, while when two nodes exist, J is either 
1 or 2. WI,J represent the synaptic weights. 

 
Hyperbolic tangent function 
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For the models without bias, WI,0=0 
 
Radial Basis function 
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Where (X01, X02 … X0N) is the vector of the center of the 
radial basis function, while (σ0, σ1 …σΝ) are variance 
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parameters to be also trained by ANN.  
 
Output layer activation function 

A linear function has been used in this case, given by (14): 
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Where N1=1 or 2 depending on the number of nodes in the 
hidden layer. Then YN is transformed to calculated 28-day 
strength according to equations (4) or (10). 

The more complicated structure of the cascade ANN is 
depicted in Fig. 2.  
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Fig. 2 Cascade ANN with four hidden layers 
Cascade ANN has been applied for the prediction of 

concrete strength by Badde et al. [31]. To develop this kind of 
ANN the technique described by Shetinin [32] has been 
followed. Sigmoid functions have been utilized in all the 
hidden layers, while the output layer, combines linearly the 
outputs of each hidden layer with the weights VI, I=1..4. In the 
first hidden layer Str_1 and LOI, the two most significant 
inputs as regards their impact on the Str_28, are fed and 
combined with the synaptic weights W11, W21. The output o(1) 
is multiplied with the weight V1 and fed to the output node. 
These three synaptic weights are trained in batch mode and 
then tested.  The second step involves a new layer were Str_1 
and Ins_Res are fed. The weights W12, W32, V1, V2 are trained 
and tested as previously. The building of new hidden layers 
follows by adding each time Str_1 and a one of the remaining 
variables. The algorithm stops when the addition of a new 
variable does not decrease further the training error, or results 
in an increase of testing error. The above means that the ANN 
is probably over-fitted. By applying this algorithmic logic, 
R40 was not added to the cascade ANN as it caused a 
worsening of the testing error.    

III. RESULTS AND ANALYSIS 

A. MSRE of training and test sets 

The dynamical models are applied for a movable training 
period TD=180 days. Then the parameters of each model are 
applied to the results of TF days which constitute the testing 
set. This period starts at least 29 days after the last date of the 
training period. The calculated and actual results of 28-day 
strength during TF are compared. Thus, the errors MSREPast, 
MSREFutur are determined, for TD=180 and TF=30, according to 
the formulae (6), (7) and shown in Table II.  

 
Table II. Models MSRE for TD=180, TF=30 

No Model MSREPast MSREFuture 

1 MLR 1.664 2.010 
2 S_1N 1.658 2.000 
3 S_1N_B 1.641 1.990 
4 HT_1N 1.726 2.041 
5 HT_1N_B 1.646 2.008 
6 RBF_1N 1.685 2.070 
7 S_2N 1.610 2.077 
8 RBF_2N 1.664 2.124 
9 CASC 1.722 2.002 

 
From Table 2 it is observed that the dynamic approach of 

the linear regression model is really efficient: Only four out of 
the eight ANN models, provide an equivalent or lower testing 
error. The rest more complicated ANNs with two nodes in the 
hidden layer or with the radial basis functions provide worse 
MSREFutur. The simple S_1N_B with one node and bias, 
provide the lower testing errors. Model S_2N, despite its lower 
training error, fails to predict the future strength better than 
MLR, fact that is normally due to over-fitting. The results of 
Table 2 do not lead to a clear comparison among the several 
models. Consequently a deeper analysis is necessary. Because 
MSREFuture is composed from the MSRE of each testing set, 
probably there are outlying values. To exclude such outliers 
the following techniques is implemented.  

- In Table 2 the initial MSREFuture for each model are shown. 
- Using the normal distribution and predefined probabilities 

of rejection, the corresponding z values are computed.  
- Sets with MSRE > z · MSREFuture are excluded. 
- The percentage of excluded sets, Pr, is calculated. 
- MSREFuture is recalculated from the remaining errors.  
- For each model a curve of MSREFuture as function of Pr is 

designed and the models are compared.  
- The comparison is shown in Fig. 3; in (a) and (b), MLR is 

compared with ANNs of higher MSREFuture, while in (c) and 
(d) with the ANN models of improved error. 

From these Figures the following remarks can be made for 
the set (TD, TF) = (180, 30):  
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Fig. 3 Comparison of MLR and ANN  

  
The selected ANN configurations based on RBF are 

continuously worse than MLR. Especially when two nodes are 
used, despite the lower training error, that is equal to that of 
MLR, the testing error is higher. This is an indication of over-
fitting. In case of ANN with sigmoid activation function, when 
two nodes are used causing an MSREPast lower than that of 
MLR, the test error is again higher. Thus S_2N model seems 
that over-fits the data. The HT_1N model is also worse than 
MLR, which probably means that some significant parameter 
is missing. 

Cascade ANN is the one that is closer to MLR as concerns 
MSREFuture, for all the range of Pr, but is the most complicated 
ANN and needs the higher computational time. In any case it 
is the first ANN model from the chosen ones, with improved 
performance compared to the highly efficient and simple MLR 
model. Concerning HT_1S model, probably the addition of an 
independent variable could improve its performance. Such 
parameter is the bias; HT_1S_B model behaves much better; 
its MSREFuture is always lower than that of MLR as shown in 
Fig. 4 (b). Both models S_1N and S_1N_B provide training 
and test errors lower than the respecting of MLR for the pair 
(TD, TF) = (180, 30). The same is also verified for the test 

errors for the full range of Pr. Consequently these two models 
are the optimal among the eight ANN configurations chosen. 
Probably a specific handling of the synaptic weights could 
improve the performance of some of the ANNs, but this is out 
of the scope of this paper.  

 

B. Performance analysis of MLR and optimal ANN 

The testing residual errors of MLR were compared with the 
ones of S_1N over all the range of testing sets, e. g. for all the 
KTD sets and for Pr=5%. MSREFuture as function of testing set I, 
for I=1 to KTD, is shown in Fig. 4 (a) for both models. The 
curves are generally of the same shape and the lower total 
MSRE of S_1N cannot be easily observed from this figure. 
The sorted differences of errors between MLR and S_1N 
(MLR-S_1N) are depicted in Fig. 4 (b) from where becomes 
obvious that the positive differences are more and higher than 
the negative ones resulting in a better performance of the 
S_1N ANN. For comparison reason the sorted differences of 
errors between S_2N and S_1N are shown in Fig. 4 (c). The 
over-fitting problem of the configuration selected in S_2N 
ANN, due to probably to the large number of the synaptic 
weights, is apparent. 
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Fig. 4 (a) Comparison of MLR and S_1N errors (b) sorted 
differences of MSRE(MLR) – MSRE(S_1N) 

 
Table III. Synaptic weights average and standard deviations 

Weight Average Std. Dev. 

W0 0.87 1.47 
W1 -1.57 0.99 
W2 -0.05 0.38 
W3 -1.18 0.84 
W4 -0.59 0.52 
W5 -0.36 0.35 
W6 2.08 0.83 
V1 1.00 0.12 

 
The addition of bias in the simple ANNs of one node with 

sigmoid or hyperbolic activation functions enhances their 
performance. The dynamical modeling has the ability to adjust 
the synaptic weights during time. To have a clearer picture for 
the variance of each WI and VI the average values and standard 
deviations are computed and shown in Table III for the model 
S_1N_B. The relatively high variance of the synaptic weights 

can be characterized as a measure of the ability of the dynamic 
model to adjust these weights, except if some weights are not 
statistically significant and could be neglected. This latter 
analysis is out of the scope of this study. 

 

C. Minimization of MSRE of testing sets 

For the basic time horizons (TD, TF) = (180, 30) several 
types of ANN have been already studied, four out of them 
providing an MSRE in testing sets lower than that of MLR 
model. This group of ANNs needs further investigation, in 
order to find the time periods of minimal values of MSREFuture. 
In the current study and for the models MLR, S_1N, S_1N_B, 
HT_1N_B and CASC a search was performed to optimize TF 
period : This parameter was permitted to vary from 1 day to 60 
days and the respecting MSRE of training and testing sets were 
calculated.  MSREPast is relatively invariant as function of TF. 
On the contrary the results indicate that there is a strong 
function between testing errors and TF. This function for the 
several models is shown in Fig. 5 and the following can be 
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observed: 
- For all TF except TF=1, MSRE of cascade ANN is 

continuously lower than that of MLR. This type of ANN 
presents a minimum error for TF=5.  

- The MSRE of the remaining neural networks is kept 
always lower than that of MLR and except for TF=5, it shows a 
monotonic decrease. Consequently the minimum error of 
testing sets is obtained for TF=1 day.  

1.85

1.90

1.95

2.00

2.05

2.10

1 10 100

M
e

a
n

 S
q

u
a

re
 R

e
si

d
u

a
l 

E
rr

o
r

Test_Period

MLR

S_1N

CASC

(a)

1.85

1.90

1.95

2.00

2.05

2.10

1 10 100

M
e

a
n

 S
q

u
a

re
 R

e
si

d
u

a
l 

E
rr

o
r

Test_Period

MLR

S_1N_B

HT_1N_B

(b)

 
Fig. 5 MSRE of testing sets as function of TF 

 
-  Among all the ANNs, the minimum MSRE is achieved 

for S_1N_B model and TF=1, i.e. these are the optimum model 
and the future testing period. Therefore the implementation of 
this dynamic model in the daily strength prediction needs an 
updating of the equations, every day that new results appear.   

IV. CONCLUSIONS 

Two largely applied modeling techniques have been used to 
simulate and predict the typical 28-day compressive cement 
strength: Multiple linear regression (MLR) and artificial neural 
networks (ANN). The modeling is restricted to Portland 
cement produced according to EN 197-1:2011 and utilizes 
analyses of daily average samples of cement industrially 
produced. Physical and chemical results as well the 1-day 
compressive strength are used to predict the typical cement 
strength. A variety of ANNs has been developed involving 
three layers with one or two nodes in the hidden layer. In 
parallel a cascade ANN has been built. Three types of 
activation functions have been implemented; sigmoid, 
hyperbolic tangent and radial basis functions. The comparison 
is based on the MSRE of testing sets.  The dynamic approach 
of MLR is an efficient tool for strength prediction; only four 

out of the eight ANN models developed, show an MSRE lower 
than this of the linear model. Cascade ANN is one of them, but 
needs much more computational time without to provide a 
highly better performance than MLR. The three ANNs of 
higher performance are the simplest ones, with only one node 
in the hidden layer and sigmoid or hyperbolic tangent function. 
The introduction of bias improves testing error. More 
complicated networks probably need a further processing 
because they are suffering from over-fitting. 

An optimization of the future testing period, TF, was 
performed and the optimal value was equal to 1day. The 
optimum model is the dynamical ANN, with three layers and 
one node in the hidden layer, which includes bias and sigmoid 
activation function. 
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