
 

 

  
Abstract— This study aims in developing of a simplified 

dynamic model of cement kiln precalciner between the feed rate of 
the primary fuel and the temperature at precalciner exit. The model 
includes perfect mixers connected in series. The optimum number of 
tanks and the dynamic parameters has been computed using 
production data. A successful attempt has been also performed to 
model the errors between the actual process values and the calculated 
ones by the dynamic model by autoregressive equations. The 
distributions of gain and time constant were also determined, 
providing information about the model uncertainty. The described 
simplified model could be used for parameterization of a PID 
controller for regulating the process. Due to its simplicity, the tuning 
results could be used at least as initial values of the controller. 
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I. INTRODUCTION 
ODERN PRECALCINER systems are steadily and 
increasingly used in cement industry aiming to increase 

the kiln capacity, to use a wide range of primary and 
alternatives fuels,  to improve the clinker quality, to reduce the 
thermal load of the kiln and to prolong the lifetime of brick 
lining. A simplified flow sheet showing the basic components 
of a rotary kiln system (RK) equipped with a four stage 
preheater, precalciner and grate cooler is demonstrated in 
Figure 1.  
    Raw meal is initially fed to the suspension preheater where 
it is heated from the hot gases coming from the kiln and 
precalciner. From cyclone 3 is fed to the precalciner (PCK) 
where is calcined. The decomposed material is introduced to 
the kiln through cyclone 4 where the calcination is completed 
and clinkerization follows. Afterwards clinker falls onto the 
grates of the cooler through the hood of kiln and then it is 
unloaded into storage. The air volumes needed for the 
combustion come from the primary and secondary air for the 
kiln burner as well as from primary and tertiary air for 
precalciner burners. In precalciner usually more than one fuel 
are fed: A finely ground primary fuel, e.g. pet coke and a wide 
range of alternative ones.1 
    The achieved calcination degree of the raw mix at 
precalciner exit has a strong impact on the clinker quality and 
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on thermal consumption. Therefore stable operation of 
precalciner is of high importance. The operation control is 
mainly achieved by: (a) proportioning the fuels in main burner 
and precalciner burners, (b) regulating the fuel flow rate of the 
precalciner using quality or process variables. As quality 
parameters the hot meal calcination degree and clinker free 
lime are utilized. Process parameters convenient to regulate 
fuel rate are the temperature in precalciner outlet or in gas 
outlet of bottom cyclone.  
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Fig. 1 Typical rotary kiln installation  
 
   The stable operation of PCK is one of the critical 
issues in a cement plant therefore the automatic 
operation is highly preferred. This is implemented by 
closing the loop between the primary solid fuel feeder 
and the temperature in PCK output or in gas outlet of 
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bottom cyclone leading in a challenging modeling and control 
problem. Due to the complexity of the processes involved, one 
can find a limited number of attempts in literature to model the 
operation and use the modeling in controller development. 

    Koumboulis and Kouvakas [1]-[2] in two consecutive 
publications presented artificial neural network (ANN) 
structures aiming at controlling and improving clinker 
precalcination. They applied ANN to model the dynamics 
between temperature of gases in precalciner outlet – TG - and 
several variables like mass flows of raw meal and solid fuel, 
temperature and mass flow of tertiary air, temperature of raw 
meal. Using digital implementation of the derived transfer 
function, they proceeded to the development of a PI feedback 
law to regulate the feed rate of solid fuel by using TG as 
process variable. Witsel et al. [3] developed a dynamic model 
to simulate the behavior of cement kiln and using the 
frequency approach they designed a multi-loop control scheme 
based on two PI controllers. Stadler et al. [4] applied model 
predictive control for the stabilization of a kiln precalciner. 
The results of this approach indicated a significantly improved 
performance and more beneficial operating points were 
obtained. Wang et al. [5] developed a first principles dynamic 
model of the precalcination process. The model is based on 
mass and energy balances and consists of a set of ordinary 
differential equations. A stationary solution for the model was 
found and dynamic simulations of step changes in the input 
variables were also presented. Fidaros and al. [6] developed 
also a model based on mass and energy balances to describe 
the flow and the transport phenomena in the precalciner. Their 
numerical model is based on the solution of the Navier–Stokes 
equations for the gas flow and on Lagrangean dynamics for the 
discrete particles. Yang et al. [7] developed two kinds of ANN 
models; back propagation (BPNN) and Radial Basis Functions 
(RBFNN) neural networks and they applied to cement 
calcination process. RBFNN based model reached very high 
fitting results, but the BPNN based model had good 
generalization ability. Their conclusion is that BPNN model 
could be used as simulation model of the calcination process 
for exploring new control algorithms.  
    The objective of the current study is to generate a simplified 
model between the temperature in precalciner outlet and the 
feed rate of the primary fuel that is pet coke in the case 
examined. Industrial data from the data base of Devnya plant 
have been used for this purpose. Tanks of equal volume 
connected in series have been considered. The residual errors 
depending on the tanks number have been estimated. An 
attempt is also made to model the errors between the actual 
process values and the computed ones by the dynamical 
model.    

.  

II. PROCESS MODEL 

A. Transfer Function and Autoregressive Model 
The simplified model is described by a series of equal well- 

stirred tanks with transfer function Gp given in Laplace form 

by (1). The time constant of each tank is T0 (min) and the gain 
is kv.  The input x and output y are percentages of the 
maximum range and given by (2)-(3). These variables can be 
regarded as the control and process variables. 
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Where T (°C) is the temperature in precalciner outlet, TMax is 

the maximum T and y0 (%) is the steady state of precalciner 
output. Respectively Q (t/h) is the fuel feed rate, QMax is the 
maximum Q and x0 (%) is the steady state of fuel input, 
deriving an output y0. The set of the model parameters consists 
of the number of tanks N0, the gain kv, the time constant T0, the 
flow rate x0 and temperature y0 corresponding to the system’s 
steady state, under the specific operating conditions, such as: 
(a) flow rate, temperature and chemical composition of raw 
meal introduced in precalciner; (b) flow rate and calorific 
value of the alternative fuels; (c) gas flow and temperature of 
tertiary air. The short-term and long-term variance of these 
conditions generates the parameters’ uncertainty. 

   The model parameters are estimated using the convolution 
theorem between the input signal x and the process variable y, 
expressed by (4). 
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Where g(t) is the impulse system response. Exclusively 
operating data are used by sampling with appropriate software. 
The sampling period is 1 min. By using a Newton-Raphson 
non linear regression technique, the optimum dynamic 
parameters are computed by minimizing the residual error 
provided by (5):  
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Where sres represents the residual error, ycalc is calculated from 
the model and yexp is the actual one according to (2). The 
number of experimental points is N and k0 is the number of the 
independent model parameters. At time I the error between 
ycalc and yexp, Err(I),  is given by (6). This error is modeled 
with the autoregressive equation (7). 
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Where A0, A1, A2 are the coefficients of the autoregressive 
model. To investigate whether this model’s error is adequate, 
its regression coefficient is checked and its standard error 
compared with the residual error of the dynamic model. 

 

B. Identification of the Model Parameters 
The technique implemented to identify the model 

parameters as well as their uncertainty is very similar to the 
one described by Tsamatsoulis [8] during the development of 
an auto-tuner to evaluate the optimal PID to regulate the 
grinding in a cement mill. Software was developed to load and 
to process operating data of the kiln, extracted directly from 
the plant database. In each extraction two days of data are 
loaded, with a sampling period of one minute. The total period 
of data used was 20 continuous days, a period adequate to 
estimate and assess the dynamics of the process. Then the 
software checks for fuel feeder stoppages and finds continuous 
operating data sets of 120 minutes duration. 

Afterwards the software determines the optimum dynamic 
parameters for each data set and the corresponding regression 
coefficient, R. A minimum coefficient, RMin=0.7, is selected 
and data sets presenting R<RMin are neglected in subsequent 
processing. In parallel the software creates the cumulative 
distribution of the samples population as function of R, C(z; 
R<R0), where z є [0, 1] and  0 < R0 ≤ 1. The number of 
consecutive tanks N0 is an independent parameter needing 
optimization. As optimal N0 is considered the one presenting 
the lowest fraction of samples with R<RMin, computed from the 
cumulative distribution C(z; R<R0). 

For the population of results with R ≥ RMin the mean value 
and standard deviation of each dynamic parameter are 
computed. A minimum number of deviations, Ns, are employed 
as concerns kv and T0 populations. Sets not satisfying the 
constraints │kv - kv,Aver│ ≤ Ns·skv or │T0 – T0,Aver│ ≤ Ns·sT0 are 
considered as outlying and not taken into account in further 
processing. A value of Ns equal to 2 is taken in this 
investigation. The described double screening of the dynamic 
parameters can be thought of as a procedure to enhance the 
validity of the results and to reduce the impact of the load 
disturbances. The processing continues with the calculation of 
the mean and median values, as well as of the standard 
deviation, which is a measure of the parameters’ uncertainty.  

 

III. RESULTS AND ANALYSIS 
The results for the gain, time constant and variables of 

steady state are demonstrated in Table I, as function of the 
number of tanks. For each dynamic parameter, the coefficient 
of variation %CV=100×Std. Dev. / Average is also computed. 
The parameters of the error model or the optimum number of 
tanks are presented in the same Table. Only the values of A1, 
A2 are shown because A0 is almost zero in all cases. To 

investigate the adequacy of the autoregressive error model, the 
average values of sErr and sRes are compared and shown in 
Table I. Since the ratio of the two errors is ~0.21, it can be 
concluded that the superposition of the error model to the 
dynamical model contributes to a noticeable decrease of the 
estimation error. 

 
Table I. Dynamical Parameters 

N0 C(z;R<RMin) Aver. sRes of 
C(z;R≥RMin) 

Aver. R of 
C(z;R≥RMin) 

1     0.794 0.306 0.766 
2 0.643 0.279 0.800 
3 0.593 0.270 0.805 
4 0.551 0.268 0.806 
5 0.536 0.268 0.810 
6 0.529 0.268 0.810 
7 0.551 0.264 0.810 
8 0.562 0.259 0.802 

N0 Aver. kv Median kv Std. Dev. kv  %CV kv 
1 0.765 0.799 0.301  39.4 
2 0.324 0.302 0.117  36.1 
3 0.251 0.241 0.072  28.8 
4 0.226 0.219 0.055  24.6 
5 0.214 0.210 0.049 22.9 
6 0.203 0.197 0.045 22.2 
7 0.202 0.200 0.045 22.1 
8 0.197 0.193 0.046 23.2 

N0 Aver. T0 Median T0 Std. Dev. T0  %CV T0 
1 35.2 40.0 9.8 27.8 
2 7.2 7.1 2.3 32.2 
3 4.0 3.7 1.2 30.0 
4 2.8 2.7 0.8 27.3 
5 2.2 2.1 0.6 26.2 
6 1.9 1.7 0.4 24.8 
7 1.6 1.5 0.4 27.9 
8 1.5 1.3 0.6 42.6 
 Aver. x0 Median x0 Std. Dev. x0  %CV x0 

1 65.2 62.7 23.6 36.2 
2 58.4 57.9 45.5 77.9 
3 59.2 51.4 46.7 78.9 
4 62.5 52.3 42.1 67.3 
5 61.7 50.3 35.4 57.3 
6 54.4 50.3 28.3 52.0 
7 56.0 50.3 26.1 46.5 
8 57.9 51.1 25.1 43.3 

N0 Aver. y0 Median y0 Std. Dev. y0  %CV y0 
1 44.3 43.4 8.0 18.0 
2 42.1 42.0 14.3 34.1 
3 42.6 42.3 12.5 29.4 
4 43.5 42.6 10.2 23.5 
5 43.7 41.9 8.2 18.8 
6 42.2 42.0 5.9 13.9 
7 42.2 42.0 5.3 12.6 
8 42.8 42.1 5.0 11.8 

N0 A1 A2 Aver. sErr of 
C(z;R≥RMin) 

Aver. R of 
C(z;R≥RMin) sErr/sRes 

5 1.54 -0.62 0.057 0.97 0.212 
6 1.54 -0.62 0.057 0.97 0.212 

 
The cumulative population with R < RMin , the average 

values of kv, T0 and the coefficient of variation of kv, T0 are 
shown in Fig. 2. From Table I and Fig. 2 the subsequent 
conclusions are derived. 
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- The optimum number of connected in series perfect mixers 
is N0=5 and N0=6 as for these values C(z;R<RMin) becomes 
minimal.  

 

Fig. 2 Dynamic parameters: (a) C(z;R<RMin); (b) average kv and 
T0; (c) %CV of kv and T0 as function of N0. 

 
- With increasing N0, the average values of both kv and T0 
decrease. 
- For N0=5, 6 the coefficients of variation of kv and T0 are 
minimal. 
- From the %CV values it is concluded that the uncertainty of 
the dynamic parameters is high. 
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Fig. 3 Cumulative distribution of R for N0=6. 
 
- Because the simplified method followed in this study does 
not include modeling of several disturbances, e.g. alternative 

fuels flow rate and heat content, rate and temperature of 
tertiary air, in the optimum case only 47% of the experimental 
sets presents R > 0.7. To notice that the disturbances are 
partially modeled by the autoregressive model, but the 
dynamics of each one is not included. The cumulative 
distribution of R for N0=6 is shown in Fig. 3. 
    The differential distributions for gain kv and time constant 
T0, for N0=6 are demonstrated in Fig. 4 and 5 respectively. 
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Fig. 4 Differential distribution of the gain kv. 
 
    The shape of these distributions leads to the result that both 
variables follow a normal distribution. This conclusion can be 
useful in process simulation.    
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 Fig. 5 Differential distribution of time constant T0. 

  

IV. CONCLUSIONS 
The stable operation of kiln precalciner is one of the critical 

issues in a cement plant and the automatic control is highly 
preferred.  Due to the complexity of the processes involved, an 
analytic modeling is extremely difficult as well as the use of 
such models for control purposes. In this study a simplified 
dynamic model between the temperature in the outlet of 
precalciner and feed rate of the primary fuel is presented. The 
evaluation of the dynamic parameters is based on industrial 
data.  Tanks of equal volume connected in series have been 
considered. The residual errors depending on the tanks number 
have been estimated. The errors between the actual process 
values and the calculated ones from the dynamic model have 
been correlated by an autoregressive model. For each dataset 
the dynamic parameters are determined, the corresponding 
regression coefficient R, as well as the distribution of R for all 
the population of datasets. The optimum number of tanks, 
deriving the minimum error is five and six. The distributions 
of gain and of time constant were also determined. The 
described simplified model could be used for parameterization 
of a PID controller for regulating the process. Due to its 
simplicity, the tuning results could be used as initial PID 
values, needing a more detailed and accurate modeling. 
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