



Abstract—The k-means clustering algorithm is an unsupervised

learning method for non-hierarchical assigning data points into

groups. K-means algorithm performs in an iterative manner the data

assignment and central point calculation steps until data points do not

move from one group to another. On clustering large datasets, the k-

means method spends most of its execution time on computing

distances between all data points and existing central points. It is

obvious that distance computation of one data point is irrelevant to

others. Therefore, data parallelism can be achieved in this case and it

is the main focus of this paper. We propose parallel methods,

including the approximation scheme, to the k-means clustering. Then

demonstrate the implementation of parallelism through the message

passing model using a concurrent functional language, Erlang, and

also through the multi-threading technique using Prolog. Both Erlang

and Prolog are declarative method that efficiently support rapid

prototyping. The experimental results of both parallelized

implementation techniques show the speedup in computation. The

clustering results of an approximated parallel method are impressive

in terms of its fast execution time.

Keywords— Parallel k-means, Concurrency, Multi-thread,

Functional program, Erlang, Declarative method, Prolog.

I. INTRODUCTION

HE k-means algorithm has been proposed by J.B.

MacQueen since 1967 and gained much interest as a data

clustering method. Data clustering is an unsupervised learning

problem widely studied in many research areas such as

statistics, machine learning, data mining, pattern recognition.

The objective of clustering process is to partition a mixture of

large dataset into smaller groups with a general criterion that

data in the same group should be more similar or closer to

each other than those in different groups. The clustering

problem can be solved with various methods, but the most

widely used one is the k-means method [13], [14], [22], [23].

Manuscript received March 10, 2012: Revised version received June 12,

2012. This work was supported by grants from the National Research Council

of Thailand (NRCT) and Suranaree University of Technology through the

funding of Data Engineering Research Unit.

K. Kerdprasop is with the School of Computer Engineering and Data

Engineering Research Unit, Suranaree University of Technology, Nakhon

Ratchasima, Thailand (e-mail: KittisakThailand@gmail.com).

S. Taokok is a master student with the School of Computer Engineering

and Data Engineering Research Unit, Suranaree University of Technology,

Nakhon Ratchasima, Thailand (e-mail: taokok@gmail.com).

N. Kerdprasop is an associate professor and the director of Data

Engineering Research Unit, School of Computer Engineering, Suranaree

University of Technology, 111 University Avenue, Muang District, Nakhon

Ratchasima 30000, Thailand (phone: +66-44-224-432; fax: +66-44-224-602;

e-mail: nittaya@sut.ac.th).

The popularity of k-means algorithm is due to its simple

procedure and fast convergence to a decent solution.

Computational complexity of k-means is O(nkt), where n is

the number of data points or objects, k is the number of

desired clusters, and t is the number of iterations the algorithm

takes for converging to a stable state. To efficiently apply the

method to applications with inherent huge number of data

objects such as genome data analysis and geographical

information systems, the computing process needs

improvements.

Parallelization is one obvious solution to this problem and

the idea has been proposed [6], [9], [11], [21] since the last

two decades. This paper also focuses on parallelizing k-means

algorithm, but we base our study on the multi-core

architecture. Our focus is on the parallelize implementation

techniques using message-passing and multi-threading

schemes.

We implement our first extension of the k-means algorithm

using Erlang language (www.erlang.org), which uses the

concurrent functional paradigm and communicates among

hundreds of active processes via a message passing method

[1]. To create multiple processes in Erlang, we use a spawn

function as in the following example.

-module(example1).
-export([start/0]).

start() ->
 Pid1 = spawn(fun run/0),

 io:format("New process ~p~n", [Pid1]),

 Pid2 = spawn(fun run/0),

 io:format("New process ~p~n", [Pid2]).

run() -> io:format("Hello ! ~n", []).

The start function in a module example1, which is the

main process, creates two processes with identifiers Pid1 and

Pid2, respectively. The newly created processes execute a run

function that prints the word “Hello !” on the screen. The

output of executing the start function is as follows:
New process <0.53.0>

Hello !

New process <0.54.0>

Hello !

The numbers <0.53.0> and <0.54.0> are identifiers of the

newly created two processes. Each process then independently

invokes the run function to print out a word “Hello!” on the

screen.

Declarative Parallelized Techniques for

K-Means Data Clustering

Kittisak Kerdprasop, Surasith Taokok, and Nittaya Kerdprasop

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 483

The processes in Erlang virtual machine are lightweight and

do not share memory with other processes. Therefore, it is an

ideal language to implement a large scale parallelizing

algorithm. To serve a very large data clustering application,

we also propose an approximate method to the parallel k-

means. Our experimental results confirm efficiency of the

proposed algorithms.

We also propose the second extension of the k-means

algorithm using Prolog language. Prolog is a general purpose

logic programming language. Many Prolog compilers support

parallelization through multi-threading such as SWI-Prolog,

SICStus Prolog, CIAO Prolog, and Qu-Prolog. In this paper,

we use SWI-Prolog that provides preemptive threads [20] to

implement k-means clustering algorithm. SWI-Prolog is an

open source and multi-threading support available for Linux,

Windows and Macintosh platforms. We can profit multi-

thread Prolog by splitting a large task into subtasks that can

speedup computation time on multi-core processors.

The organization of the rest of this paper is as follows.

Discussion of related work in developing a parallel k-means is

presented in Section 2. Our proposed algorithms, a lightweight

parallel k-means including the approximation method and a

multi-thread parallel k-means, are explained in Section 3. The

implementation with a declarative method using Erlang and

Prolog languages is demonstrated in Section 4 (program

source code is available in the appendix). Experimental results

confirming good performance of the proposed algorithms are

shown in Section 5. The conclusion as well as future research

direction appears as a last section of this paper.

II. RELATED WORK

Serial k-means algorithm was proposed by J.B. MacQueen

in 1967 [14] and since then it has gained mush interest from

data analysts and researchers. The algorithm has been applied

to variety of applications ranging from medical informatics

[9], genome analysis [15], image processing and segmentation

[6], [19], [22] to aspect mining in software design [3]. Despite

its simplicity and great success, the k-means method is known

to degrade when the dataset grows larger in terms of number

of objects and dimensions [7], [10]. To obtain acceptable

computational speed on huge datasets, most researchers turn

to parallelizing scheme.

Li and Fang [12] are among the pioneer groups on studying

parallel clustering. They proposed a parallel algorithm on a

single instruction multiple data (SIMD) architecture. Dhillon

and Modha [4] proposed a distributed k-means that runs on a

multiprocessor environment. Kantabutra and Couch [8]

proposed a master-slave single program multiple data (SPMD)

approach on a network of workstations to parallel the k-means

algorithm. Their experimental results reveal that when on

clustering four groups of two dimensional data the speedup

advantage can be obtained when the number of data is larger

than 600,000. Tian and colleagues [17] proposed the method

for initial cluster center selection and the design of parallel k-

means algorithm.

Zhang and colleagues [23] presented the parallel k-means

with dynamic load balance that used the master/slave model.

Their method can gain speedup advantage at the two-

dimensional data size greater than 700,000. Prasad [16]

parallelized the k-means algorithm on a distributed memory

multi-processors using the message passing scheme. Farivar

and colleagues [5] studied parallelism using the graphic

coprocessors in order to reduce energy consumption of the

main processor.

Zhao, Ma and He [24] proposed parallel k-means method

based on map and reduce functions to parallelize the

computation across machines. Tirumala Rao, Prasad and

Venkateswarlu [18] studied memory mapping performance on

multi-core processors of k-means algorithm. They conducted

experiments on quad-core and dual-core shared memory

architecture using OpenMP and POSIX threads. The speedup

on parallel clustering is observable.

In this paper, we also study parallelism on the multi-core

processors. We investigate the implementation schemes using

both threads (in Prolog [2], [20]) and non-threads (in Erlang).

The virtual machine that we use in our Erlang experiments

employs the concept of message passing to communicate

between parallel processes. Each communication carries as

few messages as possible. This policy leads to a lightweight

process that takes less time and space to create and manage.

III. PARALLELIZED K-MEANS ALGORITHMS

A. Parallel K-Means Based On Message-Passing

Serial k-means algorithm [14] starts with the initialization

phase of randomly selecting temporary k central points, or

centroids. Then, iteratively assign data to the nearest cluster

and then re-calculate the new central points of k clusters.

These two main steps are shown in Algorithm1.

Algorithm 1. Serial k-means

Input: a set of data points and the number of clusters, K

Output: K-centroids and members of each cluster

Steps

 1. Select initial centroid C = <C1, C2, …, CK>

 2. Repeat

 2.1 Assign each data point to its nearest cluster

center

 2.2 Re-compute the cluster centers using the

current cluster memberships

 3. Until there is no further change in the assignment of

the data points to new cluster centers

The serial algorithm takes much computational time on

calculating distances between each of N data points and the

current K centroids. Then iteratively assign each data point to

the closest cluster. We thus improve the computational

efficiency by assigning P processes to handle the clustering

task on a smaller group of N/P data points. The centroid

update is responsible by the master process. The pseudocode

of our parallel k-means is shown in Algorithm 2.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 484

Algorithm 2. Parallel k-means (PKM)

Input: a set of data points and the number of clusters, K

Output: K-centroids and members of each cluster

Steps

 1. Set initial global centroid C = <C1, C2, …, CK>

 2. Partition data to P subgroups, each subgroup has

equal size

 3. For each P,

 4. Create a new process

 5. Send C to the created process for calculating

distances and assigning cluster members

 6. Receive cluster members of K clusters from P

processes

 7. Recalculate new centroid C‟

 8. If difference(C, C‟)

 9. Then set C to be C‟ and go back to step 2

 10. Else stop and return C as well as cluster members

The PKM algorithm is the master process responsible for

creating new parallel processes, sending centroids to the

created processes, receiving the cluster assignment results, and

recalculating the new centroids. The steps repeat as long as

the old and the new centroids do not converge. The

convergence criterion can be set through the function

difference(C, C’). Communication between the master process

and the created processes can be graphically shown in Figure

1.

Fig. 1 A diagram illustrating the communication between master and

created processes

B. Approximate Parallel K-Means

For the case of very large datasets or streaming data, we

also design the approximation method (Algorithm 3) in order

to obtain a timely and acceptable result.

Algorithm 3. Approximate parallel k-means (APKM)

Input: a set of data points, the number of clusters (K), and

the sample size (S)

Output: approximate K-centroids and cluster members

Steps

 1. Set initial centroid C = <C1, C2, …, CK>

 2. Sampling data to be of size S

 3. Partition S into P subgroups, each subgroup has

equal size

 4. For each P, create a new process and send C to all

processes for calculating distances and assigning

cluster members

 5. Receive cluster members of K clusters from P

processes

 6. Recalculate new centroid C‟ = average C

 7. If C‟ is diverge, then go back to step 2

 8. else stop and return C‟ as well as cluster members

Our approximation scheme is based on the random

sampling approach with the basis assumption that the

incoming data are uniformly distributed. The data distribution

takes other forms (such as Zipf, Gaussian), the proposed

algorithm can be easily adapted by changing step 2 of the

algorithm APKM to use different approach such as density-

biased sampling.

C. Multi-thread Parallel K-Means

For a parallelize scheme using the concept of multi-thread,

we design the concurrency process at a finer grain than in the

message-passing scheme. The concurrency in this scheme is

the distribution of data points in each K cluster to the parallel

process. The new central point of each group is then reported

to the master process. The graphical scheme can be shown as

in Figure 2.

Fig. 2 Process communication in the multi-thread scheme

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 485

The multi-thread parallelization steps can be shown in

Algorithm 4. The multi-thread k-means (MTK) algorithm

asserts the multi-thread process at the centroid re-computation

step. This re-computation is the main process responsible for

creating threads, sending a set of data points in each cluster

along with the thread, and recalculating the new centroids.

The re-computation process repeats as long as the old and the

new centroids do not converge and multi-threading process

will be invoked every time the re-computation process has

started.

Algorithm 4. Multi-thread k-means (MTK)

Input: number of clustering and a set of data points

Output: k-centroids and members of each cluster

Steps

1. Select initial centroid C = <C1,C2,…,CK>

2. Assign each data point to nearest cluster center

3. Create threads process T=<T1,T2,…,TK> for

centroid C = <C1,C2,…CK>

4. For each Thread (Ti=1to TK)

 4.1 Re-compute cluster centers <Ti:cal(Ci)>

 4.2 Return a new centroid Ci to set C‟

5. Check stable of centroids

 5.1 if C != C' then set C = C' go to step 2

 5.2 if C == C' then stop and return C and

 cluster members

IV. IMPLEMENTATION WITH DECLARATIVE METHOD

A. Implementation with Erlang

We implement the serial k-means, the proposed PKM and

APKM algorithms with Erlang language. Each process of

Erlang does not share memory and it works concurrently in an

asynchronous manner. The implementation of PKM and

APKM algorithms as an Erlang program is given in appendix.

Some screenshots of compiling and running the program

(with Erlang release R13B04) are given in Figures 3 and 4. To

compile the program, we use the command:

c(pka, [export_all]).

The first argument, pka, is the name of a module. The

second argument, [export_all], is a compiler directive

meaning that every function in the pka module is visible and

can be called from the Erlang shell. The second command in

Figure 3 calls a function genData to generate a synthetic two

dimensional dataset containing 800,000 data points with value

randomly ranging from 1 to 10,000. Each data point is a tuple,

which is a data structure enclosed by curly brackets, and all

800,000 points are contained in a single list.

Data points used in our experiments are randomly generated

with the following function:
genData(0, _) ->[];
genData(Count, Max) ->
 [{uniform(Max), uniform(Max)} |
 genData(Count-1,Max)].

A function genData takes two arguments: number of data

points and maximum value of a data point in each dimension

(minimum value is 1 by default). Therefore, the second

command in Figure 3 generates 800,000 two-dimensional data

points. A data value in each dimension is randomly ranged

from 1 to 10,000. For instance, the first generated data point is

(924, 4436). All 800,000 data points are stored in a list

structure that is represented by bracket symbol.

Fig. 3 A screenshot to illustrate compiling Erlang program and

generating data points

Fig. 4 A series of line commands to clustering and recording running

time

Figure 4 illustrates creation of four initial centroids

(command 3), then partition 800,000 data points into eight

subgroups to send to the eight processors (command 4). A

parallel k-means starts at command 5. The outputs of parallel

k-means shown on a screen are the number of iteration (which

is 35 in this example) and the mean points of four clusters.

The last command calls a variable TReal to display running

time of the whole process, which is 129371000 microseconds

or 129.371 seconds. This time includes sending and receiving

messages between master and the eight concurrent processes.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 486

B. Implementation with Prolog

For the multi-thread scheme of parallelization, we do the

implementation of both serial k-means (called KM) and multi-

thread k-means (called MTK) as a Prolog program and the

source code is also given in Appendix. A screenshot of

running the program (SWI-Prolog Multi-threaded, 32 bits,

Version 5.10.5) is in Figure 5. To run the program, we use the

command:

cluster(K).

The argument K is the number of clusters and before

running the program the data file „points.pl‟ must exist in

working directory. The data format (three dimensions) is as

follows:

item([[p1],[p2],…,[pk]]).

or

item([

 [-4,8,-7],[-9,0,-5],[8,4,4],

 [9,5,6],[-4,-5,-7],[-2,-1,3],

 [10,11,0],[0,-15,7],[2,-1,3]]).

A predicate item([[p1],[p2],…,[pk]]) is a set of data points

for clustering with the KM and MTK implementations. The

screenshot in Figure 5 shows a command to run the MTK

program for two clusters. Time usage is also shown at the

bottom line before the true predicate.

Fig. 5 Running the MTK program with 2 clusters

V. EXPERIMENTATION AND RESULTS

A. Performance of Parallel K-Means

We evaluate performances of the proposed PKM and

APKM algorithms on synthetic two dimensional dataset. The

computational speed of parallel k-means as compared to serial

k-means is given in Table1. Experiments are performed on

personal computer with processor speed GHz and GB of

memory.

It is noticeable from Table 1 that when dataset is small

(N=50), running time of parallel k-means is a little bit longer

than the serial k-means. This is due to the overhead of

spawning concurrent processes. At data size of 900,000

points, running time is unobservable because the machine is

out of memory. Running time comparison of parallel against

serial k-means is graphically shown in Figure 6. Percentage of

running time speedup in is also provided in Figure 7. Speedup

advantage is very high (more than 30%) at dataset of size

between 50,000 to 200,000 points.

Table 1. Execution time of serial versus parallel k-means

clustering

Data

 points

 (N)

Time

(Ts, sec)

Serial

k-means

Time

 (Tp, sec)

Parallel

k-means

(dual cores)

Time

Difference

(Ts – Tp)

(sec)

Speedup

 (%)

50 0.000 0.0149 - 0.0149 - 1.49

500 0.031 0.030 0.001 3.23

50,000 8.45 5.03 3.42 40.47

100,000 16.59 10.18 6.40 38.60

200,000 34.03 21.92 12.10 35.58

300,000 66.09 50.92 15.17 22.95

400,000 82.34 63.03 19.31 23.45

500,000 94.67 69.35 25.31 26.73

600,000 113.06 90.18 22.87 20.23

700,000 135.20 101.18 34.01 25.15

800,000 173.67 124.79 48.87 28.14

900,000 N/A N/A N/A N/A

Fig. 6 Running time comparisons of serial versus parallel k-means

(PKM)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 487

Fig. 7 Percentage of running time speedup at different data sizes

B. Performance of Approximate Parallel K-Means (APKM)

The experiments on APKM algorithm have been conducted

to observe running time of a complete dataset (sample size =

100%) versus a reduced sample at different sizes (S). Dataset

used in this series of experiments is 500,000 two-dimensional

data points, four clusters, and run concurrently with eight

processes (running time is 64.67 seconds). At each sample

size, the Euclidean distance of centroid shift is also computed

by averaging the distances of four centroids that reported as

the output of APKM.

We test two schemes of sampling technique. The simple

one is a fixed number of samples appeared as the first S

records in the data stream. Another tested sampling technique

is a randomly picked sample across the dataset (uniform

random sampling with replacement). Centroid distance shift of

both techniques are reported as “mean shift” in Table 2. The

centroid shift may be considered as an error of the

approximation method; the lower the distance shift, the better

the sampling scheme. It turns out that a simple scheme of

picking samples from the first part of dataset performs better

than a uniform random sampling across the entire dataset.

Table 2. Performances of approximate parallel k-means

Sample

Size

(N =

500K)

Sample = the first S

records in data

stream

Uniform random

sampling with

replacement

Time

(sec)

Time

reduction

(%)

Mean

shift

Time

(sec)

Time

reduction

(%)

Mean

shift

70% 38.96 39.75 7.07 44.50 31.19 16.45

60% 37.48 42.03 5.78 27.45 57.54 22.11

50% 31.71 50.95 8.83 25.18 61.05 12.62

40% 25.31 60.86 10.73 21.23 67.16 14.15

30% 14.06 78.26 13.64 12.87 80.08 19.26

20% 12.70 80.35 27.49 9.40 85.33 10.49

10% 3.82 94.08 27.19 4.57 92.92 36.61

Percentage execution time speedup of the two sampling

schemes is shown in Figure 8. The error (or centroid shift

computed from the average Euclidean distances of all mean

points) of both schemes to approximate parallel k-means is

shown in Figure 9. It can be noticed from the experimental

results that the random sampling with replacement scheme

gains a little higher percentage of running time reduction than

the simple scheme of selection the first S records from dataset.

When compare the clustering error measured as the average

centroid shift, the random sampling with replacement scheme

shows worse performance than the simple scheme of selection

the first S records from the dataset. There is only one

exception at the sampling size 20% that random sampling with

replacement produces a better result than the simple scheme of

selection the first S records. This could happen from the

nature of uniform sampling that sometimes a set of good

representatives has been selected.

This series of experiments, however, have been conducted

on a uniformly distributed data. For other forms of data

distribution, the experimental results can be different from the

ones reported in this paper.

Fig. 8 Time reduction comparison of the two sampling schemes on

approximate parallel k-means

Fig. 9 Error comparison of the two schemes of approximate parallel

k-means methods

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 488

C. Performance of Multi-thread Parallel K-Means

For the multi-thread scheme, we evaluate performance of

the proposed KM and MTK algorithms on synthetic three

dimensional dataset. The computational speed of k-means as

compared to multi-thread k-means is given in Table 3.

Experimentation has been performed on Laptop computer

with the processor Intel(R) Core(TM) i5-2410 2.3GHz, 4Gb

of memory, and Windows 7 32-bit operating system. The

number of synthetic data points is 10,000 points. Running

time comparison and percentage of speedup are also shown in

Figures 10 and 11, respectively.

Table 3. Execution time of KM versus MTK with 10,000 data

points (Number of clusters is equal to the number of threads)

Number

of

Clusters

Time (seconds) Speedup

(%) KM MTK

2 2.1 1.4 33.33

3 5.3 3.7 30.19

4 9.0 6.1 32.22

5 12.7 8.3 34.65

6 25.4 17.6 30.71

7 29.9 22.2 25.75

8 32.2 20.9 35.09

9 40.8 26.5 35.05

10 57.1 36.9 35.38

Fig. 10 Running time comparisons of KM versus MTK with 10,000

data points

Fig. 11 Percentage of running time speedup on different number of

clusters with 10,000 data points

We also test the MTK performance on varying number of

data points. We prepare series of data sets ranging from 500,

1000, 2000, 3000, 4000, 5000, 8000, 10000, to 12000 points

of 3-dimensional data. The experimentation on these data uses

different number of clusters: 2, 4, 6, 8, and 10 clusters. The

running results are graphically shown in Figure 12.

Fig. 12 Percentage of running time speedup of MTK over the serial

k-means on different numbers of clusters with varying sizes of three-

dimensional data points

VI. CONCLUSION

Clustering similar data points into the same subgroups is

now a common task applied in many application areas such as

grouping similar functional genomes, segmenting images that

demonstrate the same pattern, partitioning web pages showing

the same structure, and so on. K-means clustering is the most

well-known algorithm commonly used for such tasks. Even

though the k-means algorithm is simple, it performs intensive

calculation on computing distances between data points and

cluster central points. For the dataset with n data points to be

grouped into k clusters, each iteration of k-means requires as

much as (n×k) computations. Fortunately, the distance

computation of one data point does not interfere the

computation of other points. Therefore, parallel computation

can be applied to the k-means clustering.

In this paper we propose the design and implementation of

three parallel algorithms: PKM, APKM, and MTK. The PKM

algorithm parallel the k-means method by partitioning data

into equal size and send them to processes that run distance

computation concurrently. The parallel programming model

used in our implementation is based on the message passing

scheme. The APKM algorithm is an approximation method of

parallel k-means. Unlike PKM and APKM, the MTK

algorithm has been design for the multi-thread parallelization.

The implementation of both serial k-means and the

proposed parallel k-means has been done with the declarative

method using Erlang and Prolog languages. The experimental

results reveal that the proposed three parallel methods can

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 489

considerably speedup computation time, especially when the

programs have been tested with multi-core processors. The

approximation scheme also produces acceptable results in a

short period of running time. Our future work will focus on

the real applications. We are currently testing our algorithms

with the genome dataset and the preliminary outcome is quite

promising.

APPENDIX

A. Erlang Programs

Source code presented in this section is in Erlang format.

Erlang is a functional language. Each function takes a format:

functionName(Arguments) -> functionBody.

A line preceded with „%‟ is a comment. We provide two

versions of clustering programs: serial k-means and

approximate parallel k-means. Each program starts with

comments explaining how to compile and run the program.

Serial k—means
%------------k-means clustering ---------

% data file "points.dat" must exist in working directory

% example of data file:

% [2,7]. [3,6]. [1,6]. [3,7]. [2,6].

% [21,25]. [16,29]. [29,25]. [18,23]. [16,33].

% Then test a program with these commands:

% c(cluster). %% compile a program

% cluster:go(). %% then run

-module(cluster).

-export([go/0, clustering/3]).

go() ->

 {_, DataList} = file:consult("points.dat"),

 file:close("points.dat"),

 kMeans(DataList).

% ------------------------

% start k-means clustering

% ------------------------

kMeans(PL) ->

 {_,N} = io:read('enter number of clusters:> '),

 % for this example input "2"

 % then select initial centroids

 CL = take(N, PL),

 io:format("~n AllPoints = ~w ~n",[PL]),

 io:format("~n Initial Centroid = ~w~n",[CL]),

 % report data and initial centroids

 % start clustering process with

 % cluster number 1

 % then move on to cluster number 2

 % and so on

 {TT,{Centroid,DataGroup}} = timer:tc(cluster,

 clustering,[1,CL,PL]),

 T = TT/1000000,

 % record running time and report time

 % in a unit of seconds

 io:format("~n~n__Time for k-means is ~w

 second",[T]),

 io:format("~n~n__Calculated Centroid=~w~n~n",

 [Centroid]),

 printCluster(1, N, DataGroup).

%

% supporting clauses for kMeans

%

% These clauses take firts distinct-n element of list

take(0,_) -> [];

take(N,[H|T]) -> [H|take(N-1,T)].

% to print cluster nicely

printCluster(_,_,[]) -> end_of_clustering;

printCluster(_,0,_) -> end_of_clustering;

printCluster(I,N, [H|T]) ->

 {Centroid, ClusterMember} = H,

 io:format("~n__Cluster:~w Mean point =

 ~w~n",[I,Centroid]),

 io:format(" Cluster member is

 ~w~n",[ClusterMember]),

 printCluster(I+1,N-1,T).

% --------------------------

% repetitive data clustering

% --------------------------

clustering(N,CL,PL)->

 L1 = lists:map(fun(A) -> nearCentroid(A,CL)

 end,

 PL),

 L2 = transform(CL,L1),

 NewCentroid = lists:map(fun({_,GL}) ->

 findMeans(GL)

 end,

 L2),

 if NewCentroid==CL ->

 io:format("~nNo cluster changes~n"),

 io:format("From Loop1->stop at

 Loop~w~n",[N]),

 {NewCentroid,L2};

 % return new centroids and

 % cluster members as a list L2

 N>=90 -> % max iterations=90

 io:format("Force to stop at Loop

 ~w~n",[N]),

 io:format("Centroid = ~w",

 [NewCentroid]),

 {NewCentroid,L2};

 % return new centroids and

 % cluster members as a list L2

 true -> % default case

 io:format("~nLoop=~w~n",[N]),

 io:format("~nNewCentroid=~w

 ~n",[NewCentroid]),

 clustering(N + 1, NewCentroid, PL)

 end.

 % end if and end clustering function

% transform a format "Point-CentroidList"

% to "Centroid-PointList"

% example,

% transform([[1]],[{[2],[1]},{[3],[1]}]).

% --> [{[1],[[2],[3]]}]

transform([], _) -> [];

transform([C|TC], PC) ->

 [{C, t1(C, PC)} | transform(TC, PC)].

t1(_, []) -> [] ;

t1(C1, [H|T]) ->

 {P,C} = H,

 if C1==C -> [P| t1(C1, T)];

 C1=/=C -> t1(C1, T)

 end.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 490

% -----------------------------

% Given a data point and a centroidList,

% the clause nearCentroid computes a nearest

% centroid and then returns

% a tuple of Point-Centroid

% example:

% nearCentroid([1], [[2],[3],[45],[1]]).

% ---> [[1], [1]]

nearCentroid(Point, CentroidL)->

 LenList = lists:zip(

 lists:map(fun(A) ->

 distance(Point,A)

 end,

 CentroidL),

 CentroidL),

 [{_, Centroid} | _] = lists:keysort(1,LenList),

 {Point, Centroid}.

 % return this tuple to caller

% --------------------------

% compute Euclidean distance

% --------------------------

distance([], []) -> 0;

distance([X1|T1], [X2|T2]) ->

 math:sqrt((X2-X1)*(X2-X1) + distance(T1,T2)).

% ----------------------------------

% calculate mean point (or centroid)

% ----------------------------------

% example,

% findMeans([[1,2], [3,4]]). --> [2.0,3.0]

findMeans(PointL) ->

 [H|_] = PointL,

 Len = length(H),

 AllDim = lists:reverse(allDim(Len,PointL)),

 lists:map(fun(A)-> mymean(A) end, AllDim).

allDim(0, _) -> [];

allDim(D, L) -> [eachDimList(D,L) | allDim(D-1,L)].

eachDimList(_, []) -> [];

eachDimList(N, [H|T]) ->

 [lists:nth(N, H) | eachDimList(N, T)].

mymean(L) -> lists:sum(L) / length(L).

% ---------- End of Serial k-means program -----------

%

% ----------------------------

% Running example:

% -----------------------

% 1> c(cluster).

% {ok,cluster}

% 2> cluster:go().

% enter number of clusters:> 2.

 % AllPoints = [[2,7],[3,6],[1,6],[3,7],[2,6],[1,5],[3,5],

% [2,5],[2,6],[1,6],[21,25],[16,29],

% [29,25], [18,23],[16,33],[25,32],

% [20,24],[27,21],[16,21],[19,34]]

 % Initial Centroid = [[2,7],[3,6]]

% Loop = 1
% NewCentroid = [[1.75,6.0],

% [17.75,23.166666666666668]]

% Loop = 2
% NewCentroid = [[2.0,5.9], [20.7,26.7]]

% No cluster changes
% From Loop1->stop at Loop3

% __Time for k-means is 0.031 second

% __Calculated Centroid=[[2.0,5.9],[20.7,26.7]]
% __Cluster:1 Mean point = [2.0,5.9]
% Cluster member is [[2,7],[3,6],[1,6],[3,7],

% [2,6],[1,5],[3,5],

% [2,5],[2,6],[1,6]]
% __Cluster:2 Mean point = [20.7,26.7]
% Cluster member is [[21,25],[16,29],[29,25],

% [18,23],[16,33],[25,32],

% [20,24],[27,21],[16,21],

% [19,34]]
% end_of_clustering

Approximate parallel k—means

% A parallel k-means program

% Compile program with a command

%

% c(pkm,[export_all]).

%

% To unbinding variables from the previous run

% use a command

% f(Var) % means clear Var

%

% Start experimentation by calling a function

% genData to generate 8000 synthetic data points

% f(), NumDat = 8000,

% D = pkm:genData(NumDat,10000).

%

% Then identify number of clusters

% f(NumCent), f(CL),

% NumCent = 4,

% CL = lists:sublist(D, NumCent).

%

% Start parallelization by identifying

% number of data partitions

% f(NumPar), f(DL), NumPar=8,

% DL = pkm:mysplit(length(D) div NumPar,

% D, NumPar).

%

% Record running time with the command

% {TReal,RealCen} = timer:tc(pkm,

% start,[DL,CL,length(DL)]).

% Then record the running time of approximate parallel

% k-means (in this example apply 50%

% data sampling scheme)

% f(RDL),

% RDL=pkm:mrand(DL,50),

% {TRand,RandCen} = timer:tc(pkm,

% start,[RDL,CL,length(RDL)]).

%

% Calculate time difference between the parallel

% k-means and the approximate (50% data points)

% parallel k-means with a command

% pkm:mydiff({TReal,TRand},{RealCen,RandCen}).

%

% To show different time of different percentages

% from the same Centroid use the following commands

% f(RDL), f(Rand),

% RDL = pkm:mrand(DL,40),

% Rand = pkm:start(RDL,CL,length(RDL)),

% f(RealDL), f(Real),

% RealDL = pkm:mrand(DL,100),

% Real = pkm:start(RealDL,CL,length(RealDL)).

% f(RDL), f(Rand), f(TimeR),

% f(TimeReal), f(Per),

% Per = 40, RDL = pkm:mrand(DL,Per),

% {TimeR,Rand} = timer:tc(pkm,

% start,[RDL,CL,length(RDL)]),

% f(RealDL), f(Real),

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 491

% RealDL = pkm:mrand(DL,100),

% {TimeReal,Real} = timer:tc(pkm,

% start,[RealDL,CL,length(RealDL)]).

%

% To compute percentage of time difference,

% use a command

% io:format("___For ~w Percent, diff.time =

% ~w sec,length=~w",

% [Per, (TimeReal-TimeR) /1000000,

% lists:sum(pkm:diffCent(Real,Rand))]).

%

% All of the commands in clustering experimentation

% are also included in the test function

%

-module(pkm).

-import(lists, [seq/2,sum/1,flatten/1,split/2,nth/2]).

-import(io, [format/1,format/2]).

-import(random, [uniform/1]).

%---- for clustering experimentation ---------

test(_NRand) ->

 NumDat = 8000,

 D = pkm:genData(NumDat,10000),

 NumCent = 4,

 CL = lists:sublist(D, NumCent),

 NumPar=8,

 DL=pkm:mysplit(length(D) div NumPar,

 D, NumPar),

 {TReal, RealCen} = timer:tc(pkm,

 start, [DL,CL, length(DL)]),

 RDL = pkm:mrand(DL,50),

 {TRand,RandCen} = timer:tc(pkm,

 start, [RDL,CL, length(RDL)]),

 pkm:mydiff({TReal, TRand},

 {RealCen, RandCen}).

% ---- spawn a new process

% and start the newly created process

% with a function c(Pid)

myspawn(0) -> [] ;

myspawn(N) ->

 [spawn(?MODULE, c, [self()]) | myspawn(N-1)].

% random sampling without replacement

%

myrand(_, 0) -> [];

myrand(L, Count) ->

 E = nth((uniform(length(L))), L),

 L1= L -- [E],

 [E | myrand(L1, Count-1)].

 % for 100 percent sampling

mrand(L, 100) -> L;

 % random in each partition

mrand([], _) -> [];

mrand([HL|TL], X) ->

 [myrand(HL, trunc(length(HL)/(100/X))) |

 mrand(TL,X)].

mysend(LoopN, [CidH|CT], Cent, [DataH|DT]) ->

 CidH ! {LoopN, Cent, DataH},

 mysend(LoopN, CT, Cent, DT);

mysend(_, [], _ ,_) -> true.

% Compute difference between centroids

%

diffCent([H1|T1], [H2|T2]) ->

 [abs(H1-H2) | diffCent(T1,T2)];

diffCent([], _)->[].

mystop([CH|CT]) ->

 CH ! stop,

 mystop(CT);

mystop([]) -> true.

myrec(_, 0) -> [];

myrec(LoopN, Count) ->

 receive

 {LoopN, L} -> [L | myrec(LoopN,Count-1)];

 Another -> self() ! Another % send to myself

 end.

% generate 2 dimensional data points

% example: [{2,76},...]

%

genData(0, _) -> [];

genData(Count, Max) ->

 [{uniform(Max), uniform(Max)} |

 genData(Count-1, Max)].

mysplit(_, _, 0) -> [];

mysplit(Len, L, Count) ->

 {H, T} = split(Len, L),

 [H | mysplit(Len, T, Count-1)].

start(DataL, Cent, NumPar) ->

 CidL = myspawn(NumPar),

 LastC = myloop(CidL,Cent,DataL,NumPar,1),

 format("~nCentroid=~w",[LastC]),

 LastC.

myloop(CidL, Cent, DataL, NumPar, Count) ->

 mysend(Count, CidL, Cent, DataL),

 L = flatten(myrec(Count, NumPar)),

 C_= calNewCent(Cent, L),

 format("~w.", [Count]),

 if Count >100 -> mystop(CidL),

 C_ ;

 Cent/= C_ -> myloop(CidL, C_, DataL,

 NumPar, Count+1);

 true -> mystop(CidL),

 C_

 end.

c(Sid) ->

 receive

 stop -> true;

 {LoopN, Cent, Data} -> L = locate(Data,Cent),

 Sid ! {LoopN,L},

 c(Sid)

 end.

calNewCent(Cent, RetL) ->

 LL = group(Cent, RetL),

 avgL(LL).

%---- supplementary functions------

%

mydiff({TReal,TRand}, {RealCen,RandCen}) ->

 { (TReal-TRand)/1000000,

 mdiff(RealCen, RandCen) / length(RandCen) }.

mdiff([{X,Y}|T1], [{X1,Y1}|T2]) ->

 distance({X,Y}, {X1,Y1}) + mdiff(T1,T2);

mdiff([], _) -> 0.

group([H|T] , RetL) ->

 [[X || {X,M} <- RetL , M==H] | group(T, RetL)];

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 492

group([],_) -> [].

avgL([HL|TL]) ->

 N = length(HL),

 [{sumX(HL) / N, sumY(HL) / N} | avgL(TL)];

avgL([]) -> [].

sumX([{X, _} | T]) -> X + sumX(T);

sumX([]) -> 0.

sumY([{_,Y} | T]) -> Y + sumY(T);

sumY([]) -> 0.

locate([H|T], C) ->

 NearC = near(H,C),

 [{H, NearC} |locate(T, C)];

locate([], _) -> [].

near(H, C) ->

 mynear(H, C, {0,1000000000}).

mynear(D, [H|T], {MinC, Min}) ->

 Min_= distance(D, H),

 if Min>Min_ -> mynear(D, T, {H, Min_});

 true -> mynear(D, T, {MinC, Min})

 end ;

mynear(_ , [], {MinC, _ }) -> MinC.

distance({X, Y}, {X1, Y1}) ->

 math:sqrt((X-X1)*(X-X1) + (Y-Y1)*(Y-Y1)).

% ===== End of Erlang Part =============

B. Prolog Programs

The following source code is in SWI-Prolog format. We

provide two versions of clustering programs: k-means and multi-

thread k-means. Each program starts with comments explaining how

to run the program.

K-means Clustering

% files "points.pl" must exist in working directory

% example of data file:

% item([[-4,8,-7], [-9,0,-5], [8,4,4], [9,5,6], [-4,-5,-7],

% [-2,-1,3], [10,11,0],[0,-15,7],[2,-1,3]]).

% Then test a program with this command

% cluster(2). %% use 2 or more

%% -- Reserve memories

:-set_prolog_stack(global,limit(3*10**9)),

 set_prolog_stack(local,limit(4*10**9)).

%% -- Main program

cluster(K):-

 ensure_loaded('points.pl'),

 pc_time(H1-M1-S1),

 item(Item),

 initial(Item,K,Mean),

 writeln(Mean),

 kmean(Item,Mean),

 pc_time(H2-M2-S2),

 TS1 is H1*60*60+M1*60+S1,

 TS2 is H2*60*60+M2*60+S2,

 DTS is TS2 - TS1,

 writeln(time-DTS).

%% -- Return the execution times

%% -- example time-15.9

pc_time(CT):-

 get_time(T),

 stamp_date_time(T,

 date(_, _, _, H, M, S, 0, 'UTC', -),

 'UTC'),

 CT = H-M-S.

%% -- Initial Centroid pick from a set of data lis

initial(_,0,[]):-!.

initial([Hitem|Titem],K,[Hitem|Tmean]):-

 Nk is K - 1,

 initial(Titem,Nk,Tmean).

%% -- K-means work

kmean(Item,Mean):-

 calculate_dist(Item,Mean,CaledItem),

 split_item(Mean,CaledItem,SplitItem),

 calculate_mean(SplitItem,NewMean),

 writeln(NewMean),

 (Mean = NewMean ->

 true,!;

 kmean(Item,NewMean)),!.

%% -- Calculate distance and assign

%% -- each point to nearest cluster

calculate_dist([],_,[]):-!.

calculate_dist([Hitem|Titem],Mean,[Hitem-

SelMean|TSelMean]):-

 calculating(Hitem,Mean,Dist),

 select_cluster(Dist,Mean,SelMean),

 calculate_dist(Titem,Mean,TSelMean).

%% -- Euclidian distance with 3 Dimensional data

calculating(_,[],[]):-!.

calculating([Hi1,Hi2,Hi3],

 [[Hm1,Hm2,Hm3]|Tmean],

 [Dist|Tdist]):-

 Caler is (Hi1-Hm1)^2 +

 (Hi2-Hm2)^2 +

 (Hi3-Hm3)^2,

 sqrt(Caler,Dist),

 calculating([Hi1,Hi2,Hi3],Tmean,Tdist).

%% -- Each point choose nearest cluster

select_cluster([_],[Mean],Mean):-!.

select_cluster([Hd1,Hd2|Tdist],

 [Hm1,Hm2|Tmean],

 SelMean):-

 (Hd1 < Hd2 -> select_cluster([Hd1|Tdist],

 [Hm1|Tmean],

 SelMean) ;

 select_cluster([Hd2|Tdist],

 [Hm2|Tmean],

 SelMean)).

%% -- splited data to classify cluster

split_item([],_,[]):-!.

split_item([HM|Mean],

 CaledItem,[Splited|SplitItem]):-

 spliting(HM,CaledItem,Splited),

 split_item(Mean,CaledItem,SplitItem).

spliting(_,[],[]):-!.

spliting(Mean,[Hitem-SelMean|Titem],Splited):-

 spliting(Mean,Titem,TSplited),

 (Mean = SelMean ->

 Splited = [Hitem|TSplited] ;

 Splited = TSplited).

%% -- Re-compute new Centroid value

calculate_mean([],[]):-!.

calculate_mean([HS|SplitItem],[HR|NewMean]):-

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 493

 cal_mean(HS,HR),

 calculate_mean(SplitItem,NewMean).

cal_mean(L,R):-

 mean_me(0,[0,0,0],L,R).

mean_me(N,[Sx,Sy,Sz],[[X,Y,Z]|T],R):-

 NN is N + 1,

 NSx is Sx + X,

 NSy is Sy + Y,

 NSz is Sz + Z,

 mean_me(NN,[NSx,NSy,NSz],T,R).

mean_me(N,[Sx,Sy,Sz],[],[RSx,RSy,RSz]):-

 RSx is Sx / N,

 RSy is Sy / N,

 RSz is Sz / N.

%---------------- End of K-means --------------%

Multi-thread K-means Clustering

%---------------K-means Clustering--------------%

% data files "points.pl" must exist in working directory

% example of data file:

% item([[-4,8,-7], [-9,0,-5], [8,4,4], [9,5,6], [-4,-5,-7],

% [-2,-1,3], [10,11,0],[0,-15,7],[2,-1,3]]).

% Then test a program with this command

% cluster(2). %% use 2 or more/ is a number of clusters

%% Reserve memories

:-set_prolog_stack(global,limit(2*10**9)),

 set_prolog_stack(local,limit(2*10**9)).

%% -- Main program

cluster(K):-

 ensure_loaded('points.pl'),

 pc_time(H1-M1-S1),

 item(Item),

 initial(Item,K,Mean),

 writeln(Mean),

 kmean(Item,Mean),

 pc_time(H2-M2-S2),

 TS1 is H1*60*60+M1*60+S1,

 TS2 is H2*60*60+M2*60+S2,

 DTS is TS2 - TS1,

 writeln(time-DTS).

%% -- Return the execution times

%% -- example time-15.9

pc_time(CT):-

 get_time(T),

 stamp_date_time(T,

 date(_, _, _, H, M, S, 0, 'UTC', -), 'UTC'),

 CT = H-M-S.

%% -- Initial Centroid pick from a set of data lis

initial(_,0,[]):-!.

initial([Hitem|Titem],K,[Hitem|Tmean]):-

 Nk is K - 1,

 initial(Titem,Nk,Tmean).

%% -- Multi-trhead K-means work

kmean(Item,Mean):-

 calculate_dist(Item,Mean,CaledItem),

 split_item(Mean,CaledItem,SplitItem),

 calculate_mean(SplitItem,TL),

 wait_for_threads(TL,NewMean),

 writeln(NewMean),

 (intersection(Mean,NewMean,Mean) ->

 true,! ;

 kmean(Item,NewMean)),!.

%% -- Calculate distance and assign each point

%% -- to nearest cluster

calculate_dist([],_,[]):-!.

calculate_dist([Hitem|Titem],Mean,[Hitem-

SelMean|TSelMean]):-

 calculating(Hitem,Mean,Dist),

 select_cluster(Dist,Mean,SelMean),

 calculate_dist(Titem,Mean,TSelMean).

%% -- Euclidian distance with 3 Dimensional data

calculating(_,[],[]):-!.

calculating([Hi1,Hi2,Hi3],

 [[Hm1,Hm2,Hm3]|Tmean],

 [Dist|Tdist]):-

 Caler is (Hi1-Hm1)^2 +

 (Hi2-Hm2)^2 +

 (Hi3-Hm3)^2,

 sqrt(Caler,Dist),

 calculating([Hi1,Hi2,Hi3],Tmean,Tdist).

%% -- Each point choose nearest cluster

select_cluster([_],[Mean],Mean):-!.

select_cluster([Hd1,Hd2|Tdist],

 [Hm1,Hm2|Tmean],

 SelMean):-

 (Hd1 < Hd2 -> select_cluster([Hd1|Tdist],

 [Hm1|Tmean],

 SelMean) ;

 select_cluster([Hd2|Tdist],

 [Hm2|Tmean],

 SelMean)).

%% -- splited data to classify cluster

split_item([],_,[]):-!.

split_item([HM|Mean],

 CaledItem,[Splited|SplitItem]):-

 spliting(HM,CaledItem,Splited),

 split_item(Mean,CaledItem,SplitItem).

spliting(_,[],[]):-!.

spliting(Mean,[Hitem-SelMean|Titem],Splited):-

 spliting(Mean,Titem,TSplited),

 (Mean = SelMean ->

 Splited = [Hitem|TSplited] ;

 Splited = TSplited).

%% -- Re-compute new Centroid value

%% -- In this section create on thread

%% -- per one cluster re-computer new centroid

calculate_mean([],[]):-!.

calculate_mean([HS|SplitItem],[T0|TL1]):-

 calculate_mean(SplitItem,TL1),

 thread_create(cal_mean(HS), T0, []).

cal_mean(L):-

 mean_me(0,[0,0,0],L,R),

 assert(mean(R)).

mean_me(N,[Sx,Sy,Sz],[[X,Y,Z]|T],R):-

 NN is N + 1,

 NSx is Sx + X,

 NSy is Sy + Y,

 NSz is Sz + Z,

 mean_me(NN,[NSx,NSy,NSz],T,R).

mean_me(N,[Sx,Sy,Sz],[],[RSx,RSy,RSz]):-

 RSx is Sx / N,

 RSy is Sy / N,

 RSz is Sz / N.

%% -- Wait for all thread completed work.

wait_for_threads([],[]):-!.

wait_for_threads([T|TL],NewMean) :-

 (thread_join(T, true) ->

 mean(NM),

 retract(mean(NM)),

 wait_for_threads(TL,TM),

 NewMean = [NM|TM] ;

 wait_for_threads([T|TL],NewMean)).

% ===== End of Prolog part =============

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 494

REFERENCES

[1] J. Armstrong, Programming Erlang: Software for a Concurrent

World, Raleigh, North Carolina, The Pragmatic Bookshelf,

2007.

[2] M. Carro and M. Hermenegildo, “Concurrency in Prolog using

threads and a shared database,” Proceedings of International

Conference on Logic Programming, 1999, pp.320-334.

[3] G. Czibula, G. Cojocar, and I. Czibula, “Identifying crosscutting

concerns using partitional clustering,” WSEAS Transactions on

Computers, Vol.8, Issue 2, February 2009, pp. 386-395.

[4] I. Dhillon and D. Modha, “A data-clustering algorithm on

distributed memory multiprocessors,” Proceedings of ACM

SIGKDD Workshop on Large-Scale Parallel KDD Systems,

1999, pp. 47-56.

[5] R. Farivar, D. Rebolledo, E. Chan, and R. Campbell, “A parallel

implementation of k-means clustering on GPUs,” Proceedings

of International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), 2008, pp.

340-345.

[6] B. Hohlt, “Pthread parallel k-means,” UC Berkeley, 2001, pp. 1-

9.

[7] M. Joshi, “Parallel k-means algorithm on distributed memory

multiprocessors,” Technical Report, University of Minnesota,

2003, pp. 1-12.

[8] S. Kantabutra and A. Couch, “Parallel k-means clustering

algorithm on NOWs,” NECTEC Technical Journal, Vol.1, No.6,

2000, pp. 243-248.

[9] N. Kerdprasop and K. Kerdprasop, “Knowledge induction from

medical databases with higher-order programming,” WSEAS

Transactions on Information Science and Applications, Vol.6,

Issue 10, October 2009, pp. 1719-1728.

[10] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham, “Weighted

k-means for density-biased clustering,” Lecture Notes in

Computer Science, Vol.3589, Data Warehousing and

Knowledge Discovery (DaWaK), August 2005, pp. 488-497.

[11] N. Kerdprasop and K. Kerdprasop, “A lightweight method to

parallel k-means clustering,” International Journal of

Mathematics and Computers in Simulations, Vol. 4, issue 4,

2010, pp. 144–153.

[12] X. Li and Z. Fang, “Parallel clustering algorithms,” Parallel

Computing, Vol.11, Issue 3, 1989, pp. 275-290.

[13] C. Li and T. Wu, “A clustering algorithm for distributed time-

series data,” WSEAS Transactions on Systems, Vol. 6, Issue 4,

April 2007, pp. 693-699.

[14] J. MacQueen, “Some methods for classification and analysis of

multivariate observations,” Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, 1967,

pp. 281-297.

[15] F. Othman, R. Abdullah, N. Abdul Rashid, and R. Abdul Salam,

“Parallel k-means clustering algorithm on DNA dataset,”

Proceedings of the 5th International Conference on Parallel and

Distributed Computing: Applications and Technologies

(PDCAT), 2004, pp. 248-251.

[16] A. Prasad, “Parallelization of k-means clustering algorithm,”

Project Report, University of Colorado, 2007, pp. 1-6.

[17] J. Tian, L. Zhu, S. Zhang, and L. Liu, “Improvement and

parallelism of k-means clustering algorithm,” Tsignhua Science

and Technology, Vol. 10, No. 3, 2005, pp. 277-281.

[18] S. Tirumala Rao, E. Prasad, and N. Venkateswarlu, “A critical

performance study of memory mapping on multi-core

processors: An experiment with k-means algorithm with large

data mining data sets,” International Journal of Computer

Applications, Vol.1, No.9, pp. 90-98.

[19] H. Wang, J. Zhao, H. Li, and J. Wang, “Parallel clustering

algorithms for image processing on multi-core CPUs,”

Proceedings of International Conference on Computer Science

and Software Engineering (CSSE), 2008, pp. 450-53.

[20] J. Wielemaker, “Native preemptive threads in SWI-Prolog,”

ICLP. Volume 2916 of Lecture Notes in Computer Science,

2003, pp. 331–345.

[21] H. Xiao, “Towards parallel and distributed computing in large-

scale data mining: A survey,” Technical Report, Technical

University of Munich, 2010, pp. 1-30.

[22] Z. Ye, H. Mohamadian, S. Pang, and S. Iyengar, “Contrast

enhancement and clustering segmentation of gray level images

with quantitative information evaluation,” WSEAS Transactions

on Information Science and Applications, Vol.5, Issue 2,

February 2008, pp. 181-188.

[23] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, “The study of parallel

k-means algorithm,” Proceedings of the 6th World Congress on

Intelligent Control and Automation, 2006, pp. 5868-5871.

[24] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based

on MapReduce,” Proceedings of the First International

Conference on Cloud Computiong (CloudCom), 2009, pp. 674-

679.

Kittisak Kerdprasop is an associate professor at the School of

Computer Engineering and one of the principal researchers of Data

Engineering Research Unit, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand, in

1991 and doctoral degree in computer science from Nova

Southeastern University, USA, in 1999. His current research includes

Data mining, Machine Learning, Artificial Intelligence, Logic and

Functional Programming, Probabilistic Databases and Knowledge

Bases.

Surasith Taokok is currently a master student with the School of

Computer Engineering, Suranaree University of Technology,

Thailand. He received his bachelor degree in computer engineering

from Suranaree University of Technology, Thailand, in 2007. His

research topic is related to parallelization techniques, data clustering,

data mining, and declarative programming.

Nittaya Kerdprasop is an associate professor and the director of

Data Engineering Research Unit, School of Computer Engineering,

Suranaree University of Technology, Thailand. She received her B.S.

in radiation techniques from Mahidol University, Thailand, in 1985,

M.S. in computer science from the Prince of Songkla University,

Thailand, in 1991 and Ph.D. in computer science from Nova

Southeastern University, U.S.A., in 1999. She is a member of

IAENG, ACM, and IEEE Computer Society. Her research of interest

includes Knowledge Discovery in Databases, Data Mining, Artificial

Intelligence, Logic and Constraint Programming, Deductive and

Active Databases.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 6, 2012 495

