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Abstract—The k-means clustering algorithm is an unsupervised 

learning method for non-hierarchical assigning data points into 

groups. K-means algorithm performs in an iterative manner the data 

assignment and central point calculation steps until data points do not 

move from one group to another. On clustering large datasets, the k-

means method spends most of its execution time on computing 

distances between all data points and existing central points. It is 

obvious that distance computation of one data point is irrelevant to 

others. Therefore, data parallelism can be achieved in this case and it 

is the main focus of this paper. We propose parallel methods, 

including the approximation scheme, to the k-means clustering. Then 

demonstrate the implementation of parallelism through the message 

passing model using a concurrent functional language, Erlang, and 

also through the multi-threading technique using Prolog. Both Erlang 

and Prolog are declarative method that efficiently support rapid 

prototyping. The experimental results of both parallelized 

implementation techniques show the speedup in computation. The 

clustering results of an approximated parallel method are impressive 

in terms of its fast execution time. 

 

Keywords— Parallel k-means, Concurrency, Multi-thread, 

Functional program, Erlang, Declarative method, Prolog.  

I. INTRODUCTION 

HE k-means algorithm has been proposed by J.B. 

MacQueen since 1967 and gained much interest as a data 

clustering method. Data clustering is an unsupervised learning 

problem widely studied in many research areas such as 

statistics, machine learning, data mining, pattern recognition. 

The objective of clustering process is to partition a mixture of 

large dataset into smaller groups with a general criterion that 

data in the same group should be more similar or closer to 

each other than those in different groups. The clustering 

problem can be solved with various methods, but the most 

widely used one is the k-means method [13], [14], [22], [23]. 
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The popularity of k-means algorithm is due to its simple 

procedure and fast convergence to a decent solution. 

Computational complexity of k-means is O(nkt), where n is 

the number of data points or objects, k is the  number of 

desired clusters, and t is the number of iterations the algorithm 

takes for converging to a stable state. To efficiently apply the 

method to applications with inherent huge number of data 

objects such as genome data analysis and geographical 

information systems, the computing process needs 

improvements.  

Parallelization is one obvious solution to this problem and 

the idea has been proposed [6], [9], [11], [21] since the last 

two decades. This paper also focuses on parallelizing k-means 

algorithm, but we base our study on the multi-core 

architecture. Our focus is on the parallelize implementation 

techniques using message-passing and multi-threading 

schemes.  

We implement our first extension of the k-means algorithm 

using Erlang language (www.erlang.org), which uses the 

concurrent functional paradigm and communicates among 

hundreds of active processes via a message passing method 

[1]. To create multiple processes in Erlang, we use a spawn 

function as in the following example. 

-module(example1). 
-export([start/0]). 

start() ->  
              Pid1 = spawn(fun run/0), 

              io:format("New process ~p~n", [Pid1]), 

              Pid2 = spawn(fun run/0), 

              io:format("New process ~p~n", [Pid2]). 

run() -> io:format("Hello ! ~n", []). 

The start function in a module example1, which is the 

main process, creates two processes with identifiers Pid1 and 

Pid2, respectively. The newly created processes execute a run 

function that prints the word “Hello !” on the screen. The 

output of executing the start function is as follows: 
New process <0.53.0> 

Hello !  

New process <0.54.0> 

Hello !  

The numbers <0.53.0> and <0.54.0> are identifiers of the 

newly created two processes. Each process then independently 

invokes the run function to print out a word “Hello!” on the 

screen.  
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The processes in Erlang virtual machine are lightweight and 

do not share memory with other processes. Therefore, it is an 

ideal language to implement a large scale parallelizing 

algorithm. To serve a very large data clustering application, 

we also propose an approximate method to the parallel k-

means. Our experimental results confirm efficiency of the 

proposed algorithms. 

We also propose the second extension of the k-means 

algorithm using Prolog language. Prolog is a general purpose 

logic programming language. Many Prolog compilers support 

parallelization through multi-threading such as SWI-Prolog, 

SICStus Prolog, CIAO Prolog, and Qu-Prolog.  In this paper, 

we use SWI-Prolog that provides preemptive threads [20] to 

implement k-means clustering algorithm. SWI-Prolog is an 

open source and multi-threading support available for Linux, 

Windows and Macintosh platforms. We can profit multi-

thread Prolog by splitting a large task into subtasks that can 

speedup computation time on multi-core processors. 

The organization of the rest of this paper is as follows. 

Discussion of related work in developing a parallel k-means is 

presented in Section 2. Our proposed algorithms, a lightweight 

parallel k-means including the approximation method and a 

multi-thread parallel k-means, are explained in Section 3. The 

implementation with a declarative method using Erlang and 

Prolog languages is demonstrated in Section 4 (program 

source code is available in the appendix). Experimental results 

confirming good performance of the proposed algorithms are 

shown in Section 5. The conclusion as well as future research 

direction appears as a last section of this paper. 

II. RELATED WORK 

Serial k-means algorithm was proposed by J.B. MacQueen 

in 1967 [14] and since then it has gained mush interest from 

data analysts and researchers. The algorithm has been applied 

to variety of applications ranging from medical informatics 

[9], genome analysis [15], image processing and segmentation 

[6], [19], [22] to aspect mining in software design [3]. Despite 

its simplicity and great success, the k-means method is known 

to degrade when the dataset grows larger in terms of number 

of objects and dimensions [7], [10]. To obtain acceptable 

computational speed on huge datasets, most researchers turn 

to parallelizing scheme.  

Li and Fang [12] are among the pioneer groups on studying 

parallel clustering. They proposed a parallel algorithm on a 

single instruction multiple data (SIMD) architecture. Dhillon 

and Modha [4] proposed a distributed k-means that runs on a 

multiprocessor environment. Kantabutra and Couch [8] 

proposed a master-slave single program multiple data (SPMD) 

approach on a network of workstations to parallel the k-means 

algorithm. Their experimental results reveal that when on 

clustering four groups of two dimensional data the speedup 

advantage can be obtained when the number of data is larger 

than 600,000. Tian and colleagues [17] proposed the method 

for initial cluster center selection and the design of parallel k-

means algorithm. 

Zhang and colleagues [23] presented the parallel k-means 

with dynamic load balance that used the master/slave model. 

Their method can gain speedup advantage at the two-

dimensional data size greater than 700,000. Prasad [16] 

parallelized the k-means algorithm on a distributed memory 

multi-processors using the message passing scheme. Farivar 

and colleagues [5] studied parallelism using the graphic 

coprocessors in order to reduce energy consumption of the 

main processor. 

Zhao, Ma and He [24] proposed parallel k-means method 

based on map and reduce functions to parallelize the 

computation across machines. Tirumala Rao, Prasad and 

Venkateswarlu [18] studied memory mapping performance on 

multi-core processors of k-means algorithm. They conducted 

experiments on quad-core and dual-core shared memory 

architecture using OpenMP and POSIX threads. The speedup 

on parallel clustering is observable. 

In this paper, we also study parallelism on the multi-core 

processors. We investigate the implementation schemes using 

both threads (in Prolog [2], [20]) and non-threads (in Erlang). 

The virtual machine that we use in our  Erlang experiments 

employs the concept of message passing to communicate 

between parallel processes. Each communication carries as 

few messages as possible. This policy leads to a lightweight 

process that takes less time and space to create and manage. 

III. PARALLELIZED K-MEANS ALGORITHMS 

A. Parallel K-Means Based On Message-Passing 

Serial k-means algorithm [14] starts with the initialization 

phase of randomly selecting temporary k central points, or 

centroids. Then, iteratively assign data to the nearest cluster 

and then re-calculate the new central points of k clusters. 

These two main steps are shown in Algorithm1.  

Algorithm 1. Serial k-means  

Input:   a set of data points and the number of clusters, K 

Output: K-centroids and members of each cluster 

Steps 

    1. Select initial centroid C = <C1, C2, …, CK> 

    2. Repeat 

         2.1   Assign each data point to its nearest cluster 

center 

         2.2   Re-compute the cluster centers using the 

current cluster memberships 

    3. Until there is no further change in the assignment of 

the data points to new cluster centers 

The serial algorithm takes much computational time on 

calculating distances between each of N data points and the 

current K centroids. Then iteratively assign each data point to 

the closest cluster. We thus improve the computational 

efficiency by assigning P processes to handle the clustering 

task on a smaller group of N/P data points. The centroid 

update is responsible by the master process. The pseudocode 

of our parallel k-means is shown in Algorithm 2. 
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Algorithm 2. Parallel k-means (PKM) 

Input: a set of data points and the number of clusters, K 

Output: K-centroids and members of each cluster 

Steps 

    1. Set initial global centroid C = <C1, C2, …, CK> 

    2. Partition data to P subgroups, each subgroup has 

equal size 

    3. For each P, 

    4.       Create a new process 

    5.       Send C to the created process for calculating 

distances and assigning cluster members 

    6. Receive cluster members of K clusters from P 

processes 

    7. Recalculate new centroid C‟ 

    8. If difference(C, C‟) 

    9.     Then set C to be C‟ and go back to step 2 

  10.     Else stop and return C as well as cluster members  

 

The PKM algorithm is the master process responsible for 

creating new parallel processes, sending centroids to the 

created processes, receiving the cluster assignment results, and 

recalculating the new centroids. The steps repeat as long as 

the old and the new centroids do not converge. The 

convergence criterion can be set through the function 

difference(C, C’). Communication between the master process 

and the created processes can be graphically shown in Figure 

1. 

 

 

Fig. 1 A diagram illustrating the communication between master and 

created processes 

 

 

B. Approximate Parallel K-Means 

For the case of very large datasets or streaming data, we 

also design the approximation method (Algorithm 3) in order 

to obtain a timely and acceptable result. 

 

Algorithm 3. Approximate parallel k-means (APKM) 

Input: a set of data points, the number of clusters (K), and 

the sample size (S) 

Output: approximate K-centroids and cluster members 

Steps 

   1. Set initial centroid C = <C1, C2, …, CK> 

   2. Sampling data to be of size S 

    3. Partition S into P subgroups, each subgroup has 

equal size 

    4. For each P, create a new process and send C to all 

processes for calculating distances and assigning 

cluster members 

    5. Receive cluster members of K clusters from P 

processes 

    6. Recalculate new centroid C‟ = average C 

    7. If  C‟ is diverge, then go back to step 2 

    8.     else stop and return C‟ as well as cluster members  

 

Our approximation scheme is based on the random 

sampling approach with the basis assumption that the 

incoming data are uniformly distributed. The data distribution 

takes other forms (such as Zipf, Gaussian), the proposed 

algorithm can be easily adapted by changing step 2 of the 

algorithm APKM to use different approach such as density-

biased sampling. 

 

C. Multi-thread Parallel K-Means 

For a parallelize scheme using the concept of multi-thread, 

we design the concurrency process at a finer grain than in the 

message-passing scheme. The concurrency in this scheme is 

the distribution of data points in each K cluster to the parallel 

process. The new central point of each group is then reported 

to the master process. The graphical scheme can be shown as 

in Figure 2. 

 
Fig. 2 Process communication in the multi-thread scheme 
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The multi-thread parallelization steps can be shown in 

Algorithm 4. The multi-thread k-means (MTK) algorithm 

asserts the multi-thread process at the centroid re-computation 

step. This re-computation is the main process responsible for 

creating threads, sending a set of data points in each cluster 

along with the thread, and recalculating the new centroids. 

The re-computation process repeats as long as the old and the 

new centroids do not converge and multi-threading process 

will be invoked every time the re-computation process has 

started. 

Algorithm 4. Multi-thread k-means (MTK) 

Input:  number of clustering and a set of data points 

Output:  k-centroids and members of each cluster 

Steps 

1. Select initial centroid C = <C1,C2,…,CK> 

2. Assign each data point to nearest cluster center 

3. Create threads process T=<T1,T2,…,TK> for 

centroid C = <C1,C2,…CK>  

4. For each Thread (Ti=1to TK) 

    4.1 Re-compute cluster centers <Ti:cal(Ci)> 

    4.2 Return a new centroid Ci to set C‟ 

5. Check stable of centroids 

    5.1 if C != C' then set C = C' go to step 2 

    5.2 if C == C' then stop and return C and  

          cluster members 

 

IV. IMPLEMENTATION WITH DECLARATIVE METHOD 

A. Implementation with Erlang 

We implement the serial k-means, the proposed PKM and 

APKM algorithms with Erlang language. Each process of 

Erlang does not share memory and it works concurrently in an 

asynchronous manner. The implementation of PKM and 

APKM algorithms as an Erlang program is given in appendix. 

Some screenshots of compiling and running the program 

(with Erlang release R13B04) are given in Figures 3 and 4. To 

compile the program, we use the command: 

c(pka, [export_all]). 

The first argument, pka, is the name of a module. The 

second argument, [export_all], is a compiler directive 

meaning that every function in the pka module is visible and 

can be called from the Erlang shell. The second command in 

Figure 3 calls a function genData to generate a synthetic two 

dimensional dataset containing 800,000 data points with value 

randomly ranging from 1 to 10,000. Each data point is a tuple, 

which is a data structure enclosed by curly brackets, and all 

800,000 points are contained in a single list. 

Data points used in our experiments are randomly generated 

with the following function: 
genData(0, _) ->[]; 
genData(Count, Max) ->  
                   [ {uniform(Max), uniform(Max)} | 
                     genData(Count-1,Max)]. 

 

A function genData takes two arguments: number of data 

points and maximum value of a data point in each dimension 

(minimum value is 1 by default). Therefore, the second 

command in Figure 3 generates 800,000 two-dimensional data 

points. A data value in each dimension is randomly ranged 

from 1 to 10,000. For instance, the first generated data point is 

(924, 4436). All 800,000 data points are stored in a list 

structure that is represented by bracket symbol. 

 

 
Fig. 3 A screenshot to illustrate compiling Erlang program and 

generating data points 

 

 

 

Fig. 4 A series of line commands to clustering and recording running 

time 

 

Figure 4 illustrates creation of four initial centroids 

(command 3), then partition 800,000 data points into eight 

subgroups to send to the eight processors (command 4). A 

parallel k-means starts at command 5. The outputs of parallel 

k-means shown on a screen are the number of iteration (which 

is 35 in this example) and the mean points of four clusters. 

The last command calls a variable TReal to display running 

time of the whole process, which is 129371000 microseconds 

or 129.371 seconds. This time includes sending and receiving 

messages between master and the eight concurrent processes. 
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B. Implementation with Prolog 

For the multi-thread scheme of parallelization, we  do the 

implementation of both serial k-means (called KM) and multi-

thread k-means (called MTK) as a Prolog program and the 

source code is also given in Appendix. A screenshot of 

running the program (SWI-Prolog Multi-threaded, 32 bits, 

Version 5.10.5) is in Figure 5. To run the program, we use the 

command: 

cluster(K). 

The argument K is the number of clusters and before 

running the program the data file „points.pl‟ must exist in 

working directory. The data format (three dimensions) is as 

follows: 

item([[p1],[p2],…,[pk]]).  

or 

item([ 

         [-4,8,-7],[-9,0,-5],[8,4,4], 

         [9,5,6],[-4,-5,-7],[-2,-1,3], 

         [10,11,0],[0,-15,7],[2,-1,3]]). 

 

A predicate item([[p1],[p2],…,[pk]]) is a set of data points 

for clustering with the KM and MTK implementations. The 

screenshot in Figure 5 shows a command to run the MTK 

program for two clusters. Time usage is also shown at the 

bottom line before the true predicate. 

 

 

Fig. 5 Running the MTK program with 2 clusters 

 

V. EXPERIMENTATION AND RESULTS 

 

A. Performance of Parallel K-Means 

We evaluate performances of the proposed PKM and 

APKM algorithms on synthetic two dimensional dataset. The 

computational speed of parallel k-means as compared to serial 

k-means is given in Table1. Experiments are performed on 

personal computer with processor speed GHz and GB of 

memory. 

It is noticeable from Table 1 that when dataset is small 

(N=50), running time of parallel k-means is a little bit longer 

than the serial k-means. This is due to the overhead of 

spawning concurrent processes. At data size of 900,000 

points, running time is unobservable because the machine is 

out of memory. Running time comparison of parallel against 

serial k-means is graphically shown in Figure 6. Percentage of 

running time speedup in is also provided in Figure 7. Speedup 

advantage is very high (more than 30%) at dataset of size 

between 50,000 to 200,000 points. 

 

Table 1. Execution time of serial versus parallel k-means 

clustering 

 

# Data 

 points     

   (N) 

Time  

(Ts, sec) 

Serial  

k-means 

Time  

 (Tp, sec) 

Parallel  

k-means 

(dual cores) 

Time 

Difference 

(Ts – Tp) 

(sec) 

 

Speedup 

    (%) 

50     0.000     0.0149 - 0.0149  - 1.49 

500     0.031     0.030   0.001    3.23 

50,000     8.45     5.03   3.42  40.47 

100,000   16.59   10.18   6.40  38.60 

200,000   34.03   21.92 12.10  35.58 

300,000   66.09   50.92 15.17  22.95 

400,000   82.34   63.03 19.31  23.45 

500,000   94.67   69.35 25.31  26.73 

600,000 113.06   90.18 22.87  20.23 

700,000 135.20 101.18 34.01  25.15 

800,000 173.67 124.79 48.87  28.14 

900,000    N/A   N/A   N/A   N/A 

 

 

 
Fig. 6 Running time comparisons of serial versus parallel k-means 

(PKM) 
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Fig. 7 Percentage of running time speedup at different data sizes 

 

B. Performance of Approximate Parallel K-Means (APKM) 

The experiments on APKM algorithm have been conducted 

to observe running time of a complete dataset (sample size = 

100%) versus a reduced sample at different sizes (S). Dataset 

used in this series of experiments is 500,000 two-dimensional 

data points, four clusters, and run concurrently with eight 

processes (running time is 64.67 seconds). At each sample 

size, the Euclidean distance of centroid shift is also computed 

by averaging the distances of four centroids that reported as 

the output of APKM. 

We test two schemes of sampling technique. The simple 

one is a fixed number of samples appeared as the first S 

records in the data stream. Another tested sampling technique 

is a randomly picked sample across the dataset (uniform 

random sampling with replacement). Centroid distance shift of 

both techniques are reported as “mean shift” in Table 2. The 

centroid shift may be considered as an error of the 

approximation method; the lower the distance shift, the better 

the sampling scheme. It turns out that a simple scheme of 

picking samples from the first part of dataset performs better 

than a uniform random sampling across the entire dataset. 

Table 2. Performances of approximate parallel k-means 

 

Sample 

Size 

(N = 

500K) 

Sample = the first S 

records in data 

stream 

Uniform random 

sampling with 

replacement 

Time 

(sec) 

Time 

reduction 

(%) 

Mean 

shift 

Time 

(sec) 

Time 

reduction 

(%) 

Mean 

shift 

70% 38.96 39.75   7.07 44.50 31.19 16.45 

60% 37.48 42.03   5.78 27.45 57.54 22.11 

50% 31.71 50.95   8.83 25.18 61.05 12.62 

40% 25.31 60.86 10.73 21.23 67.16 14.15 

30% 14.06 78.26 13.64 12.87 80.08 19.26 

20% 12.70 80.35 27.49   9.40 85.33 10.49 

10%   3.82 94.08 27.19   4.57 92.92 36.61 

Percentage execution time speedup of the two sampling 

schemes is shown in Figure 8. The error (or centroid shift 

computed from the average Euclidean distances of all mean 

points) of both schemes to approximate parallel k-means is 

shown in Figure 9. It can be noticed from the experimental 

results that the random sampling with replacement scheme 

gains a little higher percentage of running time reduction than 

the simple scheme of selection the first S records from dataset. 

When compare the clustering error measured as the average 

centroid shift, the random sampling with replacement scheme 

shows worse performance than the simple scheme of selection 

the first S records from the dataset. There is only one 

exception at the sampling size 20% that random sampling with 

replacement produces a better result than the simple scheme of 

selection the first S records. This could happen from the 

nature of uniform sampling that sometimes a set of good 

representatives has been selected. 

This series of experiments, however, have been conducted 

on a uniformly distributed data. For other forms of data 

distribution, the experimental results can be different from the 

ones reported in this paper. 

 

 
Fig. 8 Time reduction comparison of the two sampling schemes on 

approximate parallel k-means 

 

 
Fig. 9 Error comparison of the two schemes of approximate parallel 

k-means methods 
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C. Performance of Multi-thread Parallel K-Means 

For the multi-thread scheme, we evaluate performance of 

the proposed KM and MTK algorithms on synthetic three 

dimensional dataset. The computational speed of k-means as 

compared to multi-thread k-means is given in Table 3. 

Experimentation has been performed on Laptop computer 

with the processor Intel(R) Core(TM) i5-2410 2.3GHz, 4Gb 

of memory, and Windows 7 32-bit operating system. The 

number of synthetic data points is 10,000 points. Running 

time comparison and percentage of speedup are also shown in 

Figures 10 and 11, respectively. 

 

Table 3. Execution time of KM versus MTK with 10,000 data 

points (Number of clusters is equal to the number of threads) 

Number 

of 

Clusters 

Time (seconds) Speedup 

(%) KM MTK 

2 2.1 1.4 33.33 

3 5.3 3.7 30.19 

4 9.0 6.1 32.22 

5 12.7 8.3 34.65 

6 25.4 17.6 30.71 

7 29.9 22.2 25.75 

8 32.2 20.9 35.09 

9 40.8 26.5 35.05 

10 57.1 36.9 35.38 

 

 
Fig. 10 Running time comparisons of KM versus MTK with 10,000 

data points 

 

 
Fig. 11 Percentage of running time speedup on different number of 

clusters with 10,000 data points 

We also test the MTK performance on varying number of 

data points. We prepare series of data sets ranging from 500, 

1000, 2000, 3000, 4000, 5000, 8000, 10000, to 12000 points 

of 3-dimensional data. The experimentation on these data uses 

different number of clusters: 2, 4, 6, 8, and 10 clusters. The 

running results are graphically shown in Figure 12.  
 

 
Fig. 12 Percentage of running time speedup of MTK over the serial 

k-means on different numbers of clusters with varying sizes of three-

dimensional data points 

 

VI. CONCLUSION 

Clustering similar data points into the same subgroups is 

now a common task applied in many application areas such as 

grouping similar functional genomes, segmenting images that 

demonstrate the same pattern, partitioning web pages showing 

the same structure, and so on. K-means clustering is the most 

well-known algorithm commonly used for such tasks. Even 

though the k-means algorithm is simple, it performs intensive 

calculation on computing distances between data points and 

cluster central points. For the dataset with n data points to be 

grouped into k clusters, each iteration of k-means requires as 

much as (n×k) computations. Fortunately, the distance 

computation of one data point does not interfere the 

computation of other points. Therefore, parallel computation 

can be applied to the k-means clustering.  

In this paper we propose the design and implementation of 

three parallel algorithms: PKM, APKM, and MTK. The PKM 

algorithm parallel the k-means method by partitioning data 

into equal size and send them to processes that run distance 

computation concurrently. The parallel programming model 

used in our implementation is based on the message passing 

scheme. The APKM algorithm is an approximation method of 

parallel k-means. Unlike PKM and APKM, the MTK 

algorithm has been design for the multi-thread parallelization. 

The implementation of both serial k-means and the 

proposed parallel k-means has been done with the declarative 

method using Erlang and Prolog languages. The experimental 

results reveal that the proposed three parallel methods can 
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considerably speedup computation time, especially when the 

programs have been tested with multi-core processors. The 

approximation scheme also produces acceptable results in a 

short period of running time. Our future work will focus on 

the real applications. We are currently testing our algorithms 

with the genome dataset and the preliminary outcome is quite 

promising. 

 

APPENDIX 

A. Erlang Programs 

Source code presented in this section is in Erlang format. 

Erlang is a functional language. Each function takes a format: 

functionName(Arguments) -> functionBody. 

A line preceded with „%‟ is a comment. We provide two 

versions of clustering programs: serial k-means and 

approximate parallel k-means. Each program starts with 

comments explaining how to compile and run the program. 

 

Serial k—means 
%------------k-means clustering --------- 

% data file "points.dat" must exist in working directory 

% example of data file: 

%    [2,7].     [3,6].     [1,6].     [3,7].     [2,6]. 

%    [21,25]. [16,29]. [29,25]. [18,23]. [16,33]. 

% Then test a program with these commands: 

%    c(cluster).             %% compile a program 

%    cluster:go().          %% then run 

 

-module(cluster). 

-export([go/0, clustering/3]). 

 

go() -> 

       {_, DataList} = file:consult("points.dat"), 

       file:close("points.dat"), 

       kMeans(DataList). 

        

% ------------------------ 

% start k-means clustering 

% ------------------------ 

kMeans(PL) ->  

        {_,N} = io:read('enter number of clusters:> '),  

                                 % for this example input "2"  

                                 % then select initial centroids 

        CL = take(N, PL),    

        io:format("~n AllPoints = ~w ~n",[PL]), 

        io:format("~n Initial Centroid = ~w~n",[CL]),   

                       % report data and initial centroids 

                       % start clustering process with  

                       % cluster number 1 

                       % then move on to cluster number 2  

                       % and so on 

                     

        {TT,{Centroid,DataGroup}} = timer:tc(cluster, 

                                                   clustering,[1,CL,PL]), 

         T = TT/1000000,          

                      % record running time and report time 

                      % in a unit of seconds                             

        io:format("~n~n__Time for k-means is ~w  

                           second",[T]), 

        io:format("~n~n__Calculated Centroid=~w~n~n", 

                           [Centroid]), 

        printCluster(1, N, DataGroup). 

% .................................... 

% supporting clauses for kMeans 

% 

%  These clauses take firts  distinct-n element of list 

take(0,_) -> []; 

take(N,[H|T]) -> [H|take(N-1,T)]. 

 

% to print cluster nicely 

printCluster(_,_,[]) -> end_of_clustering; 

printCluster(_,0,_) -> end_of_clustering; 

printCluster(I,N, [H|T]) -> 

       {Centroid, ClusterMember} = H, 

       io:format("~n__Cluster:~w  Mean point =  

                       ~w~n",[I,Centroid]), 

       io:format("               Cluster member is  

                       ~w~n",[ClusterMember]), 

       printCluster(I+1,N-1,T). 

 

% -------------------------- 

% repetitive data clustering 

% -------------------------- 

clustering(N,CL,PL)->  

        L1 = lists:map( fun(A) -> nearCentroid(A,CL)  

                                end,  

                                PL), 

        L2 = transform(CL,L1), 

        NewCentroid = lists:map(fun({_,GL}) ->  

                                                   findMeans(GL)  

                                              end,  

                                              L2), 

        if NewCentroid==CL ->  

                          io:format("~nNo cluster changes~n"), 

                          io:format("From Loop1->stop at  

                                          Loop~w~n",[N]), 

                       {NewCentroid,L2};      

                                   % return new centroids and  

                                   % cluster members as a list L2 

               N>=90 ->        % max iterations=90 

                          io:format("Force to stop at Loop 

                                           ~w~n",[N]),                 

                          io:format("Centroid = ~w", 

                                             [NewCentroid]), 

                       {NewCentroid,L2};               

                                   % return new centroids and  

                                   % cluster members as a list L2 

 

                      true ->           % default case 

                         io:format("~nLoop=~w~n",[N]), 

                         io:format("~nNewCentroid=~w 

                                            ~n",[NewCentroid]), 

                         clustering(N + 1, NewCentroid, PL) 

         end.   

               % end if and end clustering function 

         

% transform a format "Point-CentroidList"  

% to "Centroid-PointList" 

% example, 

%         transform([[1]],[{[2],[1]},{[3],[1]}]).  

%              -->  [{[1],[[2],[3]]} ] 

 

transform([], _) -> []; 

transform([C|TC], PC) ->  

                              [ {C, t1(C, PC)} | transform(TC, PC)]. 

 

t1(_, []) -> [] ;           

t1(C1, [H|T]) ->  

                   {P,C} = H,  

       if  C1==C -> [ P| t1(C1, T) ]; 

           C1=/=C -> t1(C1, T) 

       end. 
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% ----------------------------- 

% Given a data point and a centroidList, 

%     the clause nearCentroid computes a nearest 

%     centroid and then returns 

%     a tuple of Point-Centroid 

% example: 

%     nearCentroid( [1], [[2],[3],[45],[1]] ).  

%                    ---> [ [1], [1] ] 

 

nearCentroid(Point, CentroidL)-> 

     LenList = lists:zip( 

                              lists:map(fun(A) ->  

                                                        distance(Point,A)  

                                                     end, 

                                              CentroidL),  

                                  CentroidL), 

             [ {_, Centroid} | _ ] = lists:keysort(1,LenList), 

             {Point, Centroid}.                 

                          % return this tuple to caller  

   

% -------------------------- 

% compute Euclidean distance 

% -------------------------- 

distance([], []) -> 0;   

distance([X1|T1], [X2|T2]) ->  

            math:sqrt((X2-X1)*(X2-X1) + distance(T1,T2) ). 

 

% ---------------------------------- 

% calculate mean point (or centroid) 

% ---------------------------------- 

% example, 

%      findMeans([[1,2], [3,4]]). --> [2.0,3.0] 

 

findMeans(PointL) -> 

         [H|_] = PointL, 

         Len = length(H), 

         AllDim = lists:reverse( allDim(Len,PointL) ), 

         lists:map(fun(A)-> mymean(A) end, AllDim ). 

  

allDim(0, _) -> []; 

allDim(D, L) -> [ eachDimList(D,L) | allDim(D-1,L) ]. 

 

eachDimList(_, []) -> []; 

eachDimList(N, [H|T]) -> 

          [ lists:nth(N, H) | eachDimList(N, T) ]. 

 

mymean(L) -> lists:sum(L) / length(L). 

 

% ---------- End of Serial k-means program ----------- 

%  

% ---------------------------- 

% Running example: 

% ----------------------- 

% 1> c(cluster).   

%    {ok,cluster} 

% 2> cluster:go(). 

%     enter number of clusters:> 2. 

 %     AllPoints = [[2,7],[3,6],[1,6],[3,7],[2,6],[1,5],[3,5], 

%                         [2,5],[2,6],[1,6],[21,25],[16,29], 

%                         [29,25], [18,23],[16,33],[25,32], 

%                         [20,24],[27,21],[16,21],[19,34]]  

 %     Initial Centroid = [[2,7],[3,6]] 

%      Loop = 1 
%      NewCentroid = [ [1.75,6.0], 

%                                [17.75,23.166666666666668]] 

%      Loop = 2 
%      NewCentroid = [ [2.0,5.9], [20.7,26.7] ] 

%      No cluster changes 
%      From Loop1->stop at Loop3 

%      __Time for k-means is 0.031 second 

%      __Calculated Centroid=[[2.0,5.9],[20.7,26.7]] 
%      __Cluster:1  Mean point = [2.0,5.9] 
%              Cluster member is [ [2,7],[3,6],[1,6],[3,7], 

%                                             [2,6],[1,5],[3,5], 

%                                             [2,5],[2,6],[1,6]] 
%       __Cluster:2  Mean point = [20.7,26.7] 
%               Cluster member is [ [21,25],[16,29],[29,25], 

%                                              [18,23],[16,33],[25,32], 

%                                              [20,24],[27,21],[16,21], 

%                                              [19,34]] 
%       end_of_clustering 

 

Approximate parallel k—means 

%  A parallel k-means program 

%  Compile program with a command 

% 

%              c(pkm,[export_all]). 

% 

%  To unbinding variables from the previous run 

%   use a command 

%               f(Var)     % means clear Var 

%   

%  Start experimentation by calling a function 

%   genData to generate 8000 synthetic data points 

%               f(), NumDat = 8000, 

%               D = pkm:genData(NumDat,10000). 

%  

%  Then identify number of clusters 

%               f(NumCent), f(CL), 

%               NumCent = 4, 

%               CL = lists:sublist(D, NumCent).  

% 

%  Start parallelization by identifying  

%   number of data partitions  

%                f(NumPar), f(DL), NumPar=8, 

%                DL = pkm:mysplit(length(D) div NumPar, 

%                                             D, NumPar). 

% 

%  Record running time with the command 

%               {TReal,RealCen} = timer:tc(pkm, 

%                                           start,[DL,CL,length(DL)]). 

% Then record the running time of approximate parallel 

% k-means (in this example apply 50%  

% data sampling scheme) 

%                f(RDL), 

%                RDL=pkm:mrand(DL,50), 

%                {TRand,RandCen} = timer:tc(pkm, 

%                                       start,[RDL,CL,length(RDL)]). 

% 

%  Calculate time difference between the parallel  

%   k-means and the approximate (50% data points) 

%   parallel k-means with a command 

%          pkm:mydiff({TReal,TRand},{RealCen,RandCen}). 

% 

%  To show different time of different percentages  

%  from the same Centroid use the following commands  

%           f(RDL), f(Rand), 

%           RDL = pkm:mrand(DL,40), 

%           Rand = pkm:start(RDL,CL,length(RDL)), 

%           f(RealDL), f(Real), 

%           RealDL = pkm:mrand(DL,100), 

%           Real = pkm:start(RealDL,CL,length(RealDL)). 

%           f(RDL), f(Rand), f(TimeR),  

%           f(TimeReal), f(Per),  

%           Per = 40, RDL = pkm:mrand(DL,Per), 

%           {TimeR,Rand} = timer:tc(pkm, 

%                                   start,[RDL,CL,length(RDL)]), 

%           f(RealDL), f(Real),  
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%           RealDL = pkm:mrand(DL,100), 

%           {TimeReal,Real} = timer:tc(pkm, 

%                              start,[RealDL,CL,length(RealDL)]). 

% 

% To compute percentage of time difference, 

% use a command 

%     io:format("___For ~w Percent, diff.time = 

%                        ~w sec,length=~w", 

%                         [Per, (TimeReal-TimeR) /1000000, 

%                         lists:sum(pkm:diffCent(Real,Rand))]).  

% 

%  All of the commands in clustering experimentation 

%  are also included in the test function 

% 

 

-module(pkm). 

-import(lists, [seq/2,sum/1,flatten/1,split/2,nth/2]). 

-import(io, [format/1,format/2]). 

-import(random, [uniform/1]). 

 

%---- for clustering experimentation --------- 

test(_NRand) -> 

              NumDat = 8000,    

              D = pkm:genData(NumDat,10000), 

              NumCent = 4, 

              CL = lists:sublist(D, NumCent),  

              NumPar=8, 

              DL=pkm:mysplit(length(D) div NumPar, 

                                         D, NumPar), 

              {TReal, RealCen} = timer:tc(pkm,  

                                         start, [DL,CL, length(DL)]), 

              RDL = pkm:mrand(DL,50), 

              {TRand,RandCen} = timer:tc(pkm,  

                                    start, [RDL,CL, length(RDL)]), 

              pkm:mydiff({TReal, TRand},  

                                  {RealCen, RandCen}). 

% ---- spawn a new process 

%           and start the newly created process 

%           with a function c(Pid) 

 

myspawn(0) -> [] ; 

myspawn(N) -> 

           [spawn(?MODULE, c, [self()]) | myspawn(N-1) ]. 

 

% random sampling without replacement 

% 

myrand(_, 0) -> []; 

myrand(L, Count) -> 

           E = nth((uniform(length(L))), L), 

           L1= L -- [E], 

           [E | myrand(L1, Count-1)].  

 

                               %  for 100 percent sampling 

mrand(L, 100) -> L; 

                               % random in each partition 

mrand([], _) -> []; 

mrand([HL|TL], X ) ->  

          [myrand(HL, trunc(length(HL)/(100/X) )) |  

                          mrand(TL,X)]. 

 

mysend(LoopN, [CidH|CT], Cent, [DataH|DT]) ->   

          CidH ! {LoopN, Cent, DataH}, 

          mysend(LoopN, CT, Cent, DT); 

 

mysend( _, [], _ ,_) -> true. 

 

% Compute difference between centroids 

% 

diffCent( [H1|T1], [H2|T2]) -> 

          [ abs(H1-H2) | diffCent(T1,T2) ]; 

 

diffCent( [], _ )->[]. 

mystop( [CH|CT] ) ->  

                CH ! stop, 

                mystop(CT); 

mystop([]) -> true. 

 

myrec( _, 0) -> []; 

myrec(LoopN, Count) -> 

      receive  

          {LoopN, L} -> [L | myrec(LoopN,Count-1) ]; 

          Another -> self() ! Another   % send to myself 

      end. 

 

% generate 2 dimensional data points 

%  example:  [{2,76},...] 

%   

genData(0, _ ) -> []; 

genData(Count, Max) ->  

           [ {uniform(Max), uniform(Max)} | 

                 genData(Count-1, Max)]. 

 

mysplit(_, _, 0) -> [];    

mysplit(Len, L, Count) -> 

            {H, T} = split(Len, L),  

            [ H | mysplit(Len, T, Count-1) ]. 

 

start( DataL, Cent, NumPar) ->  

           CidL = myspawn(NumPar), 

           LastC = myloop(CidL,Cent,DataL,NumPar,1), 

           format("~nCentroid=~w",[LastC]), 

           LastC. 

 

myloop(CidL, Cent, DataL, NumPar, Count) -> 

          mysend(Count, CidL, Cent, DataL),   

          L = flatten(myrec(Count, NumPar)),  

          C_= calNewCent(Cent, L), 

          format("~w.", [Count]), 

          if  Count >100 -> mystop(CidL), 

                                     C_ ;  

              Cent/= C_ -> myloop(CidL, C_, DataL,  

                                            NumPar, Count+1); 

              true -> mystop(CidL), 

                         C_    

         end. 

 

c(Sid) -> 

        receive 

             stop -> true; 

            {LoopN, Cent, Data} -> L = locate(Data,Cent), 

                                               Sid ! {LoopN,L}, 

                                               c(Sid) 

        end. 

 

calNewCent(Cent, RetL) -> 

          LL = group(Cent, RetL), 

          avgL(LL). 

 

%---- supplementary functions------ 

% 

mydiff( {TReal,TRand}, {RealCen,RandCen} ) ->  

          { (TReal-TRand)/1000000, 

             mdiff(RealCen, RandCen) / length(RandCen) }. 

 

mdiff( [ {X,Y}|T1], [ {X1,Y1}|T2] ) ->  

             distance({X,Y}, {X1,Y1}) + mdiff(T1,T2);  

mdiff([], _ ) -> 0. 

 

group([H|T] , RetL) -> 

            [ [X || {X,M} <- RetL , M==H ] | group(T, RetL)]; 
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group([],_) -> []. 

 

avgL( [HL|TL] ) ->  

           N = length(HL), 

           [ {sumX(HL) / N, sumY(HL) / N} | avgL(TL)]; 

avgL([]) -> []. 

 

sumX( [ {X, _} | T] ) -> X + sumX(T); 

sumX([]) -> 0. 

 

sumY( [ {_,Y} | T] ) -> Y + sumY(T); 

sumY([]) -> 0. 

 

locate( [H|T], C) -> 

            NearC = near(H,C), 

            [ {H, NearC} |locate(T, C) ]; 

locate( [], _ ) -> []. 

 

near(H, C) -> 

             mynear(H, C, {0,1000000000} ). 

 

mynear(D, [H|T], {MinC, Min}) -> 

             Min_= distance(D, H), 

             if Min>Min_ -> mynear(D, T, {H, Min_} ); 

                        true  -> mynear(D, T, {MinC, Min} )  

             end ; 

mynear(_ , [], {MinC, _ } ) -> MinC.   

 

distance( {X, Y}, {X1, Y1}) ->  

             math:sqrt( (X-X1)*(X-X1) + (Y-Y1)*(Y-Y1) ). 

 

% ===== End of Erlang Part ============= 

 

B. Prolog Programs 

The following source code is in SWI-Prolog format.  We 

provide two versions of clustering programs: k-means and multi-

thread k-means. Each program starts with comments explaining how 

to run the program. 

 

K-means Clustering 
 

% files "points.pl" must exist in working directory 

% example of data file: 

% item([ [-4,8,-7], [-9,0,-5], [8,4,4], [9,5,6], [-4,-5,-7], 

%             [-2,-1,3], [10,11,0],[0,-15,7],[2,-1,3]]). 

           

% Then test a program with this command 

% cluster(2).   %% use 2 or more 

 

%% -- Reserve memories 

:-set_prolog_stack(global,limit(3*10**9)), 

  set_prolog_stack(local,limit(4*10**9)). 

 

%% -- Main program 

cluster(K):-  

 ensure_loaded('points.pl'), 

 pc_time(H1-M1-S1), 

 item(Item), 

 initial(Item,K,Mean), 

 writeln(Mean), 

 kmean(Item,Mean), 

 pc_time(H2-M2-S2), 

 TS1 is H1*60*60+M1*60+S1, 

 TS2 is H2*60*60+M2*60+S2, 

 DTS is TS2 - TS1, 

 writeln(time-DTS). 

 

%% -- Return the execution times 

%% -- example time-15.9 

pc_time(CT):- 

 get_time(T),  

 stamp_date_time(T, 

            date(_, _, _, H, M, S, 0, 'UTC', -), 

            'UTC'), 

 CT = H-M-S. 

 

%% -- Initial Centroid pick from a set of data lis  

initial(_,0,[]):-!. 

initial([Hitem|Titem],K,[Hitem|Tmean]):- 

 Nk is K - 1, 

 initial(Titem,Nk,Tmean). 

  

%% -- K-means work 

kmean(Item,Mean):- 

 calculate_dist(Item,Mean,CaledItem), 

 split_item(Mean,CaledItem,SplitItem), 

 calculate_mean(SplitItem,NewMean), 

 writeln(NewMean), 

 ( Mean = NewMean -> 

  true,!; 

  kmean(Item,NewMean) ),!. 

%% -- Calculate distance and assign  

%% -- each point to nearest cluster 

calculate_dist([],_,[]):-!. 

calculate_dist([Hitem|Titem],Mean,[Hitem-

SelMean|TSelMean]):- 

 calculating(Hitem,Mean,Dist), 

 select_cluster(Dist,Mean,SelMean), 

 calculate_dist(Titem,Mean,TSelMean). 

%% -- Euclidian distance with 3 Dimensional data 

calculating(_,[],[]):-!. 

calculating([Hi1,Hi2,Hi3], 

                   [[Hm1,Hm2,Hm3]|Tmean], 

                   [Dist|Tdist]):- 

 Caler is (Hi1-Hm1)^2 +  

                         (Hi2-Hm2)^2 + 

                         (Hi3-Hm3)^2, 

 sqrt(Caler,Dist), 

 calculating([Hi1,Hi2,Hi3],Tmean,Tdist). 

 

%% -- Each point choose nearest cluster 

select_cluster([_],[Mean],Mean):-!. 

select_cluster([Hd1,Hd2|Tdist], 

                      [Hm1,Hm2|Tmean], 

                      SelMean):- 

   (Hd1 < Hd2 ->  select_cluster([Hd1|Tdist], 

                                                  [Hm1|Tmean], 

                                                  SelMean)  ; 

                 select_cluster([Hd2|Tdist], 

                                                  [Hm2|Tmean], 

                                                  SelMean)    ). 

%% -- splited data to classify cluster 

split_item([],_,[]):-!. 

split_item([HM|Mean], 

                CaledItem,[Splited|SplitItem]):- 

 spliting(HM,CaledItem,Splited), 

 split_item(Mean,CaledItem,SplitItem). 

  

spliting(_,[],[]):-!. 

spliting(Mean,[Hitem-SelMean|Titem],Splited):- 

 spliting(Mean,Titem,TSplited), 

 ( Mean = SelMean -> 

  Splited = [Hitem|TSplited] ; 

  Splited = TSplited ). 

 

%% -- Re-compute new Centroid value  

calculate_mean([],[]):-!. 

calculate_mean([HS|SplitItem],[HR|NewMean]):- 
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 cal_mean(HS,HR), 

 calculate_mean(SplitItem,NewMean). 

cal_mean(L,R):- 

 mean_me(0,[0,0,0],L,R). 

mean_me(N,[Sx,Sy,Sz],[[X,Y,Z]|T],R):- 

 NN is N + 1, 

 NSx is Sx + X, 

 NSy is Sy + Y, 

 NSz is Sz + Z, 

 mean_me(NN,[NSx,NSy,NSz],T,R). 

mean_me(N,[Sx,Sy,Sz],[],[RSx,RSy,RSz]):- 

 RSx is Sx / N, 

 RSy is Sy / N, 

 RSz is Sz / N. 

%---------------- End of K-means --------------% 

 

Multi-thread K-means Clustering 
 

%---------------K-means Clustering--------------% 

% data files "points.pl" must exist in working directory 

% example of data file: 

% item([  [-4,8,-7], [-9,0,-5], [8,4,4], [9,5,6], [-4,-5,-7], 

%       [-2,-1,3], [10,11,0],[0,-15,7],[2,-1,3]]). 

% Then test a program with this command 

% cluster(2).   %% use 2 or more/ is a number of clusters 

%% Reserve memories 

:-set_prolog_stack(global,limit(2*10**9)), 

  set_prolog_stack(local,limit(2*10**9)). 

%% -- Main program 

cluster(K):-  

 ensure_loaded('points.pl'), 

 pc_time(H1-M1-S1), 

 item(Item), 

 initial(Item,K,Mean), 

 writeln(Mean), 

 kmean(Item,Mean), 

 pc_time(H2-M2-S2), 

 TS1 is H1*60*60+M1*60+S1, 

 TS2 is H2*60*60+M2*60+S2, 

 DTS is TS2 - TS1, 

 writeln(time-DTS). 

 

%% -- Return the execution times 

%% -- example time-15.9 

pc_time(CT):- 

 get_time(T),  

 stamp_date_time(T,  

            date(_, _, _, H, M, S, 0, 'UTC', -), 'UTC'), 

 CT = H-M-S. 

%% -- Initial Centroid pick from a set of data lis 

initial(_,0,[]):-!. 

initial([Hitem|Titem],K,[Hitem|Tmean]):- 

 Nk is K - 1, 

 initial(Titem,Nk,Tmean). 

%% -- Multi-trhead K-means work 

kmean(Item,Mean):- 

 calculate_dist(Item,Mean,CaledItem), 

 split_item(Mean,CaledItem,SplitItem), 

 calculate_mean(SplitItem,TL), 

    wait_for_threads(TL,NewMean), 

 writeln(NewMean), 

 ( intersection(Mean,NewMean,Mean) -> 

  true,! ; 

  kmean(Item,NewMean)  ),!. 

%% -- Calculate distance and assign each point 

%% -- to nearest cluster 

calculate_dist([],_,[]):-!. 

calculate_dist([Hitem|Titem],Mean,[Hitem-

SelMean|TSelMean]):- 

 calculating(Hitem,Mean,Dist), 

 select_cluster(Dist,Mean,SelMean), 

 calculate_dist(Titem,Mean,TSelMean). 

%% -- Euclidian distance with 3 Dimensional data 

calculating(_,[],[]):-!. 

calculating([Hi1,Hi2,Hi3], 

                   [[Hm1,Hm2,Hm3]|Tmean], 

                   [Dist|Tdist]):- 

 Caler is (Hi1-Hm1)^2 +  

                         (Hi2-Hm2)^2 + 

                         (Hi3-Hm3)^2, 

 sqrt(Caler,Dist), 

 calculating([Hi1,Hi2,Hi3],Tmean,Tdist). 

%% -- Each point choose nearest cluster 

select_cluster([_],[Mean],Mean):-!. 

select_cluster([Hd1,Hd2|Tdist], 

                      [Hm1,Hm2|Tmean], 

                      SelMean):- 

   (Hd1 < Hd2 ->  select_cluster([Hd1|Tdist], 

                                                  [Hm1|Tmean], 

                                                  SelMean) ; 

                 select_cluster([Hd2|Tdist], 

                                                  [Hm2|Tmean], 

                                                  SelMean)    ). 

%% -- splited data to classify cluster 

split_item([],_,[]):-!. 

split_item([HM|Mean], 

                CaledItem,[Splited|SplitItem]):- 

 spliting(HM,CaledItem,Splited), 

 split_item(Mean,CaledItem,SplitItem). 

spliting(_,[],[]):-!. 

spliting(Mean,[Hitem-SelMean|Titem],Splited):- 

 spliting(Mean,Titem,TSplited), 

 ( Mean = SelMean -> 

  Splited = [Hitem|TSplited] ; 

  Splited = TSplited ). 

%% -- Re-compute new Centroid value  

%% -- In this section create on thread  

%% -- per one cluster re-computer new centroid  

calculate_mean([],[]):-!. 

calculate_mean([HS|SplitItem],[T0|TL1]):- 

 calculate_mean(SplitItem,TL1), 

                thread_create(cal_mean(HS), T0, []). 

cal_mean(L):- 

 mean_me(0,[0,0,0],L,R), 

 assert(mean(R)). 

mean_me(N,[Sx,Sy,Sz],[[X,Y,Z]|T],R):- 

 NN is N + 1, 

 NSx is Sx + X, 

 NSy is Sy + Y, 

 NSz is Sz + Z, 

 mean_me(NN,[NSx,NSy,NSz],T,R). 

mean_me(N,[Sx,Sy,Sz],[],[RSx,RSy,RSz]):- 

 RSx is Sx / N, 

 RSy is Sy / N, 

 RSz is Sz / N. 

%% -- Wait for all thread completed work.  

wait_for_threads([],[]):-!. 

wait_for_threads([T|TL],NewMean) :- 

 ( thread_join(T, true) -> 

  mean(NM), 

  retract(mean(NM)), 

  wait_for_threads(TL,TM), 

  NewMean = [NM|TM]  ; 

  wait_for_threads([T|TL],NewMean) ). 

 

% ===== End of Prolog part ============= 
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