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Abstract— This paper studies the effects of Hall and ion slip 
on two dimensional incompressible flow and heat transfer of an 
electrically conducting viscous fluid in a porous medium between 
two parallel plates, generated due to periodic suction and 
injection at the plates. The flow field, temperature and pressure 
are assumed to be periodic functions in tie ω  and the plates are 
kept at different but constant temperatures. A numerical solution 
for the governing nonlinear ordinary differential equations is 
obtained using quasilinearization method. The graphs for 
velocity, temperature distribution and skin friction are presented 
for different values of the fluid and geometric parameters. 

Keywords— Unsteady; Porous medium; Temperature              
distribution; Skin friction; Hall effect; ion slip effect 

I.  INTRODUCTION  
          The flow and temperature distribution through porous 
channels is of great importance in technological and biological 
flows, for example motion of water waves over a shallow 
beach, the mechanics of cochlea in the human ear, 
transpiration cooling, filtration, food preservation, petroleum 
industry, cosmetic industry, polymer technology, the flow of 
blood in the arteries and artificial dialysis, 
magnetohydrodynamic (MHD) generators, etc,. The problem 
of two dimensional incompressible laminar flow between 
parallel plates with either suction or injection was considered 
by many researchers. Berman [1] investigated the flow of two 
dimensional steady incompressible laminar viscous fluid 
through a porous channel where both channel plates have 
equal permeability and the flow at the center line of the 
channel attains maximum. Later Yuan [2] extended the 
problem for different values of suction and injection Reynolds 
numbers. Terril and Shresta [3] considered the incompressible 
viscous fluid through porous walls when suction normal 
velocities are distinct. Gersten and Gross [4] have examined a 
three dimensional incompressible laminar viscous fluid flow 
and temperature distribution with transverse sinusoidal suction 
velocity. Alpher [5] examined an incompressible laminar flow 
and convection heat transfer between parallel plates through a 

transverse magnetic field. Cox [6] discussed a two 
dimensional incompressible viscous fluid between two parallel 
porous walls with symmetric and asymmetric suction. Singh 
and Sharma [7] solved numerically the steady incompressible 
laminar flow of a non-Newtonian fluid and  temperature 
distribution in a porous annulus. Ramanamurthy et al. [8] 
studied the two dimensional incompressible viscous fluid 
between porous parallel plates due to periodic suction and 
injection at the plates, the problem is analyzed up to second 
order. Vidhya and Kesavan [9] considered an incompressible 
viscous fluid flow and temperature distribution in a porous 
medium between two vertical parallel plates and the problem 
is analyzed analytically. Attia and Kotb[10] considered 
incompressible steady and unsteady MHD fluid flow and 
temperature distribution between porous parallel plates with 
suction or injection. Attia [11] considered an unsteady 
transient MHD flow and heat transfer between parallel plates 
with Hall and ion slip effects and obtained the analytical and 
numerical solutions for velocity and temperature distribution 
respectively. Bhat and Mittal [12] analyzed the effects of an 
electrically conducting convective heat transfer in a uniform 
wall with Hall and ion slip. Jha and Apere [13] examined the 
effects of Hall and ion slip on unsteady MHD Couette flow of 
rotating fluid and obtained an analytical solution by Laplace 
transform. Ram [14] studied the effects of Hall and ion slip on 
steady incompressible electrically conducting rotating fluid 
with temperature distribution and obtained an analytical 
solution. Ghara et. al [15] investigated an unsteady electrically 
conducting Couette flow between porous parallel plates with 
Hall and ion slip effects and the solution of flow field 
equations obtained by Laplace transform technique.   
              In this paper we consider the unsteady two 
dimensional flow and temperature distribution of an 
electrically conducting viscous fluid between two parallel 
horizontal plates with Hall and ion slip currents. The solution 
is obtained numerically using quasilinearization technique and 
the effects of suction Reynolds number, suction and injection 
ratio, Hartman number, inverse Darcy parameter, frequency 
parameter, Hall and ion slip parameters on velocity, 
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temperature distribution and skin friction are studied and 
shown graphically. 
 

Nomenclature 

h                        Distance between parallel plates 

2V                     Suction velocity 

1V                      Injection velocity 

1−D                  Inverse Darcy parameter, 
1

2

k

h
 

a                       Suction and injection ratio,
2

11
V

V
−  

p                        Fluid pressure 

Q                      Velocity vector 

c                        Specific heat at constant temperature 

E                        Eckert number,
)12(

2
θθρ

µ

−hc

V
 

k                        Thermal conductivity 

k1                       Permeability parameter 

t                         Time 

u                        Velocity component in x- direction 

v                        Velocity component in y-direction 

0U                  Entrance velocity 

Pr                        Prandtl number,
k
cµ

 

R                         Suction Reynolds number,
µ

ρ hV2  

 J                         Current density  

B                        Total magnetic field. 

 b                         Induced magnetic field 

0B                       Magnetic flux density 

E                         Electric field 

 Ha                       Hartmann number, 
µ

σ
hB0 . 

Greek Letters 

ξ                       Dimensionless y coordinate,
h
y

 

τ                       Force stress tensor 

γ                        Dimensionless axial variable, 









−

h

x

aV

U

2

0  

ρ                        Fluid density 

μ                       Fluid viscosity 

ω                        Frequency 

σ                        Electric conductivity 

α                       Non dimensional  frequency parameter, tω   

θ                       Temperature 

1θ                      Temperature at the lower plate 

2θ                     Temperature at the upper plate 

*θ             Dimensionless temperature,
12

1
θθ

θθ

−

−
 

βi              Ion slip parameter 

βe                    Hall parameter 

αe            Hall and ion-slip parameter, 1+ βi βe 

II. FORMULATION OF THE PROBLEM 
 

The unsteady laminar incompressible electrically conducting 
viscous fluid is assumed to be flowing between two parallel 
porous plates located at the y=0 and y=h as shown in the 
fig.1.The two plates are kept at two different constant 
temperatures θ 1 for the lower plate and θ 2 for the upper 
plate. Let there be a periodic suction at the upper plate and 
periodic injection at the lower plate with velocities Real 

(V2
tie ω )    and Real (V1

tie ω ) respectively.  
The governing equations of an incompressible 

electrically conducting viscous fluid flow and energy in a 
porous medium are 

∇ ⋅ Q   = 0                                        (1)                        









∇+

∂

∂
QQ

t

Q
).(ρ =  – ∇ p – µ ∇ ×∇ × Q   
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
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∂
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θ
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ρ ).( Q

t
c = µ [(∇ Q ):(∇ Q )T+ (∇ Q ):(∇ Q )] + 
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1
JQ

k σ

µ
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where Q  is the velocity vector ,ρ is the density,  p is the fluid 
pressure, k is the thermal conductivity, µ is the fluid viscosity, 
c is the specific at constant temperature, θ is the temperature, 
k1 is the permeability parameter, J is current density , B  is 
total magnetic field and  σ is the electric conductivity. 

 

Since the flow is along x– direction, the flow variables are 
assumed to be independent of the coordinate z. We choose the 

velocity vector as Q  = u(x,y.t) î + v(x,y,t) ĵ  and temperature 
function as θ(x,y,t) and neglecting the displacement current, 
the Maxwell equations and the generalized Ohm’s law are 

  0. =∇ B , JmB µ=×∇ ,
t

B
E

∂

∂
=×∇ ,    

BBJ
B

BJ
B

BQEJ iee ××−×+×+= )()()( 2
00

βββ
σ      (4) 

Where mµ  is the magnetic permeability, E  is the electric 

field, and ,0 bBB +=  b is induced magnetic field, 0B  is 

magnetic flux density, eβ  is the Hall  parameter, iβ is the ion 
slip parameter. 

Under the assumptions that the induced magnetic field 
is negligible compared to the applied magnetic field so that 
magnetic Reynolds number is small, the electric field is zero 
and magnetic permeability is constant throughout the flow 
field.  

We take the velocity components in x and y directions as 
(1965) 
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 (5)  

The boundary conditions on the velocity and temperature 
distribution are 

attxVtxvtxu 11 ),,(,),,(,0),,( θξθξξ ===  0=ξ  

attxVtxvtxu 22 ),,(,),,(,0),,( θξθξξ ===  1=ξ  (6) 

  Where 
h

y
=ξ . 

From equations (2) & (3), we get the following non 
dimensional equations 
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22

2
1111111111 =

+
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fDfffff

ee

V e
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              (9) 
Where  prime denotes differentiation with respect to ξ , 

µ

ρ 2Re
hV

= is Reynolds number, Pr = 
k

cµ  is the Prandtl 

number, 
1

2
1

k

h
D =− is inverse Darcy’s parameter,  

iee ββα += 1  is Hall and ion slip parameter and 

µ

σ
hBHa 0=  is Hartmann number. 

The dimensionless form of temperature from equation (5) can 
be written as  

*θ  = 
12

1

θθ

θθ

−

−
 = Ε( 1g  +  γ 2 2g )                                                   

Where E is the Eckert number, E=
)( 12

2

θθρ

µ

−hc

V
 

The boundary conditions from eq. (9) in terms of f, 1g  and 

2g  are  

0)1(,1)0( =−= faf , ,0)1(,0)0( 11 == ff  

wgg == )1(,0)0( 11 , 0)1(,0)0( 22 == gg            (10) 
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III. SOLUTION OF THE PROBLEM 
The following system of first order linear differential 
equations are obtained from the non linear equations (7), (8), 
and (8) by the substitution 
( f , 1f , 11f , 111f , vf 1 , 1g , 

1
1g ,  2g , 1

2g  )=  

( 87654321 ,,,,,,, xxxxxxxx ) 

     
ξd

dx1  = 2x ,  
ξd

dx 2  = ,3x
ξd

dx 3  = ,4x
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3
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ee
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+− αcos)Re( 3241 xxxx −+ , 
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dx 6   = − 2 7x  + 2
122

2
2
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1Pr(Re x
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−− −

αcos)4 61
2
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ξd
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72

2
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2
2

1 2Pr(Re xxxxD                              

                   α
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2

222

2

81 x
Ha

xx
ee +

−                          (11) 

     the boundary conditions in terms of 
,1x  ,2x  ,3x  ,4x  ,5x  ,6x  ,7x 8x  are 

  
ax −= 1)0(1  , 0)0(2 =x ,  0)0(5 =x , 0)0(7 =x   

  

  
,1)1(1 =x ,0)1(2 =x ,)0(5 wx = 0)1(7 =x        (12) 

Using quasilinearization technique (1965) the system of 
equations (11) is solved numerically subject to the boundary 
conditions (12). 

 

IV. RESULTS AND DISCUSSIONS 
 

To understand the flow characteristics in better way, the 
numerical results for the axial velocity  u, radial velocity v, 
temperature distribution θ  and skin friction coefficient Sf  are  

calculated correct to six places of decimal for different  values 
of Hartmann number Ha, suction Reynolds number Re, 
suction and injection ratio a, frequency parameter α , Inverse 
Darcy parameter 1−D  and Prandtl number Pr in the domain 
[0,1]. 

It is examined that from Fig. 1(a) and 1(b), when the 
values of Re increases the velocity decreased and the 
temperature distribution is increased from lower plate to upper 
plate.  It is observed that from Fig.2(a), 2(b) and 8,   when the 
values of ‘a’ increases the velocity is decreased where as the 
temperature distribution is increased towards the upper plate 
and the skin friction at lower plate is increased with respect to  
Re. It is analyzed that from Fig. 3(a), 3(b) and 9 when the 
values of α  increases the velocity and temperature 
distribution are decreased from lower plate to upper plate and  
the skin friction at the lower plate is also decreased with 
respect to Re. It is noted that form Fig. 4(a), 4(b) and 10 when 
the values of Ha increases the velocity is increased gradually 
up to the centre of the plates then decreased symmetrically and 
where as the temperature distribution is decreased from the 
lower plate to upper plate and the skin friction at the lower 
plate is increased with respect Re. It examined that from Fig. 
5(a), 5(b) and 12 when the values of eβ  increases the velocity 
is increased where as the temperature is decreased from lower 
plate to upper plate and the skin friction at the lower plate is 
also decreased with respect to Re. It examined that from Fig. 
6(a), 6(b) and 11 when the values of eα  increases the velocity 
is increased where as the temperature is decreased towards the 
upper plate and the skin friction at the lower plate is also 
decreased with respect to Re. It is noticed that From  Fig.7(a) 
,7(b) and 13 when the values of 1−D increases the velocity is 
decreased  where as the temperature distribution is increased 
from the lower plate to upper plate  and the skin friction at the 
lower plate is increased with respect to  Re. It is observed that 
from Fig.14 when the values of Pr increases the temperature 
distribution is increased towards the upper plate. 
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Fig.1(a) Effect of Re on Velocity  
 
 

 
 

Fig.1(b) Effect of Re on Temperature  
 
 

 
 

Fig.2(a) Effect of ‘a’ on Velocity 
 

 
 

Fig.2(b) Effect of ‘a’ on Temperature  
 
 

 
 

  

 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig.3(a) Effect of α on Velocity 
 
 

 
 

Fig.3(b) Effect of α on Temperature 
 

 
 

Fig.4(a) Effect of Ha on Velocity 
 

 
 

Fig.4(b) Effect of Ha on Temperature 
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Fig.5(a) Effect of βe on Velocity 
 
 

 
 

Fig.5(b) Effect of βe on Temperature 
 

 
 

Fig.6(a) Effect of αe on Velocity 
 

 
 

Fig.6(b) Effect of αe onTemperature 
 
 
 
 

 

 
 

Fig.7(a) Effect of D-1 on Velocity 
 
 

 
 

Fig.7(b) Effect of D-1 on Temperature 
 

 
 

Fig.8 Effect of ‘a’ on Skin friction 
 
 

 
 

Fig.9 Effect of α on Skin friction 
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Fig.10 Effect of Ha on Skin friction 
 
 

 
 

Fig.11 Effect of αe on Skin friction 
 

 
 

Fig.12 Effect of βe on Skin friction 
 

 
 

Fig. 13 Effect of D-1 on Skin friction 
 
 

 

 
 

Fig. 14 Effect of Pr on Temperature 
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