
 

 

 

Abstract—Computational health informatics is an emerging field 

of research focusing on the devise of novel computational techniques 

to facilitate healthcare and a variety of medical applications. 

Healthcare organizations at the present day regularly generate huge 

amount of data in electronic form stored in databases. These data are 

valuable resource for automatic discovering of useful knowledge, 

known as knowledge mining or data mining, to gain insight 

knowledge and to support patient-care decisions. During the past 

decades there has been an increasing interest in devising database 

and learning technologies to automatically induce knowledge from 

clinical and health data using imperative and object-oriented 

programming styles. In this paper, we propose a different scheme 

using declarative programming, implemented with functional and 

logic-based languages, in which we argue to be more appropriate for 

the knowledge intensive tasks. Easy knowledge transfer to the 

knowledge base content is demonstrated in this paper to confirm the 

appropriateness of high level declarative scheme. Our system 

includes three major knowledge mining tasks: data classification, 

association analysis, and clustering. We demonstrate knowledge 

deployment aspects through the trigger creation and the automatic 

generation of knowledge base for the medical decision support 

system. These knowledge deployment examples illustrate advantages 

of the high level logic and functional scheme.  

 

Keywords— Computational health informatics, Healthcare 

decision support, Knowledge mining, Declarative programming, 

Prolog and Erlang languages.  

I. INTRODUCTION 

NOWLEDGE mining is the process of deriving new and 

useful knowledge from vast volumes of data and other 

background information. Derived knowledge can possibly be 

patterns of data represented in summarized form, relationships 

among data represented as rules, or representatives of data 

subgroups represented by majority values. Knowledge is a 

valuable asset to most organizations as a substantial source to 

enhance understanding of data relationships and support better 

decisions to increase organizational competency. 
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The term knowledge assets refer to any organizational 

intangible possessions related to knowledge such as know-

how, expertise, intellectual property. In clinical companies 

and computerized healthcare applications, knowledge assets 

include order sets, drug-drug interaction rules, guidelines for 

practitioners, and clinical protocols [19]. Knowledge assets 

can be stored in data repositories either in implicit or explicit 

form. Explicit knowledge can be managed through the 

existing tools available in the current database technology. 

Implicit knowledge, on the contrary, is harder to achieve and 

retrieve.  

Implicit knowledge acquisition can be achieved through the 

availability of the knowledge-mining system. Knowledge 

mining is the discovery of hidden knowledge stored possibly 

in various forms and places in large data repositories. 

Automatic knowledge acquisition can be achieved through the 

availability of the knowledge discovery system. The 

discovered knowledge facilitates expert decision support, data 

exploration and explanation, estimation of future trends, and 

prediction of future outcomes based on present data.  

In health and medical domains, knowledge has been 

discovered in different forms such as association, 

classification rules, clustering, trend or temporal pattern 

analysis [41]. The discovered knowledge facilitates expert 

decision support, diagnosis and prediction. 

In this paper we present the design and implementation of a 

knowledge-mining system, called SUT-Miner, to support a 

high-level decision in medical domains. The system is also 

applicable to any domain that requires a knowledge-based 

decision support. A rapid prototyping of the proposed system 

is provided in a declarative style using second-order Horn 

clauses [30]. The intuitive idea of our design is that for such a 

complicated knowledge-based system program coding should 

be done declaratively at a high level to alleviate the burden of 

programmers [44]. The advantages of declarative style are 

thus the decrease in program development time and the 

increases in expressiveness of knowledge representation and 

efficiency of knowledge utilization.  

A declarative approach to the development of knowledge 

discovery system using logic-based language has long been an 

interesting research topic among data mining and machine 

learning researchers. For the classification task, FOIL [37] and 

PROGOL [29] were two examples of successful logic-based 

systems. Tree-based concept induction [23], [37] and rule 

induction [29] are major approaches normally adopted for the 

classification task. Association mining task was mostly based 
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on the well-known APRIORI [2] algorithm. WARMR [12] 

system upgraded APRIORI algorithm to discover frequent 

patterns. Its extension [13] was developed to discover frequent 

Datalog patterns and relational association rules. Data 

clustering based on logic programming and first-order logic 

was mainly an extension of k-means [28] clustering algorithm. 

K-prototypes [22] extended k-means clustering to work on 

first-order representation. KBG [5], [6], TIC [3], COLA-2 

[14], and RDBC [21] were all first-order clustering systems.  

All logic-based knowledge discovery systems proposed in 

the literature considered a single task. Our work, on the 

contrary, is a proposal of a knowledge discovery system 

designed as an integrated environment storing a repertoire of 

tools for discovering various kinds of knowledge. We also 

demonstrate the speedup of k-means clustering on large data 

with biased sampling technique. The biased clustering is 

implemented with functional programming using Erlang 

language. Both logic-based and functional styles of 

programming are considered declarative method, in which 

coding is concise and effective. 

The outline of this paper is as follows. Section 2 reviews 

related work on computational health informatics that apply 

the knowledge mining techniques. Section 3 briefly discusses 

the basic of logic programming concepts including the notion 

of higher-order predicates  and some preliminaries on three 

main knowledge mining tasks, i.e. classification, association 

mining, and clustering. Section 4 presents the design and 

implementation of our SUT-Miner system. Section 5 

demonstrates knowledge deployment examples. Section 6 

concludes the paper and discusses future research directions. 

II. RELATED WORK 

In recent years we have witnessed increasing number of 

applications on knowledge mining from biomedicine, clinical 

and health data [4], [15], [20], [26], [45]. Roddick and 

colleagues [38] discussed the two categories of mining 

techniques applied over medical data: explanatory and 

exploratory. Explanatory mining refers to techniques that are 

used for the purpose of confirmation or making decisions. 

Exploratory mining is data investigation normally done at an 

early stage of data analysis in which an exact mining objective 

has not yet been set.  

Explanatory mining in healthcare data has been extensively 

studied in the past decades employing various techniques. 

Bojarczuk et al [7] applied genetic programming method to 

discover classification rules from medical data sets. 

Thongkam et al [43]  studied breast cancer survivability using 

AdaBoost algorithms. Ghazavi and Liao [16] proposed the 

idea of fuzzy modeling on selected features medical data. 

Huang et al [18] introduced a system to apply mining 

techniques to discover rules from health examination data. 

Then they employed a case-based reasoning to support the 

chronic disease diagnosis and treatments. The work of Zhuang 

et al [46] also combined mining with case-based reasoning, 

but applied a different mining method. Biomedical discovery 

support systems are recently proposed by a number of 

researchers [8], [10]. Some work [40], [45] extended medical 

databases to the level of data warehouses. 

Exploratory, as oppose to explanatory, is rarely applied to 

medical domains. Among the rare cases, Nguyen and 

Kawasaki [32] introduced knowledge visualization in the 

study of hepatitis patients. Palaniappan and Ling [35] applied 

the functionality of OLAP tools to improve visualization. 

It can be seen from the literature that most medical 

knowledge discovery systems have applied only some mining 

techniques such as classification rules mining, association 

mining to discover hidden knowledge. We, on the contrary, 

design a knowledge-mining system aiming at providing a suite 

of tools to facilitate users and healthcare practitioners on 

discovering different kinds of knowledge from their data and 

background knowledge repositories. The deployment of 

induced knowledge has also been demonstrated through the 

creation of database triggers and knowledge base contents. 

Triggers are a major concept of active databases, which 

extend traditional database systems with the mechanism to 

respond automatically to some specific events. Upon the 

occurrence of the specified event, the rule condition is 

evaluated. If the condition is satisfied, then some actions are 

performed. Although triggers are important database feature 

on consistency monitoring, their deployment is still limited 

due to the fact that creating complex trigger rules is not an 

easy task [9], [25]. Tools and environments to aid users and 

database programmers are certainly needed. 

The employment of triggers to achieve active behavior is 

quite rare in medical domain. Most of the proposed methods 

are for detecting static events such as the discovery of 

relationships that suggest risks of adverse events in patient 

records [34], [42], detection of dependency patterns of process 

sequences for curing brain stroke patients [27], the generation 

of rules to annotated protein data in medical database [24], or 

the exploration of environmental health data [3]. 

The work presented in this paper differs from those 

appeared in the literature in that we propose to employ 

knowledge discovery techniques to semi-automatically create 

trigger rules. The utilization of our proposed method is to 

increase consistency in medical database. Any database 

modification events violating constraints will be alerted and 

undone. The system designed by Agrawal and Johnson [1] is 

also to support medical database but in a different aspect; they 

concentrate on security and privacy preservation of patients 

and other sensitive health data. Another example of induced 

knowledge deployment to automatically generate knowledge 

base in the medical decision support system is also presented 

in this paper. 

III. PRELIMINARIES 

A.  Declarative Programming with Prolog 

Prolog is a programming language that are based on the 

concept of mathematical first-order logic. Each statement in 

Prolog program is a clause, which is a disjunction of literals 
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(atomic symbols or their negations) such as p q and p r. A 

statement is in clausal form if it is a conjunction of clauses 

such as (p q)  ( p r). Logic programming is a subset of 

first-order logic in which clauses are restricted to Horn 

clauses. A Horn clause, named after the logician Alfred Horn 

[33], is a clause that contains at most one positive literal such 

as  p q r. Horn clauses are widely used in logic 

programming because their satisfiability property can be 

solved by resolution algorithm (an inference method for 

checking whether the formula can be evaluated to true).  

A Horn clause with no positive literal, such as  p q, 

which is equivalent to  ( p  q ), is called query in Prolog and 

can be interpreted as „:- p, q’ in which its value (true/false) to 

be proven by resolution method. A clause that contains 

exactly one positive literal such as r is called a fact 

representing a true statement, written in clausal form as „r :-’ 

in which the condition part is empty and that means r is 

unconditionally true. Therefore, facts are used to represent 

data. A Horn clause that contains one positive literal and one 

or more negative literals such as  p q r is called a 

definite clause and such clause can equivalently written as (p 

q) r which in turn can be represented as a Prolog rule as r :- 

p, q.  

The symbol „:-’ is intended to mean „‟, which is 

implication in first-order logic (it stands for „if‟), and the 

symbol „,‟ represents the operator  (or „AND‟). In Prolog, 

rules are used to define procedures and a Prolog program is 

normally composed of facts and rules. Running a Prolog 

program is nothing more than posing queries to obtain 

true/false answers. The advantages of using logic 

programming are the flexible form of query posing and the 

additional information regarding variable instantiation 

obtained from the Prolog system once the query is evaluated 

to be true. 

The symbols p, q, r are called predicates in first-order logic 

programming and they can be quantified over variables such 

as r(X) :- p(X,Y), q(Y). This clause has the same meaning as 

X ( p(X,Y)  q(Y)  r(X) ).The scope of variables is within a 

clause (delimit the end of clause with a period). Horn clauses 

are thus the fundamental concept of logic programming. 

Higher-order predicate is a predicate in a clause that can 

quantify over other predicate symbols [30], [31]. As an 

example, besides the rule r(X):- p(X,Y), q(Y), if we are also 

given the following five Horn clauses (or facts): p(1, 2).   p(1, 

3).    p(5, 4).  q(2).  q(4). By asking the query: ?- r(X), we will 

get the response as „true‟ and also the first instantiation 

information as X=1. If we want to know all instantiations that 

make r(X) to be true, we may ask the query: ?- findall(X, r(X), 

Answer).We will get the response: Answer = [1,5], which is a 

set of all answers obtained from the predicate r(X) according 

to the given facts. The predicate symbol findall quantifies over 

the variables X, Answer, and the predicate r. The predicate 

findall is thus called a higher-order predicate 

B. Tree-based Classification 

Decision tree induction [36] is a popular method for 

inducing knowledge from data. Popularity is due to the fact 

that mining result in a form of decision tree is interpretability, 

which is more concern among practitioners than a 

sophisticated method but lack of understandability. A decision 

tree is a hierarchical structure with each node contains 

decision attribute and node branches corresponding to 

different attribute values of the decision node. The goal of 

building decision tree is to partition data with mixing classes 

down the tree until the leaf nodes contain pure class.  

In order to build a decision tree, we need to choose the best 

attribute that contributes the most towards partitioning data to 

the purity groups. The metric to measure attribute‟s ability to 

partition data into pure class is Info, which is the number of 

bits required to encode a data mixture. To choose the best 

attribute, we have to calculate information gain, which is the 

yield we obtained from choosing that attribute. The 

information gain calculates yield on data set before splitting 

and after choosing attribute with two or more splits. The gain 

value of each candidate attribute is calculated. Then choose 

the maximum one to be the decision node. The process of data 

partitioning continues until the data subset has the same class 

label. 

C. Association Mining 

Association mining is the discovery of relationships or 

correlations between items in a database. Let I = {i1, i2, i3, ..., i 

m} be a set of m items and DB = { C1, C2, C3, ..., C n} be a 

database of n cases or observations and each case contains 

items in I. A pattern is a set of items that occur in a case. The 

number of items in a pattern is called the length of the pattern. 

To search for all valid patterns of length 1 up to m in large 

database is computational expensive. For a set I of m different 

items, the search space for all distinct patterns can be as huge 

as 2m-1. To reduce the size of the search space, the support 

measurement has been introduced [1]. The function 

support(P) of a pattern P is defined as a number of cases in 

DB containing P. Thus, support(P) = |{T | T  DB,  P  T }|. 

A pattern P is called frequent pattern if the support value of P 

is not less than a predefined minimum support threshold minS. 

It is the minS constraints that help reducing the computational 

complexity of frequent pattern generation. The minS metric 

has an anti-monotone property and is applied as a basis for 

reducing search space of mining frequent patterns in algorithm 

Apriori [2]. 

D. Data Clustering with K-Means 

Clustering refers to the iterative process of automatic 

grouping of data based on their similarity. There exist a large 

number of clustering techniques, but the most classical and 

popular one is the k-means algorithm [28]. Given a data set 

containing n objects, k-means partitions these objects into k 

groups. Each group is represented by the centroid, or central 

point, of the cluster. Once cluster means or representatives are 

selected, data objects are assigned to the nearest centers. The 
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algorithm iteratively selects new better representatives and 

reassigns data objects until the stable condition has been 

reached. The stable condition can be observed from cluster 

assigning that each data object does not change its cluster. 

IV. THE DESIGN AND IMPLEMENTATION 

A. System Design for Knowledge Mining 

The process of knowledge mining is complex and iterative 

in its nature. We thus design the system (Figure 1) to be 

composed of two phases: knowledge induction and knowledge 

inferring. Knowledge induction is the back-end of the system 

responsible for acquiring and discovering new and useful 

knowledge. Usefulness is to be validated at the final step by 

human experts. Discovered knowledge is stored in the 

knowledge base to be applied to solve new cases or create 

new knowledge in the knowledge inferring phase, which is the 

front-end of the proposed system. The SUT-Miner system 

obtains input from heterogeneous data sources. Therefore, 

redundancy, incompleteness, noise can be expected from the 

input data. The Pre-DM component has been designed to 

clean, transform the format, and select only relevant data. The 

DM component is for performing various mining tasks 

including classification, association, and clustering. 

 

 

Fig. 1 The design of SUT-Miner for health informatics 

 

The Post-DM component composed of two main features: 

knowledge evaluator and knowledge integrator. These 

features perform functionality aiming at a feasible knowledge 

deployment. Knowledge evaluator involves evaluation, based 

on corresponding measurement metrics, of the mining results. 

Knowledge integrator examines the induced patterns to 

remove redundant knowledge. Ontology has also been applied 

at this step to provide essential semantics regarding the 

domain problems. 

B. Implementing a Tree-based Mining Engine 

We present in Figure 2 the coding of data classification 

module based on decision tree induction (ID3) algorithm [36]. 

Prolog code is based on the syntax of SWI Prolog (www.swi-

prolog.org). 

The tree_classifier, which is the main module in Figure 2, 

calls the init procedure and starts creating edges and nodes of 

the decision tree via the predicates getNode and create_edge, 

respectively. The ID3 algorithm is implemented in a module 

create_edge_one_level.  

 

tree_classifier(Min):- 
init(AllAttr,EdgeList), 
getnode(N), 

          create_edge_onelevel(N,AllAttr,EdgeList), 
          addKnowledge, 
          selectRule(Min,Res), 

        maplist(writeln,Res). 

 
create_edge_onelevel(_,_,[]):-!. 
create_edge_onelevel(_,[],_):-!. 
create_edge_onelevel(N,AllAttr,EdgeList):- 
          create_nodes(N,AllAttr,EdgeList). 
 
create_nodes(N,AllAttr,[H1-H2/PB-NB|T]):- 
         getnode(N1), 
           assert(edge(N,H1=H2,N1)), 
           assert(node(N1,PB-NB)), 
           append(PB,NB,AllInst), 
      ( (PB\==[], NB\==[])-> 
             (cand_node(AllAttr,AllInst,AllSplit), 
              min_cand(AllSplite,[V,MinAttr,Split]), 
              delete(AllAttr,MinAttr,Attr2), 
              create_edge_onelevel( N1,Attr2,Split)) 
        ;   true ), 
      create_nodes(N,AllAttr,T). 
 
create_nodes(_,_,[]):-!. 
create_nodes(_,[],_):-!. 
 
addKnowledge :- 

findall([A],pathFromRootToLeaf(A,_),Res), 
retractall(_>>_>>_), 

          maplist(apply(assert),Res). 
 
selectRule(V,Res):- 

findall(N>>X>>Class,(X>>Class>>N,N>=V),Res1), 
          sort(Res1,Res2), 

        reverse(Res2,Res). 

Fig. 2 A tree-based mining engine in Prolog 
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C. Implementing Association Mining Engine 

We implement the association mining module based on the 

algorithm APRIORI [2]. The implementation (Figure 3) 

shows only the first pass of algorithm; that is, the generation 

of frequent itemsets. The second pass, which is the generation 

of association rules from frequent itemsets, can be easily 

extended from the given code. 

 

association_mining :-  

          input(Data), min_support(V), 

          makeC1(C), makeL(C,L), apriori_loop(L,1). 

apriori_loop(L,N) :- length(L) is 1,!. 

apriori_loop(L,N) :- N1 is N+1, 

          makeC(N1,L,C), makeL(C, Res),  

          apriori_loop(Res, N1). 

makeC1(Ans) :- input(D),  

          allComb(1, ItemSet, Ans2), 

          maplist(countSS(D), Ans2, Ans).   

makeC(N,ItemSet,Ans) :- input(D), 

          allComb(2,ItemSet, Ans1), 

          maplist(flatten, Ans1, Ans2),     

          maplist(list_to_ord_set, Ans2, Ans3) ,   

          list_to_set(Ans3,Ans4),  

          include(len(N), Ans4, Ans5),    

          maplist(countSS(D), Ans5, Ans).   

                     %scan database to find: List+N 

makeL(C,Res) :- include(filter, C, Ans),  

          maplist(head, Ans, Res). 

filter(_+N) :- input(A), length(A, I),  

               min_support(V),  

               N>=(V/100)*I. 

head(H+_,H). 

% arbitrary subset of the set containing given  

%    number of elements 

comb(0, _, []). 

comb(N, [X|T], [X|Comb]) :- N>0, N1 is N-1, 

comb(N1,T,Comb). 

comb(N,[_|T],Comb) :- N>0, comb(N,T,Comb). 

allComb(N,I,Ans) :- setof( L, comb(N, I, L), Ans). 

countSubset(A,[],0). 

countSubset(A,[B|X],N) :- not(subset(A,B)), 

countSubset(A,X,N). 

countSubset(A,[B|X],N) :- subset(A,B), 

          countSubset(A,X,N1),  

          N is N1+1. 

countSS(SL, S, S+N) :- countSubset(S, SL, N). 

Fig. 3 Association mining engine in Prolog 

 

Main predicate of this module is association_mining. Upon 

invocation, this predicate obtains input data from the predicate 

input(Data), and get the minimum support value through the 

predicate min_support(V). Then the main predicate starts by 

making candidate and large itemsets of length one, two, three, 

and so on (through the predicates makeC1, makeL, and 

apriori_loop, respectively). All highlighted terms are higher-

order predicates: maplist, include, and setof. 

The predicate maplist takes three arguments. This predicate 

applies its first argument, which is also a predicate, to each 

element of a list appeared in the second argument. The result 

is a list in the third argument. Predicate include takes another 

predicate as its first argument and adds the result obtained 

from the first argument to the list in second argument. The 

result appears as a list in the third argument. The predicate 

setoff  collects each answer as a list in its third argument. 

D. Implementing Clustering Engine 

Figure 4 demonstrates the implementation of k-means 

clustering [17], [28]. The main predicate is clustering in 

which the number of clusters (k) has to be specified and data 

are to be included. 

clustering(K) :- makeInitCluster(K, AllClust), 

     assignPoint(AllClust,Data,Start,AllPoint), 

     OldClust=AllClust,    

       repeatCompute(K,AllPoint,OldClust). 

makeInitCluster(K, AllClust):- initClust(K, 1, AllClust). 

initClust(K,L0,[]) :- L0>K , ! . 

initClust(K,L0,[L0*L|T]) :- instance(L0,_,L), 

              L1 is L0+1, initClust(K, L1, T). 

assignPoint(_, U, M, []) :- M>U, !. 

assignPoint(AllClust, U, M, [M-V-A|T]) :-  

            maplist(freq(M),AllClust,Res),cmax(Res, A*V),   

            M1 is M+1,assignPoint(AllClust, U, M1, T). 

freq(X,N*Y,N*F) :-   instance(X, _, L1), 

             intersection(L1, Y, I), length(I, F). 

cmax(L,A*V) :- maplist(cvalue, L, L2), 

            max_list(L2, V), member(A*V, L), !. 

cvalue(_*V, V). 

reComputeCenter(K, S, AllPoint, []) :- S>K, !. 

reComputeCenter(K, S, AllPoint, [S*NewC|T]) :- 

            findall(P, member(P-_-S, AllPoint), Z), 

    allPointAtAllAttr(Z, NewC), S1 is S+1, 

            reComputeCenter(K, S1, AllPoint, T). 

allPointAtAllAttr(AllP, NewClusters) :- 

      findall(AttName, (attribute(AttName,_),   

                           AttName\==class), AttNameL), 

      maplist(allPoint(AllP), AttNameL, NewClusters). 

allPoint(AllP, Att, A) :- 

       findall(Att=V, (instance(X, _, K),  

            member(X, AllP), member(Att=V, K)) , Z), 

       maxFreq(Z, A*V). 

repeatCompute(K, AllPoint, OldClust) :- 

          reComputeCenter(K,Start,AllPoint,NewClus), 

         ( OldClust==NewClus ->  

           writeln('-No-cluster-changes***EndProcess*'); 

           ( assignPoint(NewClus,Data,Start,AllPoint2), 

               repeatCompute(K, AllPoint2, NewClus))). 

Fig. 4 Data clustering engine in Prolog 
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The predicate makeInitCluster creates initial k clusters with 

randomized k centroids, then assign each data to the closest 

centroid through the predicate assignPoint. Note that the 

symbol „*‟, such as those appear in the predicate cmax(Res, 

A*V) and freq(X, N*Y, N*F), refers to the data format to 

represent Attribute*Value; it does not mean multiplication. In 

Prolog, numerical computation will occur in a clause with the 

predicate ‘is’, such as S1 is S + 1 in the reComputeCenter 

procedure. 

The iteration step, repeatCompute predicate, re-computes 

the new k centroids and then re-assign each data point to the 

new closest centroid. Iteration stops when all data do not 

change their clusters. The source code presented in Figure 4 

works with categorical data. For numerical or data with 

mixing types, the distance measurement has to be modified. 

 

E. Speedup Clustering with Biased Sampling Technique 

A standard k-means algorithm groups data by firstly 

assigning all data points to the closest clusters, then 

determining the new cluster mean of each cluster based on the 

average value of its members. The algorithm repeats these two 

steps until it converges. Performance of the algorithm depends 

on the numbers of data points, clusters, and iterations.  

To speed up the clustering process, we investigate the 

density-biased sampling technique. Instead of simply 

randomly selecting data for clustering, we evaluate data 

density using a sliding window model and selectively draw 

samples with rejection criteria from the dense area. The idea 

has been schematically shown in Figure 5. In our framework, 

the windows are of fixed size and each window has length W 

along each dimension. That is, the window has size W×W in 

two dimensional (2D) data, but the size increases to W×W×W 

in three dimensional (3D) data, and so forth. Therefore, to 

cluster high dimensional data we assume the feature selection 

technique such as principal component analysis or support 

vector machine has been applied to the data set prior to the 

density estimation step. 

Once the window grid had been generated, a single scan 

over the entire data set is required to count the data density on 

each window. The counting and synopsis producing are 

illustrated via example as shown in Figure 5. In the example, a 

data set contains 10 two-dimensional data points and the 

window size is 2×2 along the [x, y] axes. For ease of 

illustration, each window in the window grid has been 

assigned a number from 1 to 35. Figure 5(a) shows the point-

inclusion boundary of window 29 in which its area includes 

points in the range [6..7.99, 10..11.99] of the [x, y] axes. A 

thick line represents the inclusion boundary, whereas the 

dashed line is the exclusion edge.  

Figure 5(b) summarizes information regarding the window 

boundary, data points in the window, and window synopsis. 

The density estimation process finally produces a window list 

as shown in Figure 5(b). Each element of this list is a window 

synopsis, which in turn is the central point of the window 

together with the number of points in that window.  

If we identify the required minimum density in each 

window to be at least 2, then there are only four windows 

eligible for the subsequent sampling phase. The step prior to 

the sampling phase is the generation of data points from the 

eligible windows, as shown in Figure 5(c). 

The proposed algorithm has been implemented with a 

functional programming paradigm using the Erlang language. 

The declarative style of Erlang facilitates a rapid prototyping 

and a concise coding, as shown in Figure 6. Our experimental 

results of drawing samples of high density data confirm that 

the shift of cluster means is minimal, whereas the decrease in 

memory usage is significant. 

 

 
(a) the window grid on a 2D data set 

 

 
(b) window synopses and a window list 

 

 

(c) data points generated from the window synopsis with density at 

least 2 

Fig. 5 Illustration of biased sampling technique 
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callWindowSliding(Dimension, AllPoints)->  
     Stream=myZip(Dimension), 
  eachWindow(Dimension, AllPoints, Stream). 
    
     % prepare a window of size WxW and WxWxW  

         % for 2D and 3D data sets 

myZip(2)-> L=myGenL(0),  
                 [[X1,X2]||X1<-L,X2<-L]; 

myZip(3)-> L=myGenL(0),  
                 [[X1,X2,X3]||X1<-L,X2<-L,X3<-L]; 

myGenL(50)->[];         % axis scale is in the range 0 to 50     

myGenL(Now)->[Now|myGenL(Now+WindowStepSize)]. 
% e.g., WindowStepSize=2 

        % count data points in each window 

eachWindow(_,_,[])->[]; 
eachWindow(Del, AllPoints,[Now|StreamT])-> 
   Lc = count(Now, Del, AllPoints), 
   Sum= lists:sum(Lc), 
   [{Now,Sum}| eachWindow(Del,AllPoints,  

                                                      StreamT)]. 
 

% --- Generate back from sliding window synopses to points 

genWin2P([])->[]; 
genWin2P([{P,Den}|T])-> if Den>=1 -> 

dup(center(P),Den)++genWin2P(T);    
                     true -> genWin2P(T) end. 
 

%--- Hash-based density-biased reservoir sampling  

specificDensBin(Bin,L,Den) -> 
take(Bin,specificDens(L,Den)). 

specificDens([],_)->[]; 
specificDens([{P,D}|T],Den)-> if D>=Den -> 

[{P,D}|specificDens(T,Den)]; 
                       true -> specificDens(T,Den) end. 
 

%--- Simple Random with density bias   

simpleRandom(_,_,0)->[]; 
simpleRandom(WindowL,Dens,Bin)-> 
      Nth=random:uniform(length(WindowL)), 
      {P,D}=lists:nth(Nth,WindowL), 
      if D>=Dens -> 

[{P,D}|simpleRandom(WindowL,Dens,Bin-1)] ; 
           true-> simpleRandom(WindowL,Dens,Bin) end.  
 

%--- Rejection sampling with density bias 

rejectionRandom(_,_,_,0)->[]; 
rejectionRandom(Para,WindowL,Dens,Bin)-> 
      Nth=random:uniform(length(WindowL)), 
      Par=random:uniform(), 
      {P,D}=lists:nth(Nth,WindowL), 
      if (0.5-Para)=<Par,Par=<(0.5+Para),D>=Dens ->  
              

[{P,D}|rejectionRandom(Para,WindowL,Dens,Bin-
1)] ; 

          true-> 
rejectionRandom(Para,WindowL,Dens,Bin) end.  

 

 
Fig. 6 An Erlang module to perform density estimation with a sliding 

window technique, then perform density-biased sampling 

 

 

V. KNOWLEDGE DEPLOYMENT EXAMPLES 

A. Trigger Rule Generation 

We have tested our implementation with the diabetes 

dataset taken from the UCI database (http://www.ics.uci.edu/ 

~mlearn/MLRepository.html). This medical data set is a 

collection of 768 observations on female patients investigating 

whether the patient shows signs of diabetes (class=1) or not 

(class=0) according to World Health Organization criteria. 

Each patient's record contains eight attributes: number of 

times pregnant, plasma glucose concentration (a two hours in 

an oral glucose tolerance test), diastolic blood pressure, triceps 

skin fold thickness (mm.), 2-hour serum insulin, body mass 

index, diabetes pedigree function, and age. The best five 

accurate association rules (annotated with the number of cases 

supporting the induced association) are shown as follows:  

1. IF   triceps-thickness='(0-9.9]'   AND diabetes-

pedigree-fn='(0-0.3122]'   

 THEN 2Hr-serum-insulin='(0-84.6]'     

(support= 128 cases) 

2. IF   triceps-thickness='(0-9.9]'   AND diabetes-

pedigree-fn='(0-0.3122]' AND class=0  

 THEN 2Hr-serum-insulin='(0-84.6]'     

(support= 83 cases) 

3. IF   diastolic-pressure='(73.2-85.4]'   AND triceps-

thickness='(0-9.9]'  

 THEN 2Hr-serum-insulin='(0-84.6]'     

(support= 75 cases) 

4. IF   times-pregnant='(3-5]'   AND triceps-

thickness='(0-9.9]'  

 THEN 2Hr-serum-insulin='(0-84.6]'     

(support= 52 cases) 

5. IF   diastolic-pressure='(73.2-85.4]'  AND triceps-

thickness='(0-9.9]'  AND class=0  

 THEN 2Hr-serum-insulin='(0-84.6]'      

(support = 48 cases) 

 

To illustrate deployment of induced knowledge, we 

design a framework (Figure 7) to add active behavior to 

the medical database through the induced trigger rules. 

There are three major components in our model: mining, 

trigger generation and conflict resolution components. 

Mining component induces knowledge from the 

database contents and presents as rules: association and 

classification rules. The data repository contains both 

base data and trigger rules. Trigger generation 

component is responsible for converting induced 

classification/association rules into trigger format then 

stores generated triggers in the repository. In case of 

trigger rule application and rule conflict occurs, conflict 

resolution component will handle the situation.  
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Fig. 7 Knowledge deployment by incorporating induced knowledge 

as a set of trigger rules in active medical databases 

 

 

From the first induced rule: IF   triceps-thickness='(0-9.9]' 

AND diabetes-pedigree-fn='(0-0.3122]' THEN 2Hr-serum-

insulin='(0-84.6]', the database trigger can be created as 

follows: 
CREATE TRIGGER  rule_1  ON diabetes FOR UPDATE,  

INSERT 

AS IF (SELECT COUNT(*) FROM diabetes 

WHERE (triceps-thickness = ‘(0-9.9]’)  

        and (diabetes-pedigree-fn= ‘(0-0.3122]’ ) 

        and (2Hr-serum-insulin <> ‘‘(0-84.6]’) ) > 0 

       BEGIN  

            RAISERROR (‘soft constraint violation, please verify’);  

       END 

 

This trigger will raise a warning message upon any 

database updates that violates the rule “any female patient 

with triceps thickness in the range 0-9.9 mm and diabetes 

pedigree function in the range 0-0.3122, 2-hour serum insulin 

has to be in the rage 0-84.6”. Any attempt to insert violating 

data will fire this trigger to draw attention from database 

administrator. Such trigger rule is thus deployed as a tool to 

support database integrity checking. 

B. Automatic Knowledge Base Creation 

Another example of induced knowledge deployment is the 

automatic generation of knowledge base in the medical 

decision support system. Given the contact lens 

recommendation data as in Figure 8, the induced classification 

rules can be generated and then transformed into expert rules 

as in Figure 9. These rules are to be consulted by the 

knowledge inference engine of the decision support system.  

 

 
Fig. 8 Contact lens data set as an input of the classification engine 

 
 

 
Fig. 9 Induced classification rules that are automatically transformed 

into knowledge base rules (top), and these rules are to be used in a 

decision support system (bottom) 

 

VI. CONCLUSION 

In this paper we have proposed the design and 

implementation of SUT-Miner, a declarative knowledge 

mining system. The system is intended to support automatic 

knowledge acquisition in medical and healthcare domains that 

require new knowledge to support better decisions as well as 

to enhance understandability of the stored data. The proposed 

knowledge discovery environment is composed of tools and 

methods suitable for various kinds of knowledge discovery 

tasks including data classification, association discovery, and 

data clustering.  

Most of the implementation of our proposed system is 

based on the concept of logic programming, except the biased 

sampling for clustering that are implemented with functional 

language. Both languages support the advanced concept of 

higher-oder programming. In Prolog implementation, we  use 

some higher-order predicates such as maplist, findall, setoff, 

and include. These predicates are higher-order in the sense 

that they take other predicates as their arguments. With such 

expressive power of higher-order predicates, program coding 

of the designed system is very concise as demonstrated in the 

paper. Program conciseness contributes directly to program 

verification and validation, which are important issues in 
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software engineering. The declarative style of programming 

also eases the extension of the present system towards the 

constraint higher-order mining [11], [39],  which is our future 

research plan.  

To illustrate knowledge deployment, we provide a 

framework to semi-automatically generate trigger rules from 

current database contents by means of association mining 

technique. Induced trigger rules, in addition to predefined 

triggers, can be viewed as supplementary constraints to help 

increasing database consistency. Our proposed framework is 

thus a preliminary design of active medical databases. Another 

example of utilizing the induced knowledge is demonstrated 

through the automatic generation of knowledge base to 

support medical decision. We also plan to further our 

implementation on the knowledge inferring part and then test 

the knowledge induction component on various medical data 

sets. The induced knowledge is also to be verified by the 

experts of the field. 
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