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Abstract—Mechanical, thermal, etc. behaviour of fibre concrete
structures, including (most frequently steel) fibres and a concrete
matrix, is conditioned namely by i) the amount of fibres and ii)
their directional distribution. Fibres should prevent quasi-brittle
crack damage caused by tensile stresses and other deterioration
processes, thus reliable nondestructive testing methods for i) and
ii) are required. This paper presents an original electromagnetic
approach based on different electromagnetic material charac-
teristics, as magnetic permeability, dielectric permittivity and
electric conductivity, of both applied materials in a composite, i. e.
of (most frequently steel) fibres and concrete matrix, occurring
in a special class of Maxwell equations, to the identification of i)
and ii).

Index Terms—Fibre concrete, nondestructive testing, electro-
magnetic measurements, identification problems.

I. INTRODUCTION

CEMENTITIOUS composites for building structures need
improvement of their mechanical, thermal, etc. properties

to remove or (at least) suppress formation of macro- and
macro-cracks caused by tensile stresses (because of quasi-
brittle behaviour of a cementitious matrix) and other processes
of material deterioration, as discussed by [3] and [11]. One
widely used alternative of such improvement is the application
of short strengthening metal (most frequently steel) fibers.
Resulting properties of a composite are then conditioned by
i) the volume fraction and ii) the distribution of directions of
fibres. Since classical destructive approaches are not allowed in
many cases and us cannot handle ii) properly, the development
of nondestructive approaches is required. However, apart from
advertisement of various producers of measurement technique,
no sufficiently general, robust, accurate, inexpensive and reli-
able method for nondestructive identification of both i) and ii)
is available, which can be seen as motivation for the increasing
number of relevant research papers in last 2 decades; more
historical comments can be found in [8].

Some nondestructive approaches rely on the sequences of
planar images, typically from the X-ray analysis, as discussed
in [7], often supplied by the two-dimensional fast Fourier
transform, or some other nontrivial numerical technique (e. g.
the edge detection from the level set method) – cf. [9] and
[24]. New (seemingly exact) 3-dimensional results come from
the CT-scanning – see [14] and [25]. However, such approach
is rather expensive, in particular in the case of 3-dimensional
images, and works only with carefully prepared samples, not
with real building structures in situ.

Nevertheless, all other approaches of identification of i) and
ii) are indirect, rely on the identification of some effective
(macroscopic) material characteristics (hiding the available

knowledge of material structure) and work with certain calibra-
tion procedures, sometimes with the tricky ones, in the optimal
case with those explainable by appropriate physical and mathe-
matical considerations. Unfortunately, more advanced theoreti-
cal studies usually lead to the design of vague and complicated
identification algorithms, whose practical implementation is
difficult or quite impossible because of the gaps in the theory.
From this point of view, [6], [10], [13] and [27] work with
various generalizations of the Maxwell - Garnett rule, well-
known from the theory of mixtures, formulated in its original
form for spherical particles. Other studies come from some
mathematical homogenization approach (physically motivated
in some cases), e. g. from the two-scale convergence, under-
stood as certain new convergence type between the strong and
weak one, studied for periodic material structures in [2] in
large details, for linearized problems with the results of [12] in-
stead of the Maxwell - Garnett rule, applicable even to slightly
non-periodic material models – cf. [18] and [21]. However,
substantial loss of periodicity in deterministic models, as
well as implementation of advanced stochastic approaches,
referring to Monte Carlo or similar computational simulations.
lead to very complicated mathematical formulations like [15],
without relevant support of identification software.

Up to now, the most successful indirect measurement ap-
proaches seem to be based on measurements of some magnetic
or electromagnetic quantities, making use of the different
values of such material characteristics, namely of the dielectric
permittivity ε, the electric conductivity σ and the magnetic
permeability µ, sometimes also of the magnetic susceptiblity
χ. Such time-independent characteristics can be considered
as constant just for (macroscopically) homogeneous materials
and as scalar just for isotropic ones, which brings technical
difficulties namely to the identification of ii). The purely mag-
netic approach, described (as an alternative) in [24], leads to
only one Laplace equation where an unknown characteristics µ
comes just from boundary equations; however, its application
requires to make circular holes for the Hall probe and to
choose measurement positions carefully to obtain reasonable
differences of (rapidly decreasing) magnetic fluxes for the
identification procedure.

The solvability of the complete evolutionary system of
Maxwell equations, even of the direct one (i. e. for the a priori
known material characteristics) as well as the convergence
of needed sequences of approximate solutions, hidden in
computational algorithms, involves serious open questions –
see [1] and [20]. Consequently all reasonable electromagnetic
experiments must be based on the very special physical and
geometrical setting. Various approaches of such type have been
suggested in [4], [5] and [26] in the last several years. In this
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paper we shall sketch another original methodology, based on
the measurements of complex impedance, which seems (both
theoretically and from first practical experiments) to be able
to cover both i) and ii) naturally.

II. PHYSICAL BACKGROUND AND MATHEMATICAL
DESCRIPTION

The analysis of electromagnetic fields works with a set
of scalar and vector quantities, introduced on Ω × I where
Ω is a domain in the (in general) 3-dimensional Euclidean
space, supplied by Cartesian coordinates, and I means a finite
time interval; dots refer to partial time derivatives. Using the
notation of [17], pp. 1 and 4, such basic quantities on Ω×I are
the scalar volume charge density ρ, the electric current density
(charge flux) J , the electric field intensity E, the magnetic field
intensity H , the electric flux density (electric displacement) D,
the magnetic flux density (magnetic induction) B, the electric
current density J and the magnetization (average magnetic
moment per unit volume) M , all vectors.

The obvious charge conservation principle reads

ρ̇ +∇ · J = 0 . (1)

The important relations between the remaining quantities

∇ ·D = ρ , ∇ ·B = 0 , (2)

well-known as the Gauss laws for electric and magnetic fields,
and

Ḋ −∇×H + J = 0 , Ḃ +∇× E = 0 , (3)

referenced as the the Ampère and Faraday laws. Following
[17], p. 11, we are allowed to consider the linear constitutive
equations

J = σE , D = εE , B = µH , M = χH . (4)

Moreover, we can introduce the energy density

w =
1
2

(D · E + B ·H) (5)

and the total energy flux (Poynting vector) P = E ×H; then
we receive, in addition to (1), inserting (3) into (5),

ẇ +∇ · P + J · E
= Ḋ · E + Ḃ ·H +∇ · (E ×H) + J · E
= Ḋ · E + Ḃ ·H + H · ∇ × E − E · ∇ ×H + J · E
= (Ḋ −∇×H + J) · E + (Ḃ +∇× E) ·H = 0 , (6)

which can be seen as the energy conservation principle.
Moreover, from (3) and (2) for homogeneous materials (with

zero derivatives of ε, σ and µ) we obtain

∇×∇×H = ∇J +∇Ḋ = σ∇× E + ε∇× Ė

= −σḂ − εB̈ = −σµḢ − εµḦ ,

∇×∇× E = −∇× Ḃ = −µ∇× Ḣ

= −µJ̇ − µD̈ = −µσĖ − µεË . (7)

Applying the mathematical formula ∇×∇× S = ∇(∇S)−
∇ · ∇S, for the choice both S = H and S = E its left side

degenerates, thanks to (4), to ∆S = ∇ · ∇S, and (7) gets the
simple form

∆H = σµḢ + εµḦ ,

∆E = µσĖ + µεË . (8)

A more complicated form of (8) and (7) can be derived in the
same way without any homogeneity assumption. In particular,
for isotropic materials ε, σ and µ can be considered as scalar
constants, thus σµ = µσ and εµ = µε.

Especially for the stationary pure magnetic field the second
equation and the right side of the first one in (8) vanish,
which results in the homogeneous Laplace equation ∆H = 0
(with no explicit µ). Then the interface boundary condition
of type (S − S×) · ν = 0, with S× in the role of some
scalar variable S coming from a domain adjacent to S (or
from external environment) where nu is the local (formally
outward) unit normal vector to the boundary of Ω, can be im-
plemented. This configuration with the natural choice S = B
contains µ, thus enables us to exploit some rather simple semi-
implicit identification formulae, at least those obtained from
the mixture theory by [6]; for more detailed discussion see [24]
(cf. Fig. 1 lower with another choice S = M , too). Moreover, it
seems to be reasonable, analogously to [23], to convert more
complicated problems to some similar semi-stationary form,
as will be demonstrated here for the special case of harmonic
time dependence.

Through the inverse Fourier transform, general solutions of
Maxwell equations can be built, following [17], p. 13 as linear
combinations of single-frequency solutions

S(r, t) =
1
2π

∫ ∞

−∞
S̃(r, ω) exp(−iωt) dω (9)

with S = E, S = H , etc., where r denotes the distance from
some selected fixed point from Ω in R3 and the time t is
transformed to the frequency ω between 0 and 2π; the phasor
amplitudes Ẽ, H̃ , etc., are complex-valued. Consequently,
using the notation ∗ for complex conjugates, (5), (3) and (2)
get the form

w =
1
2

Re
(
D̃ · Ẽ∗ + B̃ · H̃∗

)
,

∇× H̃ = J̃ − iωD̃ , ∇× Ẽ = iωB̃ ,

∇ · D̃ = ρ̃ , ∇ · B̃ = 0 ; (10)

this can be derived even without (9), for particular values
of ω, also with −iωt + ϕ containing different real additive
constants ϕ instead of −iωt. In addition to (10), under
the same assumptions on material characteristics, using the
identity matrix I , then (8) reads

∆H̃ +
(

I + σε−1 i

ω

)
ω2εµH̃ = 0 ,

∆Ẽ + ω2µε

(
I + ε−1σ

i

ω

)
Ẽ = 0 , (11)

which are (formally) two separated complex Hemholtz equa-
tion (instead of the original real Laplace one), with a (seem-
ingly free) real parameter ω, useful for special settings.
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Fig. 1. Simplified electric scheme of the electromagnetic testing method.

Fig. 2. Global scheme of the experimental device.

Fig. 3. Impedance as an experimentally detected function of frequency.

III. EXPERIMENTAL SETUP AND ILLUSTRATIVE EXAMPLE

The announced electromagnetic measurement and identifi-
cation system relies on the analysis coming from (11), making
use of some special choices and simplifications. In the case for

Fig. 4. Various types of applied inductors.

Fig. 5. Preparation of reference composite specimens.

one-dimensional modelling, following [16], Chap. 7, open to
various generalizations, a RLC circuit consisting of (parallel or
serial) capacitors, inductors and resistors can be characterized
by their impedances R, −iωL and (−iωC)−1 where R is
proportional to σ−1, L to µ and C to ε (in our general
notation). In such sense, for the first introduction of the
simultaneous nondestructive testing approach of i) and ii),
developed at the Faculty of Civil Engineering of the Brno
University of Technology (BUT) in the intensive collaboration
with its Faculty of Electrical Engineering and Communication,
simplified scheme of corresponding circuits at Fig. 1 can be
useful. The more detailed information to the design of the
whole measurement system can be obtained from Fig. 2; the
principal quantity for such methodology is then the complex
impedance |Ẽ|/|H̃|, which is a function of ω; this can be
analyzed experimentally, as demonstrated by Fig. 3. To handle
2- and 3-dimensional analysis of i) and ii), the complete
methodology assumes several steps with a moving and rotating
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Fig. 6. Two cases of resulting planar roses of fibre directions.

specimen, under resonance and other significant conditions.
Some applied inductors for the exploitation under laboratory
conditions and in situ are shown at Fig. 4. However, the system
is still in development, involving the process of its industrial
certification, thus we may only sketch its capabilities here,
together with some illustrative identification results.

Practical validation of formal homogenization (or similar)
results can be performed using reference composite specimens
with a priori known properties; preparation of 4 such special
specimens is presented by Fig. 5; the transparency of these
specimens should support their simple visual inspection. The
identification results for i) and ii) in the planar case, well-
known as the “roses of directions”, discussed in [7], for
a practically homogeneous and isotropic material in various
depths from the wall surface (the upper graph) and for a quite
other fibre distribution (the lower graph) is demonstrated at
Fig. 6. The attached photographs document the applicability
of such identification approach in situ, unlike the (rather
expensive) comparative laboratory CT scanning from Fig. 7,
using the commercial equipment GE phoenix v!tome!c L240,
available at BUT in CEITEC (Central European Institute of
Technology, in collaboration with the Masaryk University in
Brno): the couple of upper images shoe the informative surface
view and the view to fibres inside the specimen, whereas the
lower image highlights required results of directional analysis.
Nevertheless, the (seemingly exact) results from CT scanning
are very useful as a relevant database for the development of
numerical identification procedures including their software
implementation.

Fig. 7. CT directional analysis of fibres for a special cylindric specimen.

IV. CONCLUSION

First experience with the new methodology of identification
of i) and ii), based on the design of an original measure-
ment system and on the nontrivial physical, mathematical
and computational analysis, validates its applicability to real
concrete (and similar) structures, which has been the principal
motivation for its development. However, it cannot be still
seen as a closed research project: in addition to the need
to overcome some both technical and theoretical difficulties
(from the optimal choice of inductors to the convergence
of numerical algorithms for ill-posed inverse problems), the
relation between i), ii) and real mechanical (and similar)
material properties, conditioned by the micro- and macro-crack
formation and development, together with cohesion between
metal fibres and a cementitious matrix (as analyzed in [19]),
should be studied in much more details.

Another research direction has been opened using the CT
data together with advanced numerical simulations and prac-
tical measurement results, with the substantial contribution of
the above sketched approach. This can be seen as a poten-
tial bridge between the micro- and macrostructural analysis,
avoiding artificial correlation functions, as well as between the
study of material samples and whole engineering structures in
the near future.
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Leonard Hobst (*1949) and Jiřı́ Vala (*1956) are professors at Brno
University of Technology, Faculty of Civil Engineering, Czech Republic, 602
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