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Abstract— We provide a brief review of our recent studies 
concerning the effects of various mechanisms of plastic 
deformation of nanocrystalline materials on their fracture 
toughness. We consider both conventional deformation 
mechanisms, such as lattice dislocation slip, and the deformation 
mechanism pronounced mostly in nanocrystalline solids, such as 
grain boundary (GB) sliding and migration. We demonstrate that 
with a decrease in grain size, the effect of conventional lattice 
dislocation slip on fracture toughness enhancement significantly 
decreases. At the same time, for nanocrystalline solids with 
smallest grain size fracture toughness can be increased due to GB 
sliding and migration. This implies that a transition from lattice-
dislocation-mediated toughening to GB-deformation-produced 
toughening can occur at a critical grain size in nanocrystalline 
solids. 

Keywords— nanocrystalline materials, fracture, grain 
boundaries 

I.  INTRODUCTION 

It is well known that nanocrystalline materials have 
superior strength and hardness that significantly exceed the 
corresponding characteristics of polycrystalline materials (e.g., 
[1–6]). The excellent mechanical properties of nanocrystalline 
solids are associated with the peculiarities of their structure, 
including the presence of high-density ensembles of grain 
boundaries (GBs) and nanoscale grains. In particular, 
interphase boundaries play the role of effective barriers for the 
motion of lattice dislocations, which represent the main 
carriers of plastic flow in grains, and thereby result in very 
high values of strength and hardness of nanomaterials. 

At the same time, as the grain size of nanocrystalline 
materials decreases, many such materials become brittle. It is 
assumed that the brittle behavior of nanocrystalline solids is 
related to the presence of high-density ensembles of GBs that 
play the role of barriers for lattice dislocations. Indeed, in 
ductile polycrystalline materials crack growth is suppressed by 
means of lattice dislocation emission from crack tips. 
However, in nanocrystalline materials GBs limit dislocation 
emission from crack tips, which may lead to a brittle behavior 
of nanocrystalline materials. In this connection, along with 
dislocation plasticity, the alternative mechanisms of plastic 
deformation (that are essential precisely in nanocrystalline 
materials) acquire special importance. Such mechanisms 

include GB sliding, GB migration and rotational deformation, 
and the action of such mechanism can lead to an increase of 
the fracture toughness of nanocrystalline materials. The aim of 
the present work is to elaborate the models that describe the 
effects of grain size and plastic deformation processes on the 
fracture toughness of nanocrystalline materials. 

II. EFFECT OF LATTICE DISLOCATION EMISSION ON 
FRACTURE TOUGHNESS IN NANOCRYSTALLINE SOLIDS 

Consider first the traditional mechanism of plastic 
deformation – the motion of lattice dislocations. We assume 
that in nanocrystalline materials cracks can be retarded as a 
result of dislocation emission from their tips. Also, when 
considering dislocation emission from crack tips, we assume 
that GBs can serve as stoppers for dislocations. In this case, 
the dislocations emitted from the crack tips will be stopped at 
the neighboring GBs, hindering the emission of subsequent 
dislocation from these tips. As a result, crack blunting in 
nanocrystalline materials may be less pronounced than in their 
polycrystalline counterparts. If crack blunting in 
nanocrystalline materials is insignificant, it does not prevent 
crack growth, and so nanocrystalline materials become brittle. 

Note that the above scenario is realized in the situation 
where slip of lattice (perfect or partial) dislocations dominates 
in nanocrystalline materials. In particular, it is the case of 
room temperature deformation of nanocrystalline and 
ultrafine-grained metals having grain size d larger than the 
critical size dc ≈  20 nm [6–9]. In these materials, one expects 
that emission of lattice dislocations from crack tips is the 
dominant micromechanism for crack blunting at room 
temperature. 

Let us calculate the critical parameters of dislocation 
emission from a tip of a blunt crack. To do so, consider a 
nanocrystalline solid under a remote one-axis tensile load 
(Fig. 1) The solid is supposed to be elastically isotropic and 
have the shear modulus G and Poisson ratio ν . Let a long flat 
crack grow in the solid, as it is schematically shown in Fig. 1. 
Following the approach [10,11], we model the crack as an 
elongated ellipse with a curvature radius ρ  at the crack tip, 
which is much smaller than the crack half-length a (Fig. 2). 
(The crack tip curvature radius ρ  is related to the ellipse 
semi-axes a and p as: 2 /p aρ = .) We also introduce a 
Cartesian coordinate system (x, y) with the origin at the ellipse  
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Fig. 1. Crack in a deformed nanocrystalline or ultrafine-grained solid. (a) 
General view. (b) The magnified inset highlights generation of edge 
dislocations near the tip of a long crack. 

center and a polar coordinate system (r, θ ) with the origin at 
the right edge of the ellipse. In the Cartesian coordinate 
system, the stress yyσ  created by the external tensile load at 
the tip of the elliptic crack is in the following relationship with 
the crack tip curvature radius ρ  [10,12]: 

 2( , 0) I
yy

Kx a yσ
πρ

= = = , (1) 

where IK  is the generalized stress intensity factor [13] 
assuming that the ellipse is replaced by a sharp crack. 
Following [10], we also suppose that the growth of the blunt 
crack occurs if the tensile stress yyσ  at the crack tip reaches 
some critical value pσ  ( yy pσ σ= ). Within the macroscopic 
description (that does not consider details of the process at the 
crack tip), the crack grows if I ICK K= . Combining this with 
the relation ( , 0)yy px a yσ σ= = =  and formula (1), we obtain: 

 
2

p
ICK

σ πρ
= . (2) 

Formula (2) is valid, when ρ  is larger than some critical 
radius cρ   at which the crack tip can be considered as curved. 
In the case of cρ ρ<  (sharp crack), we use the formula [14] 

br 4 / (1 )IC ICK K Gγ ν= = − , where γ  is the specific surface 
energy. 

Now consider dislocation emission from the tip of a blunt 
crack. Let the first dislocation be emitted from the crack tip 
and stop at the neighboring GB. Then the subsequent 
dislocations are emitted and move along the same slip plane 
until they reach their equilibrium positions. Examine the 
situation where N dislocations have already been emitted from 
the crack tip and are located at their equilibrium positions. 
Assume that the emitted dislocations are of edge type, and the 
direction of their Burgers vectors coincides with the direction 
of their glide and produces an angle θ  with the x-axis 
(Fig. 1).  We also take into account that every dislocation 
emitted from the internal crack of finite extent produces an 
opposite dislocation inside the crack. 

The projection F of the total force, acting on the (N+1)-th 
emitted dislocation, onto the r-axis directed from the crack tip 
along the emission plane can be written as  

emit im

d-d d-d

1

( , ) ( , ) ( , )

( , , ) ( 1) (0, , )
N

k
k

F r F r F r

F r r N F r

θ θ θ

θ θ
=

= +

+ − +∑
,      (3) 

where emit ( , )F r θ  is the projection of the force exerted by the 
stress field created by the applied load in the vicinity of the 
crack tip onto the r-axis, im ( , )F r θ  is the projection of the 
image force, acting on the dislocation, onto the r-axis, 

d-d ( , , )kF r r θ  is the projection of the force that the k-th 
dislocation exerts on the (N+1)-th dislocation onto the r-axis, 
and d-d( 1) (0, , )N F r θ− +  is the projection of the force that the 
dislocation inside the elliptic crack exerts on the (N+1)-th 
emitted dislocation. 

The forces appearing in the right hand side of formula (3) 
are calculated [15] using the expressions [16] for the complex 
potentials created by dislocations and the applied load in a 
solid with an elliptic crack. Assume that the emission of 
(N+1)-th dislocation (N=0,1,2,…) is possible if there is a 
region within the interval dr r d< < , where this dislocation is 
repelled from the crack tip, that is, 

emit im d-d
1 1 1

1
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In order to calculate the maximum number Nm of lattice 
dislocations that can be emitted along the same slip plane, we 
use the following calculation procedure. Also, as a first 
approximation, we assume that emission of every dislocation 
increases the crack tip curvature radius by sinb θ . First, we 
verify validity of criterion (4) for the emission of the first 
dislocation. If this criterion is valid, we place the first 
dislocation at the distance d from the crack tip and verify 
validity of criterion (4) for the emission of the second 
dislocation. If this criterion is valid for the second dislocation, 
we calculate its equilibrium position and check the validity of 
criterion (4) for the emission of the third dislocation, and so 
on. The procedure is carried out for all the new emitted 
dislocations and ends when criterion (4) for the emission of a 
new dislocation stops to be valid. Also, we assume that 
emission of every dislocation increases the crack tip curvature 
radius by sinb θ . 

As a result, we have calculated the maximum number mN  
of dislocations that can be emitted along the same plane from 
the crack tip and their equilibrium positions. Using the 
expressions [15] for the stress fields of dislocations, we have 
calculated the stresses created by the dislocation at the crack 
tip. Then we have modified the criterion 

( , 0)yy px a yσ σ= = =  of crack growth, replacing the left hand 
side of the latter expression by the total stress created by the 
applied load and the emitted dislocations. As a result, we have 
calculated the critical stress intensity factor ICK  that 
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corresponds to the maximum number mN  of emitted 
dislocations located at their equilibrium positions. 

The critical stress intensity factors ICK  are presented in 
Fig. 2 as functions of grain size d for Al and α-Fe. As follows 
from Fig. 2, ICK  significantly increases with grain size d.  In 
particular, an increase in grain size from 10 to 300 nm makes 

ICK  two or three times larger and thus dramatically enhances 
the toughness/ductility of the solid. Conversely, a decrease in 
grain size dramatically decreases ICK  and thus makes the 
solid much more brittle. 

Fig. 2 demonstrates that, for ultrafine-grained Al and α-Fe 
with a grain size of 300 nm, the calculated values of ICK  are 
around 1.2 and 4 MPa m1/2, respectively. These values are still 
very small. In particular, they are more than an order of 
magnitude smaller than the experimental values of ICK  for 
conventional polycrystalline Al and α-Fe.  At the same time, 
in calculating these values we have taken into account 
dislocation emission only along one slip plane. Apparently, an 
account for dislocation emission along multiple slip planes in 
the course of crack growth would increase the calculated 
values of ICK  and make the effect of grain size on fracture 
toughness (a decrease in ICK  with a decrease in grain size) 
still more pronounced. 

It is important to compare the obtained theoretical values 
for ICK  with experimental results. Unfortunately, the 
experimental measurements of the tensile fracture toughness 
of nanocrystalline metals are very limited. Therefore, we 
compare our estimates with the experimental data [17] for 
nanocrystalline bulk FeAl alloys. These data demonstrate that 
with a decrease of the grain size of nanocrystalline FeAl from 
40 down to 20 nm, its fracture toughness decreases from 12 
down to 4 MPa m1/2. This is in agreement with our conclusion 
on a decrease of fracture toughness (associated with 
dislocation emission from crack tips) with decreasing grain 
size. 

Thus, for nanocrystalline materials with ultrasmall grain 
sizes lattice dislocation emission cannot provide significant 
enhancement of fracture toughness. Therefore, it is of interest 
to reveal alternative deformation mechanisms that can increase 
fracture toughness in such materials. Such mechanisms 
include, in particular, GB sliding, GB migration and rotational 
deformation. In the following section, we consider the effect 
of cooperative GB sliding and migration on the fracture 
toughness of nanocrystalline materials. 

III. COOPERATIVE GRAIN BOUNDARY MIGRATION AND 
SLIDING NEAR A CRACK TIP. MODEL  

Let us consider a deformed nanocrystalline specimen with a 
crack (Fig. 3) and assume that the material is an elastically 
isotropic solid with the modulus G and Poisson’s ratio ν . For 
simplicity, we also consider the case where the specimen is 
under a tensile load 0σ  normal to the crack tip; that is, under a 
mode I load (Fig. 3a). The crack can propagate either inside 

grains or along GBs. For clarity, Fig. 3a illustrates the case of 
an intragrain crack. 

 
Fig. 2. Dependences of the critical stress intensity factor ICK  on grain size d 
for Al and α-Fe. 

 

 
Fig. 3. Grain boundary deformation processes in nanocrystalline specimen 
near a crack tip. (a) General view. (b) Initial configuration I of grain 
boundaries. (c) Configuration II results from pure grain boundary sliding. 
Dipole of disclinations AC is generated due to grain boundary sliding. (d) 
Configuration III results from cooperative grain boundary sliding and 
migration process. Two disclination dipoles CD and BE are generated due to 
this cooperative process.  

The applied load and high stress concentration near the 
crack tip can induce both GB migration and sliding near this 
tip [18,19]. These processes relax the high elastic stresses near 
the crack tip and thereby can slow down crack growth. 
Assuming that the intensity of GB migration and sliding and 
their effect on crack growth strongly increase with a decrease 
of the distance between the crack tip and GBs involved in 
these processes, it is reasonable to believe that the dominant 
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effect of GB migration and sliding on crack propagation may 
be determined by the migration and sliding of GBs near the 
tip. 

In the following, we will focus on the case of cooperative 
GB sliding and migration [19]. The geometry of this 
deformation mechanism is schematically presented in Fig. 3. 
Figure 3a depicts a two-dimensional section of a deformed 
nanocrystalline specimen. Within the proposed model [18,19], 
GB sliding occurs under the applied shear stress and 
transforms the initial configuration I of GBs (Fig. 3b) into 
configuration II (Fig. 3c). GB sliding is assumed to be 
accommodated, in part, by emission of lattice dislocations 
from triple junctions (Fig. 1c). Besides GB sliding results in 
the formation of a dipole of wedge disclinations A and C in 
configuration II (Fig. 3c) characterized by strengths ω± , 
whose magnitude ω  is equal to the tilt misorientation of the 
GB AB [19] (AB is assumed to be a symmetric tilt boundary). 
The disclination dipole AC has an arm (the distance between 
the disclinations) equal to the magnitude x of the relative 
displacement of grains (Fig. 3c).  

We further assume [18] that in parallel with GB sliding, 
stress-driven GB migration occurs as well, so that  the stress 
fields of defects created by GB sliding are, in part, 
accommodated by the defects created by GB migration. In the 
case shown in Fig. 3, the migration of the grain boundary AB 
into another position DE results in the formation of a 
quadrupole of wedge disclinations with the strengths ω±  at the 
points A, B, D and E [18]. The disclination with the strength  

ω+  appearing at the point A due to GB sliding and the 
disclination with the strength ω−  appearing at the same point 
due to GB migration annihilate. The annihilation results in the 
disclination configuration shown in Fig. 3d. In general, the 
cooperative GB sliding and migration process transforms the 
initial configuration I (Fig. 3b) into the final configuration III 
(Fig. 3d). During this processes, in parallel with GB sliding that 
causes the relative displacement of grains over the distance x, 
stress-driven migration of the vertical GB occurs over the 
distance y from its initial position AB to the new position DE 
(Fig. 3d). The cooperative GB sliding and migration process 
leads to the formation of two disclination dipoles CD and BE 
(Fig. 3d). The disclination dipole CD of wedge disclinations is 
characterized by the strength magnitude ω  and the arm 
| |x y− . The disclination dipole BE is characterized by the 
strength magnitude ω  and the arm y . 

IV. EFFECTS OF COOPERATIVE GRAIN BOUNDARY 
MIGRATION AND SLIDING ON CRITICAL STRESS INTENSITY 

FACTOR FOR CRACK GROWTH IN NANOCRYSTALLINE SOLIDS  

Let us now consider the effect of the applied tensile load 
and a long flat mode I crack on the cooperative GB sliding and 
migration process (Fig. 3). The vertical GB is assumed to be 
normal to the crack growth direction and make an angle ϕ  
with the grain boundaries AA1 and BB2 (Fig. 3b). Let the 
triple junction A lie at a distance p from the crack tip and the 
length of all GBs in the initial state (Fig. 3b) be denoted as d. 
To calculate the parameters of the cooperative GB sliding and 
migration process, we have calculated the energy change W∆  

associated with the formation of the disclination configuration 
shown in Fig. 3d. The energy change W∆  can be written [19] 
as 

4 4

1 1

4 1
int1 1

( , ) ( , )

( , , , )

j j j j jj j

j
j k j k j k slj k

W W r s W r

s s W r r A

σθ θ

θ θ

∆ ∆−
= =

−

= =

∆ = +

+ −

∑ ∑
∑ ∑

,      (5) 

where ( ,j jr θ ) are the coordinates of the jth disclination in the 
polar coordinate system with the origin at the crack tip 
(j=1,2,3,4; see Fig. 1), and the rest of the symbols are defined 
as follows: ( , )j jW r θ∆  is the energy of the jth disclination in 

the solid with a crack; ( , )j jW rσ θ∆−  is the energy of the 
interaction between the disclination with the strength ω+ , 
lying in the point ( ,j jr θ ),  and the stress field ilσ  induced by 
the applied load near the crack tip; int ( , , , )j k j kW r r θ θ   is the 
energy of the interaction between the jth and kth disclinations 
(in the solid with a crack) assuming that both disclinations have 
the strength ω+ , and slA  is the work of the stress ilσ  done on 
GB sliding, which does not account the formation of 
disclinations. The parameters js  in Eq. (5) account for the sign 
of a specified disclination and are defined as 1 4 1s s= = , 

2 3 1s s= = − . The first and third terms appearing in the left 
hand side of formula (5) have been calculated using the known 
expressions [20] for the disclination self-energy and the 
energies of the interaction between disclinations in a solid with 
a flat semi-infinite crack, while the other two terms have been 
cast based on the expressions (e.g., [19]) for the stresses 
induced by a remote tensile load in a solid with such a crack. 
The minimum of the energy W∆  corresponds to the 
equilibrium lengths 0x x=  and 0y y=  of GB sliding and 
migration, respectively. 

 
Fig. 4. Dependences of the normalized equilibrium lengths, 0 /x d  and 

0 /y d , of grain boundary sliding and migration, respectively (near a crack tip 
in nanocrystalline Ni) on disclination strength ω . 

The dependences of the parameters 0 /x d  and 0 /y d  on 
the disclination strength ω  are shown in Fig. 4 for the case of 
an intragrain crack in nanocrystalline Ni and the following 
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typical values of parameters: br
I ICK Kσ =   (where IKσ  is the 

stress intensity factor associated with the applied load 0σ , 

4 / (1 )br
ICK Gγ ν= −  is the fracture toughness for brittle 

fracture, and γ  is the specific surface energy), G=73 GPa, 
31.0=ν , 725.1=γ  J/m2, 3/2πϕ = , d=15 nm, p=0. As it is 

seen in Fig. 4, the equilibrium length of GB migration is small 
compared  to  the  length  of  GB   sliding.  Numerical  analysis 

shows, however, that at higher values of the stress intensity 
factor IKσ  the difference between the normalized equilibrium 
lengths 0 /x d  and 0 /y d  diminishes, so that the contribution 
of GB migration (if such migration occurs) to the hindering of 
crack propagation increases. For large enough values of ω , 
the equilibrium lengths 0x  and 0y  gradually increase with 
decreasing ω . Below a critical value of ω  ( 21ω ≈  ), the 
equilibrium length 0y  of GB migration becomes equal to 
zero, whereas the equilibrium length of GB sliding 0x  
increases very rapidly with a decrease in ω , reaching the 
values close to the GB length d. 

Now let us consider the effect of disclination 
configuration, resulting from the cooperative GB migration 
and sliding, on the fracture toughness of a nanocrystalline 
solid. To do so, we will use the standard crack growth 
criterion [21] based on the balance between the driving force 
related to a decrease in the elastic energy and the hampering 
force related to occurrence of a new free surface during crack 
growth. In the examined case of the plane strain state, this 
criterion is given [21] by   

 ( )2 21 2
2 I IIK K
G
ν γ−

+ = , (6) 

where IK  (mode I) and IIK  (mode II) are the stress intensity 
factors for normal (to crack line) and shear loading, 
respectively. In the considered situation where the crack 
growth direction is perpendicular to the direction of the 
external load, the coefficients IK  and IIK  are given by the 
expressions 

 ,q q
I I I II IIK K k K kσ= + = , (7) 

where q
Ik  and q

IIk  are the stress intensity factors induced by 
the internal stresses created by the disclinations located near 
the crack tip (Fig. 3). 

Within the above macroscopic mechanical description, the 
effect of the local plastic flow – the cooperative GB migration 
and sliding mechanisms resulting in the formation of 
disclinations – on crack growth can be accounted for through 
the introduction of the critical stress intensity factor ICK . In 
this case, the crack is considered as propagating under the 
action of the tensile load perpendicular to the crack growth 
direction, while the presence of the disclinations simply 
changes the value of ICK  corresponding to the case of brittle 
crack propagation. In these circumstances, the critical 
condition for the crack growth can be represented as (e.g., 

[14]): I ICK Kσ = .  

Upon substitution of Eq. (7) into Eq. (6) and use of the 
critical condition I ICK Kσ =  one finds the following 
expression for ICK  [19]: 

 2 2( ) ( )br q q
IC IC IIC ICK K k k= − − . (8) 

In Eq. (8) the various quantities are defined as follows: 
|

I IC

q q
IIC II K K

k k σ =
=  and |

I IC

q q
IC I K K

k k σ =
= . It should be noted that 

the quantities q
IICk  and q

ICk  depend on ICK , and, thus, Eq. (8)  
provides the appropriate formula for the determination of 

ICK .  

 
Fig. 5. Normalized critical stress intensity factor / br

IC ICK K  vs grain size d, in 
the case of a grain boundary crack in nanocrystalline Ni and 3C-SiC.   

Now let us consider the effect of grain size on the critical 
stress intensity factor ICK . To do so, in Fig. 5 we have plotted 
the dependences of / br

IC ICK K  on grain size d for the cases of 
GB cracks in nanocrystalline Ni and nanocrystalline ceramic 
3C-SiC, at 30ω =  , p d=  and the other parameter values 
(typical of nanocrystalline Ni) specified above. For 3C-SiC we 
have used the following parameter values: G= 217 GPa, 

0.23ν = , 1.84γ = . Fig. 5 demonstrates that as the grain size 
increases from 10 to 100 nm, the ratio / br

IC ICK K  decreases 
from 2.23 to 1.77, for Ni, and from 1.99 to 1.64, for 3C-SiC. 
Therefore, the suggested cooperative GB sliding and 
migration mechanism is most effective in increasing fracture 
toughness at smallest grain sizes, in contrast to lattice 
dislocation emission from crack tips – the conventional 
fracture toughness mechanism in metallic materials – whose 
effect on the fracture toughness of nanocrystalline metals 
rapidly increases with an increase in grain size (see Fig. 2). 

Thus, the results of the calculations show that cooperative 
GB migration and sliding along a single GB can make the 
critical stress intensity factor ICK  several times larger. 
Apparently, cooperative GB migration and sliding along 
various GBs can increase the value of ICK  much further and, 
as a result, may lead to a significant increase of fracture 
toughness, as compared to the case of pure brittle fracture. 
Also, Fig. 5 demonstrates that in the case where GB sliding 
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and migration is the dominant deformation mechanism, ICK  
decreases with increasing grain size. This is in contrast to the 
situation where the dominant deformation mechanism is lattice 
dislocation slip. In this situation ICK  slightly increases with 
grain size (see Fig. 2). Thus, if both lattice dislocation slip and 
the cooperative GB sliding and migration occur in a 
nanocrystalline solid, one can see the following tendency: for 
sufficiently small grain sizes the effect of lattice dislocation 
slip on fracture toughness should be small compared to that of 
the cooperative GB sliding and migration. At the same time, 
with an increase in grain size, the effect of the cooperative GB 
sliding and migration on fracture toughness becomes small 
compared to that of lattice dislocation slip. This means that at 
a critical grain size a transition from lattice-dislocation-
mediated toughening to GB-deformation-produced toughening 
can occur in nanocrystalline solids. 

V. SUMMARY 

Thus, in this paper we have given a brief review of our 
studies of the effects of various deformation mechanisms of 
nanocrystalline solids on their fracture toughness. We have 
demonstrated that the cooperative GB sliding and migration 
can significantly (several times compared to the case of brittle 
fracture) increase the fracture toughness of nanocrystalline 
solids. Also, we have shown that GB sliding and migration is 
most effective in increasing fracture toughness of 
nanocrystalline metals with finest grains. As the grain size of a 
nanocrystalline metal increases, it is lattice dislocation slip 
that provides the principal contribution to fracture toughness 
enhancement. 
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