
  
Abstract— The present paper concerns with the analysis and the 

optimization of the main cutting force (Fc) during turning of Ti-6Al-
4V ELI titanium alloy under dry cutting condition by applying either 
full or fractional experimental design. The main cutting variables 
(spindle speed, feed rate and depth of cut) were treated as inputs in 
whilst the main cutting force (Fc) was considered as the 
machinability output (quality (target). Therefore, a three parameter 
design was selected with each parameter having three levels. For the 
full factorial design, the complete combination array was selected 
consisted of 27 experiments. For the fractional factorial design only 
nine (9) experiments according to the L9 orthogonal array proposed 
by Taguchi’s DOE were used. The results obtained by both 
methodologies were further analyzed by applying ANOM and 
ANOVA techniques and compared in order to examine the suitability 
of the proposed experimental designs for machinability studies. 
 

Keywords— Full / fractional factorial design, comparison study, 
titanium alloy, turning, cutting force. 

I. INTRODUCTION 
esign of experiments (DOE) methodology provides four 
different approaches, for experimental data analysis 
namely the "best guess", the "one factor at a time", the 

"full factorial" and the "fractional factorial". In general, 
experiments are designed by adopting one of the available 
orthogonal arrays (OAs) from which experimental runs will be 
determined aiming at collecting the necessary results [1, 2].  

The present paper is focused on a comparison study 
between full and fractional factorial design of experiments 
(DOE) method when they applied on the outputs of a material 
removal process i.e., turning of a titanium alloy. Note that 
numerous authors have published studies aimed at evaluating 
the effects of the cutting parameter variations on the resulted 
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cutting forces. In planning the experimentation, some authors 
have used full factorial designs; others used fractional ones [3-
5]. 

Full factorial DOE method is selected many times of the 
experimenters versus the fractional factorial design and vice 
versa [6-20]. At this point, a crucial question arises. Which 
one is better or appropriate in the case of predicting cutting 
forces during turning of difficult-to-cut materials like titanium 
alloys? 

Usually, the DOE method can be divided in full factorial 
and fractional factorial design [3, 4]. Full factorial design 
means that after parameter design (selection of tested 
parameters and their levels) all combination of the parameter 
levels should be tested in order to analyze the results. In the 
other hand, using fractional factorial design, only the 
statistically important experiments should be used in order to 
analyze the results. Robust design utilizes Taguchi orthogonal 
arrays in order to perform fractional factorial design of 
experiments [21]. Taguchi method is especially suitable for 
industrial use, but can also be used for scientific research. Note 
that the basic elements of Taguchi’s “quality philosophy” as 
well as a recent bibliography on Taguchi’s approach to DoE 
may be found in Taguchi et al.’s Quality Engineering 
Handbook [22]. 

In recent decades, considerable improvements have been 
achieved in turning, enhancing machining of difficult-to-cut 
materials and resulting in improved machinability (better 
surface finish and smaller cutting forces). The forces acting on 
the tool are an important aspect of machining. Knowledge of 
the cutting forces is needed for estimation of power 
requirements and for the design of machine tool elements, 
tool-holders and fixtures, adequately rigid and free from 
vibration. Cutting force calculation and modeling are two of 
the major aspects of metal cutting theory. The large number of 
interrelated parameters that influence the cutting forces makes 
the development of a proper model a very difficult task [19]. 

The prediction of the main cutting force developed during 
longitudinal turning of Ti-6Al-4V ELI titanium alloy by 
applying the above mentioned DOE methods (full vs 
fractional) are presented here. The experimental data were 
extracted from a previous study concerning the machinability 
of the same material by applying a feed forward back 
propagation (FFBP) artificial neural network (ANN) [23]. All 
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turning experiments followed the kinematics of longitudinal 
turning and a 3D cutting force system was considered 
according to standard theory of oblique cutting; see Fig. 1 
[24]. 

It was revealed that fractional DOE is quite sufficient in 
analyzing cutting forces. Titanium was selected as a typical 
difficult-to-cut advanced material; therefore the results of the 
study can be generalized to other alloys with better 
machinability characteristics. 

 

 

Fig. 1. Kinematics of longitudinal turning and cutting forces 
system. 

II. PARAMETER DESIGN 
The comparative study is performed in a three level three 

parameter design (3^3). Table I present the levels and the 
parameters of the 3^3 design. 

 
Table I. Parameter design. 

 
Parameters 

Levels 
1 2 3 

Speed n (rpm) 420 600 850 
Feed s (mm/rev) 0.1 0.18 0.33 

Depth 
of Cut 

a (mm) 0.5 1 1.5 

 
Table II presents all combinations of the parameter design 

3^3; thus twenty-seven (27) experiments. 
 
Table III presents the statistically important combinations of 

the parameter design 3^3; nine (9) experiments. This array was 
taken by Taguchi and called L9(3^4) orthogonal array [21]. 
Orthogonality means that each per of columns have all level 
combinations equal times each one. 

 
 

Table II. Full factorial experimental array. 
 n  

(rpm) 
s 

(mm/rev) 
a 

(mm) 
Fc 
(N) 

1 420 0.1 0.5 140 
2 420 0.1 1 258 
3 420 0.1 1.5 370 
4 420 0.18 0.5 236 
5 420 0.18 1 410 
6 420 0.18 1.5 570 
7 420 0.33 0.5 284 
8 420 0.33 1 564 
9 420 0.33 1.5 840 

10 600 0.1 0.5 120 
11 600 0.1 1 226 
12 600 0.1 1.5 318 
13 600 0.18 0.5 182 
14 600 0.18 1 350 
15 600 0.18 1.5 502 
16 600 0.33 0.5 270 
17 600 0.33 1 538 
18 600 0.33 1.5 760 
19 850 0.1 0.5 132 
20 850 0.1 1 240 
21 850 0.1 1.5 330 
22 850 0.18 0.5 200 
23 850 0.18 1 352 
24 850 0.18 1.5 500 
25 850 0.33 0.5 288 
26 850 0.33 1 562 
27 850 0.33 1.5 800 

Average (μ) 383 
 
Table III. Fractional factorial experimental array L9. 

 n 
(rpm) 

s 
(mm/rev) 

a 
(mm) 

E
m

pt
y 

 

Fc 
(N) 

1 420 0.1 0.5 1 140 
2 420 0.18 1 2 410 
3 420 0.33 1.5 3 840 
4 600 0.1 1 3 226 
5 600 0.18 1.5 1 502 
6 600 0.33 0.5 2 270 
7 850 0.1 1.5 2 330 
8 850 0.18 0.5 3 200 
9 850 0.33 1 1 562 

Average (m) 386.7 
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III. ANALYSES OF MEANS ANOM 
Analysis of means (ANOM analysis) is the procedure of 

estimating the means of each parameter level [19, 21]. The 
calculated 'mean values' are tabulated in Tables IV and V for 
full and fractional design, correspondingly. 

 
Table IV. Mean values - Full factorial design 

Mean 
parameter 

value 

Level 1 Level 2 Level 3 

mni 408.0 362.9 378.2 
msi 237.1 366.9 545.1 
mai 205.8 388.9 554.4 

 
Table V. Mean values - Fractional factorial design 

Mean 
parameter 

value 

Level 1 Level 2 Level 3 

mni 463.3 332.7 364.0 
msi 232.0 370.7 557.3 
mai 203.3 318.0 557.3 

 
In a similar manner, the plots of mean values are presented 

in Figs 2 and 3 for full and fractional approaches, 
correspondingly. 

 

 
Fig. 2. Plot of means – Full factorial design. 

 

 
Fig.3. Plot of means – Fractional factorial design. 

IV. PREDICTION OF OPTIMUM CUTTING FORCE USING 
FRACTIONAL DESIGN 

Based on the ANOM analysis plot of means were obtained; 
see Fig. 3. The optimum level of a parameter is the level that 
results in the minimum force (Fc). Using fractional factorial 
approach, the best parameter values to minimize the cutting 
force are: speed (600rpm; Level 2), feed (0.1 mm/rev; Level 
1), and depth of Cut (0.5mm Level 1). This combination is not 
appeared in L9 orthogonal array (Table III) However, it is 
included in the full factorial approach (Table II) and it is the 
best combination for all the twenty-seven (27) experiments 
(Fc=120N; minimum for the whole range of experiments).  

 

V. ANALYSES OF VARIANCES (ANOVA) 
Analysis of variances (ANOVA) is an additive data 

decomposition statistical method using sum of squares which 
indicates the variance of each parameter onto the experimental 
area [2, 21]. The symbols used read as follows: 

• DoF: Degree of freedom 
• SoS: Sum of squares 
• MS: mean square 
• F: F ratio used for only quantitative understanding (in 

general if F is smaller than 1, means that the factor 
or parameter is not important) 

• %: Shows the impact of its parameter on total error 
• Error: due to parameter levels 

Total error: ( )∑ −
n

in
1

2µ  (1) 

Table VI. ANOVA - Full factorial design 
 DoF SoS MS F % 
n 2 9,471 4,735 0.1 0.9% 
s 2 430,408 215,20

4 
5.3 40.4

% 
a 2 547,520 273,76

0 
6.7 51.4

% 
      
Error 6 987,399    
Total 
Error 

26 1,065,53
1 

40,982   

 
Table VII. ANOVA - Fractional factorial design 

 DoF SoS MS F % 
n 2 27,923 13,961 0.3 6.9% 
s 2 159,915 79,957 1.6 39.8% 
a 2 202,360 101,18

0 
2.0 50.3% 

*e 2 11,891 5,945 0.1 3.0% 
Error 8 402,088 50,261   
*Total 
Error 

2 11,891 5,945   

*error due to empty column.  
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VI. CONCLUSIONS 
From the results presented above it is concluded that the use 

of fractional factorial design for analyzing cutting force in 
turning of titanium alloys leads to quite accurate results.  

ANOM analysis of the two methods indicated the same 
trends of parameters levels; compare Figs 2 and 3. 

Prediction of the best combination parameter values using 
the fractional factorial design is confirmed (the combination 
speed: 600rpm; feed: 0.1mm/rev and depth of Cut: 0.5mm 
results in the minimum cutting force, Fc=120N). 

ANOVA analysis gave for both approaches the same results. 
•  Depth of cut is the most important parameter given an 

impact about 50% 
•  Feed is the second most important factor given an impact 

about 40% 
•  Speed is not an important parameter for cutting forces 

inside the experimental region. 
As future perspectives it could be mentioned the 

investigation of the parameter interactions and the 
identification of criteria for selecting between additive, 
regression or artificial neural network models. 

Note that more materials will be tested in order to 
investigate the impact of hardness of the test material on the 
results. 

The same approach can be implemented for analyzing other 
performance indicators such as surface roughness and/or tool 
wear measures. 
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