
 

 

  
Abstract—Electron transport in the GaAs/AlAs quantum wire 

transistor structure is simulated by means of ensemble Monte Carlo 
method under the effect of external alternating electric field. 
Nonlinear properties of electron transport are studied in terahertz 
range. The efficiency of high order harmonics generation in the 
structure is estimated for the lattice temperature of 300 K. 
 

Keywords—Electron transport, GaAs quantum wire, Monte 
Carlo simulation, terahertz generation. 

I. INTRODUCTION 
LECTRICAL properties of semiconductor structures with 
one-dimensional electron gas have been intensively 

investigated for decades. A3B5 quantum wires have been 
considered as the basis of novel high electron mobility 
transistors operating at very high frequencies. State-of-the-art 
technologies allow fabrication of field-effect transistors based 
on thin quantum wires with gate-all-around structures [1], [2]. 
Such quantum wire transistors could be promising for the use 
as elements of modern integrated circuits. 

By now electrical characteristics of semiconductor quantum 
wire structures, including quantum wire based field-effect 
transistors, have been studied by means of different 
approaches [3]–[6], as well as by Monte Carlo method [7], [8]. 
Ensemble Monte Carlo simulation has proved its efficiency in 
simulation of semiconductor structures and devices. One of the 
advantages of the method is the possibility of inclusion into the 
simulation complex physical effects such as rigorous 
description of scattering processes, quantum effects, realistic 
description of the band structure and other. 

Modern integrated circuits tend to operate at rather high 
frequencies, so transient and periodic processes occurring in 
the circuit elements are of great interest too. Transient and 
periodic processes in the systems with one-dimensional 
electron gas can be also investigated with the help of ensemble 
Monte Carlo simulations [9], [10]. 

As a result of miniaturization process, the elements of 
integrated circuits are forced to operate under the effect of 
alternating electric fields with rather high strengths. The 
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charge carrier transport under such conditions exhibit strongly 
nonlinear properties. In connection with this, the possibility to 
use the nonlinear transport properties for generation of 
radiation in terahertz range has attracted much attention 
recently. The method to ascertain the efficiency of high order 
harmonic generation was proposed in [11], [12], and the 
generation efficiency was calculated for bulk semiconductors. 
Also the efficiency was calculated for submicron diodes [13]. 
The possibility to use quantum wire structure as an ultra high 
frequency generator was proposed in [14]. In the latter work 
ballistic electron transport was considered. 

The aim of our study is to investigate the possibility and 
ascertain the efficiency of high order harmonics generation in 
the GaAs quantum wire structure in the range of fundamental 
frequencies from 0.2 THz to 1 THz. In our study we 
investigate electron transport in the approximation of infinitely 
long quantum wire, so that electron transport in the structure is 
controlled by electron scattering in the wire channel. In that 
case the nonlinearity of electron transport occurs due to 
scattering processes and intersubband transitions. 

II. CALCULATION OF ELECTRON STATES IN THE WIRE 
In present study electron transport is simulated in gate-all-

around GaAs/AlAs quantum wire transistor structure. The 
schematic cross-section of the wire is represented in Fig. 1. 
The structure consists of a thin 10 nm×10 nm GaAs channel 
surrounded by AlAs barrier layer. The thickness of AlAs is 
supposed to be 5 nm. The gate is aluminum. 

Electron transport in the structure occurs due to the 
application of external electric field along the Z-direction. In 
the given structure electron motion is free along the wire 
channel (Z-direction) and is spatially confined in transverse 
dimensions X and Y. The latter leads to electron energy 
quantization and formation of so called one-dimensional 
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Fig. 1 the schematic cross-section of the simulated quantum wire 
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energy subbands. To define subband energies and electron 
wave functions the numerical solution of corresponding 
Schrodinger and Poisson equations must be performed. 

The Schrodinger equation for the wire in parabolic band 
approximation takes the following form [15], [16] 
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where   is the Planck constant, m*(x, y) is the position 
dependent electron effective mass, ψi(x, y) is the electron wave 
function in i-th subband, and Ei is the subband energy. V(x, y) 
is the potential energy given by the equation 

 
h xc( , ) ( , ) ( , ) ( , )V x y V x y V x y e x y= + − ϕ , (2) 

 
where Vh(x, y) is the potential describing the conduction band 
offset between GaAs and AlAs, Vxc(x, y) is the exchange-
correlation potential, e is the magnitude of electron charge and 
ϕ(x, y) is the electrostatic potential. The electrostatic potential 
in the structure is derived via the solution of the Poisson 
equation 
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with ε0 being the electric constant and ε(x, y) – the position 
dependent relative permittivity of the material. Electron 
concentration ne(x, y) is defined by the formula [15] 
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where Ef if the Fermi energy, kB is the Boltzmann constant and 
T is the lattice temperature. The system of equations (1)–(4) is 
solved self-consistently. 

For the solution of the Schrodinger equation the extraction-
orthogonalization procedure described in [16] is used. In 
present simulation model we consider electron transport only 
in Γ valley of GaAs. The treatment of the free electron motion 
along the wire channel takes into account the nonparabolicity 
of the dispersion relation. The Poisson equation is solved by 
means of successive overrelaxation method. The boundary 
condition for electron wave function implies that it vanishes at 
the semiconductor-metal interface. Boundary condition for the 
Poisson equation is defined by the applied gate bias. It is 
assumed that the position of the Fermi level and, as a result, 
the electron concentration in the structure is controlled by the 
gate bias. The Schottky barrier height for Al/AlAs system is as 
high as 1.15 eV [17]. 

III. ELECTRON SCATTERING RATES CALCULATION 
Electron scattering rates are calculated with account of 

collisional broadening. The calculation procedure includes 
electron scattering by confined modes of acoustic and polar 
optical phonons, and GaAs/AlAs interface roughness 
scattering. 

Acoustic phonon scattering is treated in elastic 
approximation. The corresponding overall scattering rate for 
electron transitions from initial subband i to all the final 
subbands j is given by the formula [18]–[20] 
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In the equations above E is the electron kinetic energy, ρ is 

the density of GaAs, v is the sound velocity in GaAs, Bac is the 
acoustic deformation potential, ηi is the collisional broadening 
term, ∆Eij = Ej – Ei, and Θ is the unit step function. Subscripts 
“f” and “b” stand for “forward” and “backward” scattering 
processes, respectively. In the case of (5) the rates of forward 
and backward scattering processes are equal. 

Polar optical phonon scattering rate is defined as follows 
[18]–[20] 
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where ωα is the phonon frequency, ∞

αε  и εα are the optic and 
static permittivities of the material, respectively, nα is the 
Bose-Einstein distribution function. Subscript α stands for 
material, i.e. α = GaAs or AlAs, and superscripts “e/a” stand 
for processes with phonon emission and absorption, 
respectively. Lx and Ly are the transverse dimensions of the 
structure. Sα(x, y) is the step function which satisfies the 
following conditions: SGaAs is equal to 1 in GaAs and is equal 
to 0 in AlAs, and SAlAs is equal to 1 in AlAs and is equal to 0 
in GaAs. In “ ±  ” and “  ” the upper sign corresponds to the 
process with phonon emission and the lower one to the process 
with phonon absorption, respectively. 

Finally, the surface roughness scattering in the wire must be 
considered due to the imperfectness of the GaAs/AlAs 
interface. Taking into account that there are two by two 
scattering planes in the wire (denoted by subscripts 1 and 2 for 
partial derivatives in each direction) and basing on the results 
of [20], [21], we arrive at the following expression for the 
surface roughness scattering rate 
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In (7) *( ) 2 /K E m E=  , ∆ is the surface roughness 

amplitude and Λ is the roughness correlation length. 
Parameters ∆ and Λ are supposed equal for all scattering 
planes. For certainty the values of the surface roughness 
amplitude and correlation length are the following: ∆ = 0.5 nm 
and Λ = 6 nm. The values of the parameters a = 0.163438 and 
b = 0.105886 were obtained in [21]. Current model implies 
that the surface roughness scattering is elastic and 
intrasubband process. 

IV. MONTE CARLO SIMULATION RESULTS AND DISCUSSION 
In our simulations we suppose that the external alternating 

electric field is varying in time according to harmonic law of 
the following form 

 
0 m( ) sin(2 )F t F F ft= + π , (8) 

 
where F is the field strength, F0 is the strength of the constant 
field component, Fm is the amplitude of alternating field 
component, f is the frequency, and t is time. In our previous 
works [9], [10], [20] we restricted our simulations to the case 
of electric quantum limit, i.e. population of the only one lowest 
subband was taken into account. The approximation of electric 
quantum limit is appropriate for thin quantum wires and 
moderate electric field strengths. To make the results of our 
current calculations adequate for regarded field strengths we 
took into account up to 8 electron energy subbands while 
solving the Schrodinger equation. The lattice temperature was 
taken 300 K. 

The Monte Carlo simulation starts with initial Maxwell 
distribution of electron momentum in the direction of free 
motion. At the beginning of the simulation electrons populate 
the lowest energy subband. Simulation continues for a period 
of time which is enough for the cyclostationary conditions to 
be established. Simulation data are collected after this period 

 

 

 

 
Fig. 2 the efficiency of high order harmonics generation: (a) – f = 

0.2 THz, (b) – f = 0.5 THz, (c) – f = 1 THz 
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of time. 
For a given electron density in the structure, electric current 

in the channel is defined by electron drift velocity. In this case 
the efficiency of the kth harmonic generation can be expressed 
as the ratio of its intensity Ik to the intensity of the fundamental 
one I1 according to the following formula [11] 

 
( )2 2 2

1 1k kI I a k a= , (9) 

 
where ak are coefficients of the Fourier transform of the 
electron drift velocity versus time dependence, which is 
obtained from the Monte Carlo simulation. 

In the Fig. 2 the efficiency defined by (9) is plotted versus 
the field strength ratio F0/Fm (see formula (8)). The value of 
Fm is 105 V/m. The gate voltage is 0 V. The efficiency was 
calculated for the external field frequency range from 0.2 THz 
to 1 THz with the step 0.1 THz. In the figure the results for f = 
0.2 THz, f = 0.5 THz and f = 1 THz are presented. The results 
are plotted only for three higher harmonics as the efficiency of 
other harmonics (k>4) is too low for the considered electric 
field strength values. When the constant field component is 
zero, only odd harmonics are present. As it can be seen from 
the figure, the efficiency of the second and the fourth harmonic 
generation increases with the growth of F0. At the same time 
the efficiency of the third harmonic decreases. In the examined 
range of F0/Fm ratio a local maximum of the second harmonic 
generation efficiency is observed for the ratio in the interval 
from 0.25 to 0.45. 

The results of calculations show that the efficiency of high 
order harmonics generation in the quantum wire structure 
under considered conditions is lower in comparison with bulk 
GaAs and submicron diode structures [11], [13]. This may be 
caused by the fact that the amplitude of the electric field 
strength regarded in our work is lower than that used for bulk 
materials. We restricted our calculations to the case of Fm = 
105 V/m and F0 = 5⋅104 V/m as electron transport is simulated 
only in Γ valley of GaAs. At higher field strengths electron 
transitions to L and X valleys must be sufficient which may 
lead to higher nonlinearity of electron transport and, in turn, to 
higher generation efficiency. 

V. CONCLUSION 
In present study the nonlinearity of electron transport in 

GaAs quantum wire structure has been investigated and the 
possibility of high order harmonics generation has been 
shown. Though the calculated generation efficiency under 
considered conditions may be lower for the quantum wire 
structure than for bulk materials, quantum wire structures must 
be superior in electronics applications due to lower parasitic 
capacities. 

In our work we considered an approximation of “infinitely” 
long quantum wire. So the investigation of harmonics 
generation in quantum wire structures with finite channel 
lengths, particularly in quantum wire field-effect transistors, 
must be an interesting point. 
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