



Abstract—Computational health informatics is an emerging field

of research focusing on the devise of novel computational techniques

to facilitate healthcare and a variety of medical applications.

Healthcare organizations at the present day regularly generate huge

amount of data in electronic form stored in databases. These data are

valuable resource for automatic discovering of useful knowledge,

known as knowledge mining or data mining, to gain insight

knowledge and to support patient-care decisions. During the past

decades there has been an increasing interest in devising database

and learning technologies to automatically induce knowledge from

clinical and health data using imperative and object-oriented

programming styles. In this paper, we propose a different scheme

using declarative programming, implemented with functional and

logic-based languages, in which we argue to be more appropriate for

the knowledge intensive tasks. Easy knowledge transfer to the

knowledge base content is demonstrated in this paper to confirm the

appropriateness of high level declarative scheme. Our system

includes three major knowledge mining tasks: data classification,

association analysis, and clustering. We demonstrate knowledge

deployment aspects through the trigger creation and the automatic

generation of knowledge base for the medical decision support

system. These knowledge deployment examples illustrate advantages

of the high level logic and functional scheme.

Keywords— Computational health informatics, Healthcare

decision support, Knowledge mining, Declarative programming,

Prolog and Erlang languages.

I. INTRODUCTION

NOWLEDGE mining is the process of deriving new and

useful knowledge from vast volumes of data and other

background information. Derived knowledge can possibly be

patterns of data represented in summarized form, relationships

among data represented as rules, or representatives of data

subgroups represented by majority values. Knowledge is a

valuable asset to most organizations as a substantial source to

enhance understanding of data relationships and support better

decisions to increase organizational competency.

Manuscript received March 10, 2012: Revised version received June 12,

2012. This work was supported by grants from the National Research Council

of Thailand (NRCT) and Suranaree University of Technology through the

funding of Data Engineering Research Unit.

N. Kerdprasop is an associate professor and the director of Data

Engineering Research Unit, School of Computer Engineering, Suranaree

University of Technology, 111 University Avenue, Muang District, Nakhon

Ratchasima 30000, Thailand (phone: +66-44-224-432; fax: +66-44-224-602;

e-mail: nittaya@sut.ac.th).

K. Kerdprasop is with the School of Computer Engineering and Data

Engineering Research Unit, Suranaree University of Technology, Nakhon

Ratchasima, Thailand (e-mail: KittisakThailand@gmail.com).

The term knowledge assets refer to any organizational

intangible possessions related to knowledge such as know-

how, expertise, intellectual property. In clinical companies

and computerized healthcare applications, knowledge assets

include order sets, drug-drug interaction rules, guidelines for

practitioners, and clinical protocols [19]. Knowledge assets

can be stored in data repositories either in implicit or explicit

form. Explicit knowledge can be managed through the

existing tools available in the current database technology.

Implicit knowledge, on the contrary, is harder to achieve and

retrieve.

Implicit knowledge acquisition can be achieved through the

availability of the knowledge-mining system. Knowledge

mining is the discovery of hidden knowledge stored possibly

in various forms and places in large data repositories.

Automatic knowledge acquisition can be achieved through the

availability of the knowledge discovery system. The

discovered knowledge facilitates expert decision support, data

exploration and explanation, estimation of future trends, and

prediction of future outcomes based on present data.

In health and medical domains, knowledge has been

discovered in different forms such as association,

classification rules, clustering, trend or temporal pattern

analysis [41]. The discovered knowledge facilitates expert

decision support, diagnosis and prediction.

In this paper we present the design and implementation of a

knowledge-mining system, called SUT-Miner, to support a

high-level decision in medical domains. The system is also

applicable to any domain that requires a knowledge-based

decision support. A rapid prototyping of the proposed system

is provided in a declarative style using second-order Horn

clauses [30]. The intuitive idea of our design is that for such a

complicated knowledge-based system program coding should

be done declaratively at a high level to alleviate the burden of

programmers [44]. The advantages of declarative style are

thus the decrease in program development time and the

increases in expressiveness of knowledge representation and

efficiency of knowledge utilization.

A declarative approach to the development of knowledge

discovery system using logic-based language has long been an

interesting research topic among data mining and machine

learning researchers. For the classification task, FOIL [37] and

PROGOL [29] were two examples of successful logic-based

systems. Tree-based concept induction [23], [37] and rule

induction [29] are major approaches normally adopted for the

classification task. Association mining task was mostly based

A Knowledge Mining Component for

Computational Health Informatics

Nittaya Kerdprasop and Kittisak Kerdprasop

K

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 473

on the well-known APRIORI [2] algorithm. WARMR [12]

system upgraded APRIORI algorithm to discover frequent

patterns. Its extension [13] was developed to discover frequent

Datalog patterns and relational association rules. Data

clustering based on logic programming and first-order logic

was mainly an extension of k-means [28] clustering algorithm.

K-prototypes [22] extended k-means clustering to work on

first-order representation. KBG [5], [6], TIC [3], COLA-2

[14], and RDBC [21] were all first-order clustering systems.

All logic-based knowledge discovery systems proposed in

the literature considered a single task. Our work, on the

contrary, is a proposal of a knowledge discovery system

designed as an integrated environment storing a repertoire of

tools for discovering various kinds of knowledge. We also

demonstrate the speedup of k-means clustering on large data

with biased sampling technique. The biased clustering is

implemented with functional programming using Erlang

language. Both logic-based and functional styles of

programming are considered declarative method, in which

coding is concise and effective.

The outline of this paper is as follows. Section 2 reviews

related work on computational health informatics that apply

the knowledge mining techniques. Section 3 briefly discusses

the basic of logic programming concepts including the notion

of higher-order predicates and some preliminaries on three

main knowledge mining tasks, i.e. classification, association

mining, and clustering. Section 4 presents the design and

implementation of our SUT-Miner system. Section 5

demonstrates knowledge deployment examples. Section 6

concludes the paper and discusses future research directions.

II. RELATED WORK

In recent years we have witnessed increasing number of

applications on knowledge mining from biomedicine, clinical

and health data [4], [15], [20], [26], [45]. Roddick and

colleagues [38] discussed the two categories of mining

techniques applied over medical data: explanatory and

exploratory. Explanatory mining refers to techniques that are

used for the purpose of confirmation or making decisions.

Exploratory mining is data investigation normally done at an

early stage of data analysis in which an exact mining objective

has not yet been set.

Explanatory mining in healthcare data has been extensively

studied in the past decades employing various techniques.

Bojarczuk et al [7] applied genetic programming method to

discover classification rules from medical data sets.

Thongkam et al [43] studied breast cancer survivability using

AdaBoost algorithms. Ghazavi and Liao [16] proposed the

idea of fuzzy modeling on selected features medical data.

Huang et al [18] introduced a system to apply mining

techniques to discover rules from health examination data.

Then they employed a case-based reasoning to support the

chronic disease diagnosis and treatments. The work of Zhuang

et al [46] also combined mining with case-based reasoning,

but applied a different mining method. Biomedical discovery

support systems are recently proposed by a number of

researchers [8], [10]. Some work [40], [45] extended medical

databases to the level of data warehouses.

Exploratory, as oppose to explanatory, is rarely applied to

medical domains. Among the rare cases, Nguyen and

Kawasaki [32] introduced knowledge visualization in the

study of hepatitis patients. Palaniappan and Ling [35] applied

the functionality of OLAP tools to improve visualization.

It can be seen from the literature that most medical

knowledge discovery systems have applied only some mining

techniques such as classification rules mining, association

mining to discover hidden knowledge. We, on the contrary,

design a knowledge-mining system aiming at providing a suite

of tools to facilitate users and healthcare practitioners on

discovering different kinds of knowledge from their data and

background knowledge repositories. The deployment of

induced knowledge has also been demonstrated through the

creation of database triggers and knowledge base contents.

Triggers are a major concept of active databases, which

extend traditional database systems with the mechanism to

respond automatically to some specific events. Upon the

occurrence of the specified event, the rule condition is

evaluated. If the condition is satisfied, then some actions are

performed. Although triggers are important database feature

on consistency monitoring, their deployment is still limited

due to the fact that creating complex trigger rules is not an

easy task [9], [25]. Tools and environments to aid users and

database programmers are certainly needed.

The employment of triggers to achieve active behavior is

quite rare in medical domain. Most of the proposed methods

are for detecting static events such as the discovery of

relationships that suggest risks of adverse events in patient

records [34], [42], detection of dependency patterns of process

sequences for curing brain stroke patients [27], the generation

of rules to annotated protein data in medical database [24], or

the exploration of environmental health data [3].

The work presented in this paper differs from those

appeared in the literature in that we propose to employ

knowledge discovery techniques to semi-automatically create

trigger rules. The utilization of our proposed method is to

increase consistency in medical database. Any database

modification events violating constraints will be alerted and

undone. The system designed by Agrawal and Johnson [1] is

also to support medical database but in a different aspect; they

concentrate on security and privacy preservation of patients

and other sensitive health data. Another example of induced

knowledge deployment to automatically generate knowledge

base in the medical decision support system is also presented

in this paper.

III. PRELIMINARIES

A. Declarative Programming with Prolog

Prolog is a programming language that are based on the

concept of mathematical first-order logic. Each statement in

Prolog program is a clause, which is a disjunction of literals

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 474

(atomic symbols or their negations) such as p q and p r. A

statement is in clausal form if it is a conjunction of clauses

such as (p q)  ( p r). Logic programming is a subset of

first-order logic in which clauses are restricted to Horn

clauses. A Horn clause, named after the logician Alfred Horn

[33], is a clause that contains at most one positive literal such

as  p q r. Horn clauses are widely used in logic

programming because their satisfiability property can be

solved by resolution algorithm (an inference method for

checking whether the formula can be evaluated to true).

A Horn clause with no positive literal, such as  p q,

which is equivalent to  (p  q), is called query in Prolog and

can be interpreted as „:- p, q’ in which its value (true/false) to

be proven by resolution method. A clause that contains

exactly one positive literal such as r is called a fact

representing a true statement, written in clausal form as „r :-’

in which the condition part is empty and that means r is

unconditionally true. Therefore, facts are used to represent

data. A Horn clause that contains one positive literal and one

or more negative literals such as  p q r is called a

definite clause and such clause can equivalently written as (p

q) r which in turn can be represented as a Prolog rule as r :-

p, q.

The symbol „:-’ is intended to mean „‟, which is

implication in first-order logic (it stands for „if‟), and the

symbol „,‟ represents the operator  (or „AND‟). In Prolog,

rules are used to define procedures and a Prolog program is

normally composed of facts and rules. Running a Prolog

program is nothing more than posing queries to obtain

true/false answers. The advantages of using logic

programming are the flexible form of query posing and the

additional information regarding variable instantiation

obtained from the Prolog system once the query is evaluated

to be true.

The symbols p, q, r are called predicates in first-order logic

programming and they can be quantified over variables such

as r(X) :- p(X,Y), q(Y). This clause has the same meaning as

X (p(X,Y)  q(Y)  r(X)).The scope of variables is within a

clause (delimit the end of clause with a period). Horn clauses

are thus the fundamental concept of logic programming.

Higher-order predicate is a predicate in a clause that can

quantify over other predicate symbols [30], [31]. As an

example, besides the rule r(X):- p(X,Y), q(Y), if we are also

given the following five Horn clauses (or facts): p(1, 2). p(1,

3). p(5, 4). q(2). q(4). By asking the query: ?- r(X), we will

get the response as „true‟ and also the first instantiation

information as X=1. If we want to know all instantiations that

make r(X) to be true, we may ask the query: ?- findall(X, r(X),

Answer).We will get the response: Answer = [1,5], which is a

set of all answers obtained from the predicate r(X) according

to the given facts. The predicate symbol findall quantifies over

the variables X, Answer, and the predicate r. The predicate

findall is thus called a higher-order predicate

B. Tree-based Classification

Decision tree induction [36] is a popular method for

inducing knowledge from data. Popularity is due to the fact

that mining result in a form of decision tree is interpretability,

which is more concern among practitioners than a

sophisticated method but lack of understandability. A decision

tree is a hierarchical structure with each node contains

decision attribute and node branches corresponding to

different attribute values of the decision node. The goal of

building decision tree is to partition data with mixing classes

down the tree until the leaf nodes contain pure class.

In order to build a decision tree, we need to choose the best

attribute that contributes the most towards partitioning data to

the purity groups. The metric to measure attribute‟s ability to

partition data into pure class is Info, which is the number of

bits required to encode a data mixture. To choose the best

attribute, we have to calculate information gain, which is the

yield we obtained from choosing that attribute. The

information gain calculates yield on data set before splitting

and after choosing attribute with two or more splits. The gain

value of each candidate attribute is calculated. Then choose

the maximum one to be the decision node. The process of data

partitioning continues until the data subset has the same class

label.

C. Association Mining

Association mining is the discovery of relationships or

correlations between items in a database. Let I = {i1, i2, i3, ..., i

m} be a set of m items and DB = { C1, C2, C3, ..., C n} be a

database of n cases or observations and each case contains

items in I. A pattern is a set of items that occur in a case. The

number of items in a pattern is called the length of the pattern.

To search for all valid patterns of length 1 up to m in large

database is computational expensive. For a set I of m different

items, the search space for all distinct patterns can be as huge

as 2m-1. To reduce the size of the search space, the support

measurement has been introduced [1]. The function

support(P) of a pattern P is defined as a number of cases in

DB containing P. Thus, support(P) = |{T | T  DB, P  T }|.

A pattern P is called frequent pattern if the support value of P

is not less than a predefined minimum support threshold minS.

It is the minS constraints that help reducing the computational

complexity of frequent pattern generation. The minS metric

has an anti-monotone property and is applied as a basis for

reducing search space of mining frequent patterns in algorithm

Apriori [2].

D. Data Clustering with K-Means

Clustering refers to the iterative process of automatic

grouping of data based on their similarity. There exist a large

number of clustering techniques, but the most classical and

popular one is the k-means algorithm [28]. Given a data set

containing n objects, k-means partitions these objects into k

groups. Each group is represented by the centroid, or central

point, of the cluster. Once cluster means or representatives are

selected, data objects are assigned to the nearest centers. The

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 475

algorithm iteratively selects new better representatives and

reassigns data objects until the stable condition has been

reached. The stable condition can be observed from cluster

assigning that each data object does not change its cluster.

IV. THE DESIGN AND IMPLEMENTATION

A. System Design for Knowledge Mining

The process of knowledge mining is complex and iterative

in its nature. We thus design the system (Figure 1) to be

composed of two phases: knowledge induction and knowledge

inferring. Knowledge induction is the back-end of the system

responsible for acquiring and discovering new and useful

knowledge. Usefulness is to be validated at the final step by

human experts. Discovered knowledge is stored in the

knowledge base to be applied to solve new cases or create

new knowledge in the knowledge inferring phase, which is the

front-end of the proposed system. The SUT-Miner system

obtains input from heterogeneous data sources. Therefore,

redundancy, incompleteness, noise can be expected from the

input data. The Pre-DM component has been designed to

clean, transform the format, and select only relevant data. The

DM component is for performing various mining tasks

including classification, association, and clustering.

Fig. 1 The design of SUT-Miner for health informatics

The Post-DM component composed of two main features:

knowledge evaluator and knowledge integrator. These

features perform functionality aiming at a feasible knowledge

deployment. Knowledge evaluator involves evaluation, based

on corresponding measurement metrics, of the mining results.

Knowledge integrator examines the induced patterns to

remove redundant knowledge. Ontology has also been applied

at this step to provide essential semantics regarding the

domain problems.

B. Implementing a Tree-based Mining Engine

We present in Figure 2 the coding of data classification

module based on decision tree induction (ID3) algorithm [36].

Prolog code is based on the syntax of SWI Prolog (www.swi-

prolog.org).

The tree_classifier, which is the main module in Figure 2,

calls the init procedure and starts creating edges and nodes of

the decision tree via the predicates getNode and create_edge,

respectively. The ID3 algorithm is implemented in a module

create_edge_one_level.

tree_classifier(Min):-
init(AllAttr,EdgeList),
getnode(N),

 create_edge_onelevel(N,AllAttr,EdgeList),
 addKnowledge,
 selectRule(Min,Res),

 maplist(writeln,Res).

create_edge_onelevel(_,_,[]):-!.
create_edge_onelevel(_,[],_):-!.
create_edge_onelevel(N,AllAttr,EdgeList):-
 create_nodes(N,AllAttr,EdgeList).

create_nodes(N,AllAttr,[H1-H2/PB-NB|T]):-
 getnode(N1),
 assert(edge(N,H1=H2,N1)),
 assert(node(N1,PB-NB)),
 append(PB,NB,AllInst),
 ((PB\==[], NB\==[])->
 (cand_node(AllAttr,AllInst,AllSplit),
 min_cand(AllSplite,[V,MinAttr,Split]),
 delete(AllAttr,MinAttr,Attr2),
 create_edge_onelevel(N1,Attr2,Split))
 ; true),
 create_nodes(N,AllAttr,T).

create_nodes(_,_,[]):-!.
create_nodes(_,[],_):-!.

addKnowledge :-

findall([A],pathFromRootToLeaf(A,_),Res),
retractall(_>>_>>_),

 maplist(apply(assert),Res).

selectRule(V,Res):-

findall(N>>X>>Class,(X>>Class>>N,N>=V),Res1),
 sort(Res1,Res2),

 reverse(Res2,Res).

Fig. 2 A tree-based mining engine in Prolog

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 476

C. Implementing Association Mining Engine

We implement the association mining module based on the

algorithm APRIORI [2]. The implementation (Figure 3)

shows only the first pass of algorithm; that is, the generation

of frequent itemsets. The second pass, which is the generation

of association rules from frequent itemsets, can be easily

extended from the given code.

association_mining :-

 input(Data), min_support(V),

 makeC1(C), makeL(C,L), apriori_loop(L,1).

apriori_loop(L,N) :- length(L) is 1,!.

apriori_loop(L,N) :- N1 is N+1,

 makeC(N1,L,C), makeL(C, Res),

 apriori_loop(Res, N1).

makeC1(Ans) :- input(D),

 allComb(1, ItemSet, Ans2),

 maplist(countSS(D), Ans2, Ans).

makeC(N,ItemSet,Ans) :- input(D),

 allComb(2,ItemSet, Ans1),

 maplist(flatten, Ans1, Ans2),

 maplist(list_to_ord_set, Ans2, Ans3) ,

 list_to_set(Ans3,Ans4),

 include(len(N), Ans4, Ans5),

 maplist(countSS(D), Ans5, Ans).

 %scan database to find: List+N

makeL(C,Res) :- include(filter, C, Ans),

 maplist(head, Ans, Res).

filter(_+N) :- input(A), length(A, I),

 min_support(V),

 N>=(V/100)*I.

head(H+_,H).

% arbitrary subset of the set containing given

% number of elements

comb(0, _, []).

comb(N, [X|T], [X|Comb]) :- N>0, N1 is N-1,

comb(N1,T,Comb).

comb(N,[_|T],Comb) :- N>0, comb(N,T,Comb).

allComb(N,I,Ans) :- setof(L, comb(N, I, L), Ans).

countSubset(A,[],0).

countSubset(A,[B|X],N) :- not(subset(A,B)),

countSubset(A,X,N).

countSubset(A,[B|X],N) :- subset(A,B),

 countSubset(A,X,N1),

 N is N1+1.

countSS(SL, S, S+N) :- countSubset(S, SL, N).

Fig. 3 Association mining engine in Prolog

Main predicate of this module is association_mining. Upon

invocation, this predicate obtains input data from the predicate

input(Data), and get the minimum support value through the

predicate min_support(V). Then the main predicate starts by

making candidate and large itemsets of length one, two, three,

and so on (through the predicates makeC1, makeL, and

apriori_loop, respectively). All highlighted terms are higher-

order predicates: maplist, include, and setof.

The predicate maplist takes three arguments. This predicate

applies its first argument, which is also a predicate, to each

element of a list appeared in the second argument. The result

is a list in the third argument. Predicate include takes another

predicate as its first argument and adds the result obtained

from the first argument to the list in second argument. The

result appears as a list in the third argument. The predicate

setoff collects each answer as a list in its third argument.

D. Implementing Clustering Engine

Figure 4 demonstrates the implementation of k-means

clustering [17], [28]. The main predicate is clustering in

which the number of clusters (k) has to be specified and data

are to be included.

clustering(K) :- makeInitCluster(K, AllClust),

 assignPoint(AllClust,Data,Start,AllPoint),

 OldClust=AllClust,

 repeatCompute(K,AllPoint,OldClust).

makeInitCluster(K, AllClust):- initClust(K, 1, AllClust).

initClust(K,L0,[]) :- L0>K , ! .

initClust(K,L0,[L0*L|T]) :- instance(L0,_,L),

 L1 is L0+1, initClust(K, L1, T).

assignPoint(_, U, M, []) :- M>U, !.

assignPoint(AllClust, U, M, [M-V-A|T]) :-

 maplist(freq(M),AllClust,Res),cmax(Res, A*V),

 M1 is M+1,assignPoint(AllClust, U, M1, T).

freq(X,N*Y,N*F) :- instance(X, _, L1),

 intersection(L1, Y, I), length(I, F).

cmax(L,A*V) :- maplist(cvalue, L, L2),

 max_list(L2, V), member(A*V, L), !.

cvalue(_*V, V).

reComputeCenter(K, S, AllPoint, []) :- S>K, !.

reComputeCenter(K, S, AllPoint, [S*NewC|T]) :-

 findall(P, member(P-_-S, AllPoint), Z),

 allPointAtAllAttr(Z, NewC), S1 is S+1,

 reComputeCenter(K, S1, AllPoint, T).

allPointAtAllAttr(AllP, NewClusters) :-

 findall(AttName, (attribute(AttName,_),

 AttName\==class), AttNameL),

 maplist(allPoint(AllP), AttNameL, NewClusters).

allPoint(AllP, Att, A) :-

 findall(Att=V, (instance(X, _, K),

 member(X, AllP), member(Att=V, K)) , Z),

 maxFreq(Z, A*V).

repeatCompute(K, AllPoint, OldClust) :-

 reComputeCenter(K,Start,AllPoint,NewClus),

 (OldClust==NewClus ->

 writeln('-No-cluster-changes***EndProcess*');

 (assignPoint(NewClus,Data,Start,AllPoint2),

 repeatCompute(K, AllPoint2, NewClus))).

Fig. 4 Data clustering engine in Prolog

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 477

The predicate makeInitCluster creates initial k clusters with

randomized k centroids, then assign each data to the closest

centroid through the predicate assignPoint. Note that the

symbol „*‟, such as those appear in the predicate cmax(Res,

A*V) and freq(X, N*Y, N*F), refers to the data format to

represent Attribute*Value; it does not mean multiplication. In

Prolog, numerical computation will occur in a clause with the

predicate ‘is’, such as S1 is S + 1 in the reComputeCenter

procedure.

The iteration step, repeatCompute predicate, re-computes

the new k centroids and then re-assign each data point to the

new closest centroid. Iteration stops when all data do not

change their clusters. The source code presented in Figure 4

works with categorical data. For numerical or data with

mixing types, the distance measurement has to be modified.

E. Speedup Clustering with Biased Sampling Technique

A standard k-means algorithm groups data by firstly

assigning all data points to the closest clusters, then

determining the new cluster mean of each cluster based on the

average value of its members. The algorithm repeats these two

steps until it converges. Performance of the algorithm depends

on the numbers of data points, clusters, and iterations.

To speed up the clustering process, we investigate the

density-biased sampling technique. Instead of simply

randomly selecting data for clustering, we evaluate data

density using a sliding window model and selectively draw

samples with rejection criteria from the dense area. The idea

has been schematically shown in Figure 5. In our framework,

the windows are of fixed size and each window has length W

along each dimension. That is, the window has size W×W in

two dimensional (2D) data, but the size increases to W×W×W

in three dimensional (3D) data, and so forth. Therefore, to

cluster high dimensional data we assume the feature selection

technique such as principal component analysis or support

vector machine has been applied to the data set prior to the

density estimation step.

Once the window grid had been generated, a single scan

over the entire data set is required to count the data density on

each window. The counting and synopsis producing are

illustrated via example as shown in Figure 5. In the example, a

data set contains 10 two-dimensional data points and the

window size is 2×2 along the [x, y] axes. For ease of

illustration, each window in the window grid has been

assigned a number from 1 to 35. Figure 5(a) shows the point-

inclusion boundary of window 29 in which its area includes

points in the range [6..7.99, 10..11.99] of the [x, y] axes. A

thick line represents the inclusion boundary, whereas the

dashed line is the exclusion edge.

Figure 5(b) summarizes information regarding the window

boundary, data points in the window, and window synopsis.

The density estimation process finally produces a window list

as shown in Figure 5(b). Each element of this list is a window

synopsis, which in turn is the central point of the window

together with the number of points in that window.

If we identify the required minimum density in each

window to be at least 2, then there are only four windows

eligible for the subsequent sampling phase. The step prior to

the sampling phase is the generation of data points from the

eligible windows, as shown in Figure 5(c).

The proposed algorithm has been implemented with a

functional programming paradigm using the Erlang language.

The declarative style of Erlang facilitates a rapid prototyping

and a concise coding, as shown in Figure 6. Our experimental

results of drawing samples of high density data confirm that

the shift of cluster means is minimal, whereas the decrease in

memory usage is significant.

(a) the window grid on a 2D data set

(b) window synopses and a window list

(c) data points generated from the window synopsis with density at

least 2

Fig. 5 Illustration of biased sampling technique

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 478

callWindowSliding(Dimension, AllPoints)->
 Stream=myZip(Dimension),
 eachWindow(Dimension, AllPoints, Stream).

 % prepare a window of size WxW and WxWxW

 % for 2D and 3D data sets

myZip(2)-> L=myGenL(0),
 [[X1,X2]||X1<-L,X2<-L];

myZip(3)-> L=myGenL(0),
 [[X1,X2,X3]||X1<-L,X2<-L,X3<-L];

myGenL(50)->[]; % axis scale is in the range 0 to 50

myGenL(Now)->[Now|myGenL(Now+WindowStepSize)].
% e.g., WindowStepSize=2

 % count data points in each window

eachWindow(_,_,[])->[];
eachWindow(Del, AllPoints,[Now|StreamT])->
 Lc = count(Now, Del, AllPoints),
 Sum= lists:sum(Lc),
 [{Now,Sum}| eachWindow(Del,AllPoints,

 StreamT)].

% --- Generate back from sliding window synopses to points

genWin2P([])->[];
genWin2P([{P,Den}|T])-> if Den>=1 ->

dup(center(P),Den)++genWin2P(T);
 true -> genWin2P(T) end.

%--- Hash-based density-biased reservoir sampling

specificDensBin(Bin,L,Den) ->
take(Bin,specificDens(L,Den)).

specificDens([],_)->[];
specificDens([{P,D}|T],Den)-> if D>=Den ->

[{P,D}|specificDens(T,Den)];
 true -> specificDens(T,Den) end.

%--- Simple Random with density bias

simpleRandom(_,_,0)->[];
simpleRandom(WindowL,Dens,Bin)->
 Nth=random:uniform(length(WindowL)),
 {P,D}=lists:nth(Nth,WindowL),
 if D>=Dens ->

[{P,D}|simpleRandom(WindowL,Dens,Bin-1)] ;
 true-> simpleRandom(WindowL,Dens,Bin) end.

%--- Rejection sampling with density bias

rejectionRandom(_,_,_,0)->[];
rejectionRandom(Para,WindowL,Dens,Bin)->
 Nth=random:uniform(length(WindowL)),
 Par=random:uniform(),
 {P,D}=lists:nth(Nth,WindowL),
 if (0.5-Para)=<Par,Par=<(0.5+Para),D>=Dens ->

[{P,D}|rejectionRandom(Para,WindowL,Dens,Bin-
1)] ;

 true->
rejectionRandom(Para,WindowL,Dens,Bin) end.

Fig. 6 An Erlang module to perform density estimation with a sliding

window technique, then perform density-biased sampling

V. KNOWLEDGE DEPLOYMENT EXAMPLES

A. Trigger Rule Generation

We have tested our implementation with the diabetes

dataset taken from the UCI database (http://www.ics.uci.edu/

~mlearn/MLRepository.html). This medical data set is a

collection of 768 observations on female patients investigating

whether the patient shows signs of diabetes (class=1) or not

(class=0) according to World Health Organization criteria.

Each patient's record contains eight attributes: number of

times pregnant, plasma glucose concentration (a two hours in

an oral glucose tolerance test), diastolic blood pressure, triceps

skin fold thickness (mm.), 2-hour serum insulin, body mass

index, diabetes pedigree function, and age. The best five

accurate association rules (annotated with the number of cases

supporting the induced association) are shown as follows:

1. IF triceps-thickness='(0-9.9]' AND diabetes-

pedigree-fn='(0-0.3122]'

 THEN 2Hr-serum-insulin='(0-84.6]'

(support= 128 cases)

2. IF triceps-thickness='(0-9.9]' AND diabetes-

pedigree-fn='(0-0.3122]' AND class=0

 THEN 2Hr-serum-insulin='(0-84.6]'

(support= 83 cases)

3. IF diastolic-pressure='(73.2-85.4]' AND triceps-

thickness='(0-9.9]'

 THEN 2Hr-serum-insulin='(0-84.6]'

(support= 75 cases)

4. IF times-pregnant='(3-5]' AND triceps-

thickness='(0-9.9]'

 THEN 2Hr-serum-insulin='(0-84.6]'

(support= 52 cases)

5. IF diastolic-pressure='(73.2-85.4]' AND triceps-

thickness='(0-9.9]' AND class=0

 THEN 2Hr-serum-insulin='(0-84.6]'

(support = 48 cases)

To illustrate deployment of induced knowledge, we

design a framework (Figure 7) to add active behavior to

the medical database through the induced trigger rules.

There are three major components in our model: mining,

trigger generation and conflict resolution components.

Mining component induces knowledge from the

database contents and presents as rules: association and

classification rules. The data repository contains both

base data and trigger rules. Trigger generation

component is responsible for converting induced

classification/association rules into trigger format then

stores generated triggers in the repository. In case of

trigger rule application and rule conflict occurs, conflict

resolution component will handle the situation.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 479

Fig. 7 Knowledge deployment by incorporating induced knowledge

as a set of trigger rules in active medical databases

From the first induced rule: IF triceps-thickness='(0-9.9]'

AND diabetes-pedigree-fn='(0-0.3122]' THEN 2Hr-serum-

insulin='(0-84.6]', the database trigger can be created as

follows:
CREATE TRIGGER rule_1 ON diabetes FOR UPDATE,

INSERT

AS IF (SELECT COUNT(*) FROM diabetes

WHERE (triceps-thickness = ‘(0-9.9]’)

 and (diabetes-pedigree-fn= ‘(0-0.3122]’)

 and (2Hr-serum-insulin <> ‘‘(0-84.6]’)) > 0

 BEGIN

 RAISERROR (‘soft constraint violation, please verify’);

 END

This trigger will raise a warning message upon any

database updates that violates the rule “any female patient

with triceps thickness in the range 0-9.9 mm and diabetes

pedigree function in the range 0-0.3122, 2-hour serum insulin

has to be in the rage 0-84.6”. Any attempt to insert violating

data will fire this trigger to draw attention from database

administrator. Such trigger rule is thus deployed as a tool to

support database integrity checking.

B. Automatic Knowledge Base Creation

Another example of induced knowledge deployment is the

automatic generation of knowledge base in the medical

decision support system. Given the contact lens

recommendation data as in Figure 8, the induced classification

rules can be generated and then transformed into expert rules

as in Figure 9. These rules are to be consulted by the

knowledge inference engine of the decision support system.

Fig. 8 Contact lens data set as an input of the classification engine

Fig. 9 Induced classification rules that are automatically transformed

into knowledge base rules (top), and these rules are to be used in a

decision support system (bottom)

VI. CONCLUSION

In this paper we have proposed the design and

implementation of SUT-Miner, a declarative knowledge

mining system. The system is intended to support automatic

knowledge acquisition in medical and healthcare domains that

require new knowledge to support better decisions as well as

to enhance understandability of the stored data. The proposed

knowledge discovery environment is composed of tools and

methods suitable for various kinds of knowledge discovery

tasks including data classification, association discovery, and

data clustering.

Most of the implementation of our proposed system is

based on the concept of logic programming, except the biased

sampling for clustering that are implemented with functional

language. Both languages support the advanced concept of

higher-oder programming. In Prolog implementation, we use

some higher-order predicates such as maplist, findall, setoff,

and include. These predicates are higher-order in the sense

that they take other predicates as their arguments. With such

expressive power of higher-order predicates, program coding

of the designed system is very concise as demonstrated in the

paper. Program conciseness contributes directly to program

verification and validation, which are important issues in

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 480

software engineering. The declarative style of programming

also eases the extension of the present system towards the

constraint higher-order mining [11], [39], which is our future

research plan.

To illustrate knowledge deployment, we provide a

framework to semi-automatically generate trigger rules from

current database contents by means of association mining

technique. Induced trigger rules, in addition to predefined

triggers, can be viewed as supplementary constraints to help

increasing database consistency. Our proposed framework is

thus a preliminary design of active medical databases. Another

example of utilizing the induced knowledge is demonstrated

through the automatic generation of knowledge base to

support medical decision. We also plan to further our

implementation on the knowledge inferring part and then test

the knowledge induction component on various medical data

sets. The induced knowledge is also to be verified by the

experts of the field.

REFERENCES

[1] R. Agrawal and C. Johnson, “Securing electronic health records

without impeding the flow of information,” International

Journal of Medical Informatics, vol. 76, 2007, pp. 471-479.

[2] R. Agrawal and R. Srikant, “Fast algorithm for mining

association rules,” Proceedings of the 20th VLDB, 1994, pp.

487-499.

[3] Y. Bedard, P. Gosselin, S. Rivest, M.J. Proulx, M. Nadeau, G.

Lebel, and M.F. Gagnon, “Integrating GIS components with

knowledge discovery technology for environmental health

decision support,” International Journal of Medical Informatics,

vol. 70, 2003, pp. 79-94.

[4] S. Begum, M.U. Ahmed, and P. Frank, “Case-based systems in

health sciences – a case study in the field of stress

management,” WSEAS Transactions on Systems, vol. 8, no. 3,

2009, pp. 344-354.

[5] G. Bisson, “Conceptual clustering in a first-order logic

representation,” Proceedings of the 10th European Conference

on Artificial Intelligence, 1992, pp. 458-462.

[6] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction

of clustering trees,” Proceedings of the 5th International

Conference on Machine Learning (ICML-98), 1998, pp. 55-63.

[7] C. Bojarczuk, H. Lopez, A. Freitas, and E. Michalkiewicz, “A

constrained-syntax genetic programming system for discovering

classification rules: Application to medical data sets,” Artificial

Intelligence in Medicine, vol. 30, 2004, pp. 27-48.

[8] C. Bratsas, V. Koutkias, E. Kaimakamis, P. Bamidis, G.

Pangalos, and N. Maglaveras, “KnowBaSICS-M: An ontology-

based system for semantic management of medical problems

and computerised algorithmic solutions,” Computer Methods

and Programs in Biomedicine, vol. 83, 2007, pp. 39-51.

[9] S. Ceri, R. Cochrane, and J. Widom, “Practical applications of

triggers and constraints: Successes and lingering issues,”

Proceedings of the 26th VLDB, 2000, pp. 254-262.

[10] R. Correia, F. Kon, and R. Kon, “Borboleta: A mobile telehealth

system for primary homecare,” Proceedings of ACM Symposium

on Applied Computing, 2008, pp. 1343-1347.

[11] L. De Raedt, T. Guns, and S. Nijssen, “Constraint programming

for itemset mining”, Proceedings of KDD, 2008, pp. 204-212.

[12] L. Dehaspe and H.Toivonen, “Discovery of frequent datalog

patterns,” Data Mining and Knowledge Discovery, vol. 3, no. 1,

1999, pp. 7-36.

[13] L. Dehaspe and H. Toivonen, “Discovery of relational

association rules,” In S. Dzeroski and N. Lavrac (Eds.),

Relational Data Mining, Springer, 2001, pp. 189-212.

[14] W. Emde, “Inductive learning of characteristic concept

descriptions from small sets to classified examples,”

Proceedings of the 7th European Conference on Machine

Learning, 1994, pp. 103-121.

[15] P. Gago and M.F. Santos, “Adaptive knowledge discovery for

decision support in intensive care units,” WSEAS Transactions

on Computers, vol. 8, no. 7, 2009, pp. 1103-1112.

[16] S. Ghazavi and T. Liao, “Medical data mining by fuzzy

modeling with selected features,” Artificial Intelligence in

Medicine, vol. 43, no. 3, 2008, pp. 195-206.

[17] J. Han and M. Kamber, Data Mining: Concepts and Techniques,

2nd edition, Morgan Kaufmann, 2006.

[18] M. Huang, M. Chen, and S. Lee, “Integrating data mining with

case-based reasoning for chronic diseases prognosis and

diagnosis,” Expert Systems with Applications, vol. 32, 2007, pp.

856-867.

[19] N. Hulse, G. Fiol, R. Bradshaw, L. Roemer, and R. Rocha,

“Towards an on-demand peer feedback system for a clinical

knowledge base: A case study with order sets,” Journal of

Biomedical Informatics, vol. 41, 2008, pp. 152-164.

[20] N. Kerdprasop and K. Kerdprasop, “Knowledge induction from

medical databases with higher-order programming,” WSEAS

Transactions on Information Science and Applications, vol. 6,

no. 10, 2009, pp. 1719-1728.

[21] M. Kirsten and S. Wrobel, “Relational distance-based

clustering,” Proceedings of the 8th International Conference on

Inductive Logic Programming, 1998, pp. 261-270.

[22] M. Kirsten and S. Wrobel, “Extending k-means clustering to

first-order representations,” Proceedings of the 10th

International Conference on Inductive Logic Programming,

2000, pp. 112-129.

[23] S. Kramer and G. Widmer, “Inducing classification and

regression trees in first order logic,” In S. Dzeroski and N.

Lavrac (Eds.), Relational Data Mining, Springer, 2001, pp. 140-

159.

[24] E. Kretschmann, W. Fleischmann, and R. Apweiler, “Automatic

rule generation for protein annotation with the C4.5 data mining

algorithm applied on SWISS-PROT,” Bioinformatics, vol. 17,

no. 10, 2001, pp. 920-926.

[25] D. Lee, W. Mao, H. Chiu, and W. Chu, “Designing triggers with

trigger-by-example,” Knowledge and Information System, vol.

7, 2005, pp. 110-134.

[26] Y.C. Lin, “Design and implementation of an ontology-based

psychiatric disorder detection system,” WSEAS Transactions on

Information Science and Applications, vol. 7, no. 1, 2010, pp.

56-69.

[27] F. Lin, S. Chou, S. Pan, and Y. Chen, “Mining time dependency

patterns in clinical pathways,” International Journal of Medical

Informatics, vol. 62, no. 1, 2001, pp. 11-25.

[28] J. MacQueen, “Some methods for classification and analysis of

multivariate observations,” Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1,

1967, pp. 281-297.

[29] S. Muggleton, “Inverse entailment and Progol,” New

Generation Computing, vol. 13, 1995, pp. 245-286.

[30] G. Nadathur and D. Miller, “Higher-order Horn clauses,”

Journal of ACM, vol. 37, 1990, pp. 777-814.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 481

[31] L. Naish, “Higher-order logic programming in Prolog,”

Technical Report 96/2, Department of Computer Science,

University of Melbourne, Australia, 1996.

[32] D. Nguyen, T. Ho, and S. Kawasaki, “Knowledge visualization

in hepatitis study,” Proceedings of Asia-Pacific Symposium on

Information Visualization, 2006, pp. 59-62.

[33] S.-H. Nienhuys-Cheng and R. Wolf, Foundations of Inductive

Logic Programming, Springer, 1997.

[34] G. Noren, A. Bate, J. Hopstadius, K. Star, and I. Edwards,

“Temporal pattern discovery for trends and transient effects: Its

application to patient records,” Proceedings of KDD

Conference, 2008, pp. 963-971.

[35] S. Palaniappan and C. Ling, “Clinical decision support using

OLAP with data mining,” International Journal of Computer

Science and Network Security, vol. 8, no. 9, 2008, pp. 290-296.

[36] J. Quinlan, “Induction of decision trees,” Machine Learning,

vol. 1, 1986, pp. 81-106.

[37] J. Quinlan, J. and R. Cameron-Jones, “FOIL: A midterm

report,” Proceedings of the 6th European Conference on

Machine Learning, 1993, pp. 3-20.

[38] J. Roddick, P. Fule, and W. Graco, “Exploratory medical

knowledge discovery: experiences and issues,” ACM SIGKDD

Explorations Newsletter, vol. 5, no. 1, 2003, pp. 94-99.

[39] J. Roddick, M. Spiliopoulou, D. Lister, and A. Ceglar, “Higher

order mining,” ACM SIGKDD Explorations Newsletter, vol. 10,

no. 1, 2008, pp. 5-17.

[40] T. Sahama and P. Croll, “A data warehouse architecture for

clinical data warehousing,” Proceedings of the 12th

Australasian Symposium on ACSW Frontiers, 2007, pp. 227-

232.

[41] A. Shillabeer and J. Roddick, “Establishing a lineage for

medical knowledge discovery,” Proceedings of the 6th

Australasian Conference on Data Mining and Analytics, 2007,

pp. 29-37.

[42] A. Silva, P. Cortez, M. Santos, L. Gomes, and J. Neves,

“Rating organ failure via adverse events using data mining in

the intensive care unit,” Artificial Intelligence in Medicine, vol.

43, no. 3, 2008, pp. 179-193.

[43] J. Thongkam, G. Xu, Y. Zhang, and F. Huang, “Breast cancer

survivability via AdaBoost algorithms,” Proceedings of the 2nd

Australasian Workshop on Health Data and Knowledge

Management, 2008, pp. 55-64.

[44] K. Truemper, Design of logic-based intelligent systems, John

Wiley & Sons, New Jersey, 2004.

[45] T.Y. Wah, N.H. Peng, and C.S. Hok, “Development of specific

disease data warehouse for developing content from general

guide for hypertension screening, referral and follow up,”

WSEAS Transactions on Computers, vol. 7, no. 4, 2008, pp.

190-195.

[46] Z. Zhuang, L. Churilov, and F. Burstein, “Combining data

mining and case-based reasoning for intelligent decision support

for pathology ordering by general practitioners,” European

Journal of Operational Research, vol. 195, no. 3, 2009, pp. 662-

675.

Nittaya Kerdprasop is an associate professor and the director of

Data Engineering Research Unit, School of Computer Engineering,

Suranaree University of Technology, Thailand. She received her B.S.

in radiation techniques from Mahidol University, Thailand, in 1985,

M.S. in computer science from the Prince of Songkla University,

Thailand, in 1991 and Ph.D. in computer science from Nova

Southeastern University, U.S.A., in 1999. She is a member of

IAENG, ACM, and IEEE Computer Society. Her research of interest

includes Knowledge Discovery in Databases, Data Mining, Artificial

Intelligence, Logic and Constraint Programming, Deductive and

Active Databases.

Kittisak Kerdprasop is an associate professor at the School of

Computer Engineering and one of the principal researchers of Data

Engineering Research Unit, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand, in

1991 and doctoral degree in computer science from Nova

Southeastern University, USA, in 1999. His current research includes

Data mining, Machine Learning, Artificial Intelligence, Logic and

Functional Programming, Probabilistic Databases and Knowledge

Bases.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 482

