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Abstract—We theoretically study the optical response of a sym-
metric double quantum dot nanostructure. We assume that each
quantum dot contains only two energy levels and that the effect
of tunneling is only included in the coupling of the upper levels.
We then derive the optical susceptibility of the system under weak
field excitation and under general initial conditions. The formula we
obtain extends that of a previous work, as the effects of an initial
superposition of the two lower states of the system are accounted
for. We also present the form of the susceptibility for different initial
states of the system.

Keywords—Semiconductor quantum dot, optical susceptibility,
tunneling, superposition of states.

I. INTRODUCTION

Semiconductor quantum dots are nanocrystals made of
semiconductor materials and exhibit three-dimensional quan-
tum confinement [1]. They show strong quantum mechanical
effects and can described by a discrete energy spectrum.
They also have novel linear and nonlinear optical properties
as they have controllable size, energies and dipole matrix
elements. When two quantum dots are put close together then
a coupled quantum dot is formed and in this case quantum
tunneling effects play important role [2], [3]. Two examples
of coupled quantum dots are the symmetric double quantum
dot nanostructure [2] and the asymmetric double quantum dot
molecule [3].

The interaction of the electromagnetic fields with the asym-
metric quantum dot molecule has led to several interesting
phenomena including tunneling induced transparency with
accompanying slow light [4], [5], optical gain [6], [7], and
controlled population dynamics [3], [8], [9]. The interaction
of electromagnetic fields with the symmetric double quantum
dot nanostructure has been widely studied with regard to
controlled population dynamics and single electron transfer
[2], [10], [11], [12], [13], [14]. The optical susceptibility of
the symmetric double quantum dot nanostructure was studied
by Ginzburg and Orenstein [15]. They showed that the system
can exhibit reduced absorption and slow light [15].

In this work we revised the optical response of the sym-
metric double quantum dot nanostructure. We make the same
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approximations as Ginzburg and Orenstein [15] and others [2],
[10], [11], [13] [(a) two energy levels per quantum dot and
(b) the effect of tunneling is only included in the coupling
of the upper levels] and derive again the optical susceptibility
of the system under weak field excitation. The formula we
obtain extends that of Ginzburg and Orenstein [15], as the
effects of an initial superposition of the two lower states of
the system are accounted for. We also present the form of
the susceptibility for different initial states of the system.
Extensions of the model are also discussed.

II. THEORETICAL MODEL AND RESULTS

The coupled quantum dot nanostructure we consider is
composed of two identical quantum dots (as it is usual they are
depicted with two quantum wells in Fig. 1). Each one, when
isolated, possesses only two bound state energy levels. These
localized states are denoted by |L1⟩, |R1⟩ (lower states) and by
|L2⟩, |R2⟩ (upper states) for the left (L) and right (R) quantum
dot. The lower bound state has energy ε1 and the upper bound
state has energy ε2. The geometrical characteristics of the dots
are chosen such that the lower energy level is deep in the
potential barrier and the upper energy level is near the edge
of the potential barrier. These features of the energy levels are
carried over to the double quantum dot nanostructure as the
quantum dots are taken to be widely separated.

The Hamiltonian of the double quantum dot nanostructure,
interacting with an external electromagnetic field with electric
field E(t) is given by

Ĥ = ε1(|L1⟩⟨L1|+ |R1⟩⟨R1|)
+ ε2(|L2⟩⟨L2|+ |R2⟩⟨R2|)
− h̄U(|L2⟩⟨R2|+ |R2⟩⟨L2|)
− µE(t)(|L1⟩⟨L2|+ |R1⟩⟨R2|+H.c) , (1)

where µ is the electron dipole moment for the transition
|a1⟩ ↔ |a2⟩ (a = L,R) (assumed real and it is taken the same
for each quantum dot) and U is the electron hopping energy
or the tunneling coupling coefficient between the two dots for
the excited electronic states |L2⟩ and |R2⟩. The applied field
is taken

E(t) = E0 cos(ωt) , (2)

with ω being the angular frequency and E0 being the ampli-
tude of the electric field.

From the localized states |L2⟩ and |R2⟩ we can obtain the
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Fig. 1. Schematic diagram of the coupled quantum dot structure studied. We
present the localized energy levels |L1⟩, |L2⟩, |R1⟩, |R2⟩ and two delocalized
upper levels (|3⟩ and |4⟩).

delocalized (coupled) states |3⟩ and |4⟩, with

|3⟩ =
1√
2
(|L2⟩+ |R2⟩) , (3)

|4⟩ =
1√
2
(|L2⟩ − |R2⟩) , (4)

that have energies

ε3 = ε2 − h̄U , (5)
ε4 = ε2 + h̄U . (6)

For the derivation of the optical susceptibility of the system,
we will use the probability amplitude approach. This approach
gives proper results for weak field excitation, which is the case
of interest here. The wavevector of the system at time t can be
written as a superposition of two lower localized states |L1⟩,
|R1⟩ and the two excited delocalized states |3⟩, |4⟩, such that

|ψ(t)⟩ = a1(t)|L1⟩+ a2(t)|R1⟩+ a3(t)|3⟩+ a4(t)|4⟩ . (7)

From the time-dependent Schrödinger equation, using the
Hamiltonian of equation (1) and the definitions of equations
(3) - (6), we obtain the time evolution of the probability
amplitudes an(t) with n = 1− 4:

ih̄ȧ1(t) = ε1a1(t)−
µE0√

2
cos(ωt) [a3(t) + a4(t)] , (8)

ih̄ȧ2(t) = ε1a2(t)−
µE0√

2
cos(ωt) [a3(t)− a4(t)] , (9)

ih̄ȧ3(t) = ε3a3(t)− ih̄γa3(t)

− µE0√
2

cos(ωt) [a1(t) + a2(t)] , (10)

ih̄ȧ4(t) = ε4a4(t)− ih̄γa4(t)

− µE0√
2

cos(ωt) [a1(t)− a2(t)] , (11)

where, γ denotes the decay rate of the upper states and has
been included phenomenologically in the equations of the
probability amplitudes.

We proceed with a change of variables

a1(t) = c1(t)e
−i

ε1
h̄ t , (12)

a2(t) = c2(t)e
−i

ε1
h̄ t , (13)

a3(t) = c3(t)e
−i

ε3
h̄ t+iδt−iUt , (14)

a4(t) = c4(t)e
−i

ε4
h̄ t+iδt+iUt . (15)

We use the new variables in equations (8) - (11), perform the
rotating wave approximation and obtain

iċ1(t) = − µE0

2
√
2h̄

[c3(t) + c4(t)] , (16)

iċ2(t) = − µE0

2
√
2h̄

[c3(t)− c4(t)] , (17)

iċ3(t) = (δ − U − iγ)c3(t)

− µE0

2
√
2h̄

[c1(t) + c2(t)] , (18)

iċ4(t) = (δ + U − iγ)c4(t)

− µE0

2
√
2h̄

[c1(t)− c2(t)] , (19)

where, δ = (ε2 − ε1)/h̄− ω = ω21 − ω.
The induced polarization of the quantum dot structure is

given by

P = N⟨µ̂⟩

=
Nµ√
2
(c3c

∗
1 + c4c

∗
1 + c3c

∗
2 − c4c

∗
2)e

−iωt + c.c. ,(20)

where N is the electron density in the quantum dot structure.
The induced polarization can be also written in terms of the
optical susceptibility χ(ω) as

P = ε0χ(ω)
E0

2
e−iωt + ε0χ

∗(ω)
E0

2
eiωt , (21)

where ε0 is the vacuum permittivity. From equations (20) and
(21) we obtain

χ(ω) =

√
2Nµ

ε0E0
(c3c

∗
1 + c4c

∗
1 + c3c

∗
2 − c4c

∗
2) , (22)

where the probability amplitudes cn are calculated in steady
state.

We assume that initially, at t = 0, the quantum dot
nanostructure is at a superposition of the two lower states |L1⟩
and |R1⟩

|ψ(0)⟩ = α|L1⟩+ β|R1⟩ , (23)

with |α|2 + |β|2 = 1. If the interaction of the electromagnetic
field with the quantum dot nanostructure is weak, then we
can apply time-dependent perturbation theory and assume
that c1 ≈ α, c2 ≈ β. We also calculate c3 and c4 from
equations (18) and (19) in steady state. Substituting the results
into equation (22), after some algebra, we obtain the optical
susceptibility as

χ(ω) =
Nµ2

h̄ε0

ω21 − ω − iγ + 2URe(αβ∗)

(ω21 − ω − iγ)2 − U2
. (24)

This formula extends the result of Ginzburg and Orenstein
[15] for the case of an initial superposition of the two lower
states of the quantum dot nanostructure. We note that if we
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Fig. 2. The form of the real part (dashed curve) and the imaginary part (solid
curve) of χ(ω), taken from equation (24), in units Nµ2

h̄ε0
, for α = 1, β = 0

or α = 0, β = 1.

take U = 0 then the susceptibility gives the well-known result
for a single quantum dot [16]

χ(ω) =
Nµ2

h̄ε0

ω21 − ω + iγ

(ω21 − ω)2 + γ2
, (25)

which gives a Lorentzian absorption lineshape from its imagi-
nary part and a regular dispersive lineshape from its real part.

III. FORM OF THE OPTICAL SUSCEPTIBILITY

We will now present the form of the optical susceptibility,
using equation (24), for a specific quantum dot nanostructure
and for different initial conditions. We take a GaAs based
quantum dot, where each quantum dot has 5 nm size and
are separated by a 7 nm barrier. The height of the well for
each quantum dot is 450 meV. We solve the time-independent
Schrödinger equation, in the effective mass approximation, for
an electron in the quantum dot, using the shooting method
[17], and calculate the energies, dipole matrix elements and the
tunneling coupling coefficient. As we are interested in the form
of the susceptibility the most important quantity in our study
is the tunneling coupling coefficient that is found h̄U = 4.9
meV.

Fig. 2 presents the form of the optical susceptibility in the
case that α = 1, β = 0 or α = 0, β = 1, so the electron is
initially localized in one of the quantum dots. This was the
result presented by Ginzburg and Orenstein [15]. The decay
rate, here and in the rest of the figures, is taken h̄γ = 1 meV.
The imaginary part of the susceptibility, which determines the
absorption, shows a symmetric double-peaked structure, and
the peaks are obtained at the energies ε3 − ε1 and ε4 − ε1.
For ω = ω21 there is a minimum in the imaginary part of
χ(ω). The real part, which can be used for the calculation of
the refractive index and determines dispersion, obtains three
zeroes. It shows regular dispersive behavior (negative slope)
around ε3−ε1 and ε4−ε1. However, around ω21 the real part
of χ(ω) shows positive slope, leading to slow light effects
[15].
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Fig. 3. The form of the real part (dashed curve) and the imaginary part (solid
curve) of χ(ω), taken from equation (24), in units Nµ2

h̄ε0
, for α = 1/

√
2, β =

1/
√
2.

Fig. 3 presents the form of the optical susceptibility in
the case that α = 1/

√
2, β = 1/

√
2. This is the case of a

symmetric initial superposition of states |L1⟩ and |R1⟩, which
is actually the lowest energy delocalized state of the symmetric
double quantum dot nanostructure. In this case we take a
single Lorentzian curve for the imaginary part and a regular
dispersive curve for the real part of χ(ω). This case is similar
to what happens in a single quantum dot. The maximum of the
imaginary part of the susceptibility and the single zero in the
real part of the susceptibility are found at energy ε3− ε1, that
shows that the lower states couple only to the delocalized state
|3⟩ and not to the delocalized state |4⟩. This can be explained
from equations (18) and (19), which show that a symmetric
superposition of the lower states will only couple to state |3⟩
and not to state |4⟩.

Similar results are obtained in the case that α = 1/
√
2, β =

−1/
√
2 (see Fig. 4), which is the case of an asymmetric initial

superposition of states |L1⟩ and |R1⟩. This is actually the first
excited delocalized state of the symmetric double quantum
dot nanostructure. The difference in comparison with Fig. 3 is
that the maximum of the imaginary part of the susceptibility
and the zero in the real part of the susceptibility are found at
energy ε4 − ε1. This shows that the lower states couple only
to the delocalized state |4⟩ and not to the delocalized state |3⟩,
which can be also seen from equations (18) and (19).

In the next case, we consider that most of the population
is initially in one of the two quantum dots, α = 1/

√
5, β =

2/
√
5 [Fig. 5(a)] and α = 1/

√
5, β = −2/

√
5 [Fig. 5(b)].

This means that 0.2 of the total population is initially in state
|L1⟩ and 0.8 of the total population is initially in state |R1⟩.
The absorption curve in this case is double-peaked but it is
strongly asymmetric with one of the two peaks much higher
than the other. The sign of the initial superposition determines
if the maximum of the imaginary part of the susceptibility
and the single zero in the real part of the susceptibility will
be around ε3 − ε1 (first case) and ε4 − ε1 (second case).

In the final figure, Fig. 6, we consider a case of equal
population between states |L1⟩ and |R1⟩, but with a ϕ phase
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Fig. 4. The form of the real part (dashed curve) and the imaginary part (solid
curve) of χ(ω), taken from equation (24), in units Nµ2

h̄ε0
, for α = 1/

√
2, β =

−1/
√
2.
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Fig. 5. The form of the real part (dashed curve) and the imaginary part (solid
curve) of χ(ω), taken from equation (24), in units Nµ2

h̄ε0
. In (a) α = 1/

√
5,

β = 2/
√
5 and in (b) α = 1/

√
5, β = −2/

√
5.
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Fig. 6. The form of the real part (dashed curve) and the imaginary part (solid
curve) of χ(ω), taken from equation (24), in units Nµ2

h̄ε0
. In (a) α = 1/

√
2,

β = eiπ/4/
√
2 and in (b) α = 1/

√
2, β = ei3π/4/

√
2.

difference between the two states, α = 1/
√
2, β = eiϕ/

√
2.

We take ϕ = π/4 [Fig. 6(a)] and ϕ = 3π/4 [Fig. 6(b)].
Interestingly, the behavior of the real and imaginary parts
of the optical susceptibility is much closer to the strongly
unequal population distribution case, shown in Fig. 5, than
to the symmetric and asymmetric superposition cases, which
also give equal population distributions in states |L1⟩ and |R1⟩
(Figs. 3 and 4).

IV. SUMMARY AND POSSIBLE EXTENSIONS

In summary, we theoretically analyzed the optical response
of a symmetric double quantum dot nanostructure. We as-
sumed that each quantum dot contains only two energy levels
and that the effect of tunneling is only included in the coupling
of the upper levels. We used a probability amplitude approach
and derived the optical susceptibility of the system under weak
field excitation and under a general superposition of the two
lower states. The formula we obtain extends that of a previous
work [15], as the effects of an initial superposition of the two
lower states of the system are accounted for. We also presented
the form of the susceptibility for different initial states of the
system, for a specific double quantum dot nanostructure, and
showed that the actual form of the real and imaginary parts of
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the susceptibility depends strongly on the actual form of the
initial superposition.

We intend to extend the present study in order to account
for the coupling by tunneling of the lower states of the system,
which is omitted here and in other studies [2], [10], [11], [13],
[15]. This will allow us to study the case of two quantum dots
that are close to each other and not only widely separated.
In addition, with this extension we will be able to calculate
the effect of the actual separation of the two quantum dots
on the optical susceptibility, as well as the transition between
widely separated quantum dots to closely coupled quantum
dots. Finally, as slow light effects are possible in this system
[15], it will be interesting to study the effects of an initial
superposition state as well as the quantum dots separation on
the group velocity of light.
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