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Learning the Value of a Function from Inaccurate
Data with Different Error Tolerance of Data Error

K. Khompurngson, B. Novaprateep, D. Poltem

Abstract—The intend of learning problem is to identify the
best predictor from given data. Specifically, the well−known
hypercircle inequality was applied to kernel−based machine
learning when data is know exactly. In our previous work, this
lead us to extend it to circumstance for which data is known
within error. In this paper, we continues the study of this subject
by improving the hypothesis of nonlinear optimization problem
which is used to obtain the best predictor. In additional, we apply
our results to special problem of learning the value of a function
from inaccurate data with different error tolerance of data error.

Index Terms—Hypercircle inequality, Reproducing Kernel
Hilbert space, Convex Optimization and Noise Data.

I. INTRODUCTION

THE principal goal of learning problem is to identify the
best predictor from the available data. An example of

this is the hypercircle inequality which has a long history
in applied mathematics. Specifically, it was applied to
kernel−based machine learning when there is known data
exactly [4], [10]. Motivated by this fact, we have extended it
to circumstance for which there is known data error [10]. The
main propose of this paper is to improve the hypothesis of
nonlinear optimization problem which is used to obtain the
best predictor. From a variety of reason, our data error may
have different error tolerance in real situation. We then apply
our results to the special problem of learning the value of a
function from inaccurate data with different error tolerance
of data error in reproducing kernel Hilbert space.

We assume that H is a Hilbert space over the real numbers
with inner product ⟨·, ·⟩. We denote Nn = {1, 2, ..., n} and
choose

X = {xj : j ∈ Nn} (1)

which is the set of linearly independent in H. Consequently,
let M be the n−dimensional subspace of H spanned by the
vectors in X . That is, we have that

M := {
∑
i∈Nn

aixi : a ∈ Rn}.
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Next, we define the linear operator L : H → Rn as x ∈ H

Lx :=
(
⟨x, xj⟩ : j ∈ Nn

)
.

Consequently, the adjoint operator LT : Rn → H is given by

LTa :=
∑
j∈Nn

ajxj

and the Gram matrix of the vectors in X is defiend by

G = LLT =


⟨x1, x1⟩ ⟨x1, x2⟩ ... ⟨x1, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ ... ⟨x2, xn⟩

...
...

...
...

⟨xn, x1⟩ ⟨xn, x2⟩ ... ⟨xn, xn⟩

 .

We point out that G is positive definite which is useful tools.
We choose | · | : Rn → R is some norm on Rn and ε is some
positive number. Consequently, we define

E = {e : e ∈ Rn, |e| ≤ ε}

which contains information about data error. For any d ∈ Rn,
the hyperellipse, [10], is defined by

H(d|δE) = {x : x ∈ δB,Lx− d ∈ E}

where δB = {x : x ∈ H, ∥ x ∥≤ δ}. Clearly, data error is
determined by some norm on Rn and error tolerance. That is,
we have that

|Lx− d| ≤ ε

In the special case that ε = 0, we know that the hyperellipse
becomes to hypercircle, [4], as shown below

H(d, δ) = {x : x ∈ δB,Lx = d}

That is, we have that hyprecircle is the intersection of a
hyperplan of fintie codimension , Lx = d, and the closed
ball of ratio δ, δB. Therefore, the hypercircle inequality, [4],
becomes as the following.

Let x(d) be the element in hyperplane which is nearest the
origin. That is, we define

x(d) := argmin{||x|| : Lx = d}

Moreover, we observe that x(d) = LTG−1d and

||x(d)||2 = (d,G−1d)

where (·, ·) is euclidean inner product on Rn.
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For any x ∈ H(d, δ) and x0 ∈ H then

|⟨x(d), x0⟩ − ⟨x, x0⟩| ≤ dist (x0,M)
√
δ2 − ||x(d)||2. (2)

Moreover, there is x±(d) ∈ H(d+e) for which equality above
holds

x±(d) = ±δ
x0 − LTa±

||x0 − LTa±||
(3)

where the vector a± ∈ Rn is given by the formula

a± := G−1(Lx0 ∓
dist(x0,M)√
δ2 − ||x(d)||2

d). (4)

Specifically, we define

dist (x0,M) = min{||x0 − w|| : w ∈ M}.

Alternatively, we have the relation between them as the
following

H(d|δE) =
∪
e∈E

H(d+ e, δ) (5)

Given x0 ∈ H, our main gold here is to estimate ⟨x, x0⟩
when x ∈ H(d|δE). According to midpoint algorithm, we
then define

I(x0, d|δE) =
{
⟨x, x0⟩ : x ∈ H(d|δE)

}
.

We point out that I(x0, d|δE) is a closed and bounded subset
in R. Therefore, we obtain that

I(x0, d|δE) = [m−(x0, d|δE),m+(x0, d|δE)]

where m−(x0, d|δE) = min{⟨x, x0⟩ : x ∈ H(d|δE)} and
m+(x0, d|δE) = max{⟨x, x0⟩ : x ∈ H(d|δE)} respectively.
Hence, the best estimator is the midpoint of this interval.
Moreover, the solution of this problem has the form of linear
combination of the vector in X but the choice of the coefficient
are dependent on the vector x0. That means, there is e ∈ E
such that

⟨x(d+ e), x0⟩ = m(x0, d|δE)

where x(d + e) := argmin{||x|| : Lx = d + e} and
m(x0, d|δE) is the midpoint of the interval I(x0, d|δE).

To this end, we need to evaluate the right and left hand
endpoint of the interval I(x0, d|δE). According to our previ-
ous work, we give the formula for the right hand endpoint.
We recall the conjugate norm of | · | which is defined for all
c ∈ Rn as

|c|∗ = max
w∈Rn

|w|≤1

(c, w).

Moreover, if c ̸= 0 then there is a ĉ ∈ Rn such that |ĉ| = 1
and |c|∗ = (c, ĉ).

If H(d, δ) ̸= ϕ and | · |∗ is conjugate norm of | · | then

m+(x0, d|δE) := min
c∈Rn

Vδ(c) (6)

where Vδ(c) = δ||x0 − LT c|| + ε|c|∗ + (c, d) and (·, ·) is
Euclidean inner product on Rn.

Therefore, to find the best predictor, we only need evaluate
the two numbers m+(x0,±d|δE) and then compute

m(x0, d|δE) =
1

2

(
m+(x0, d|δE)−m+(x0,−d|δE)

)
In the special case that our data is measured with square loss,
we assume that

E2 = {e : e ∈ Rn, |e|2 ≤ ε}

and the hyperellipse is given by

H(d|δE2) = {x : x ∈ δB,Lx− d ∈ E2}.

We found that the minimum of the function Vδ exists with
the different hypothesis as following below.

If H(d|δE2) contains more than one point, x0 /∈ M,
and x0

||x0|| /∈ H(d|δE2) then

m+(x0, d|δE2) := min
c∈Rn

V2,δ(c)

where V2,δ(c) = δ||x0 − LT c||+ ε|c|2 + (c, d).

For more detail, we refer the reader to the paper [10].
Furthermore, we observe that H(d, δ) ̸= ϕ implies for
any data error set E , H(d|δE) contains more than one
point and we also provide the example that the infimum is
not archived if H(d|δE) contain only one point in paper [10] .

The article is organized as follows: Section II, we improve
our result by proving the minimum of the function Vδ in
(6) achieve under the same hypothesis in the case of square
loss. In section III, we specializes the results of Section II to
circumstance for which data error is measured with different
norms on Rn and different error tolerance. Section IV, we
will report on further computational experiment of learning
the value of a function from inaccurate data with different
error tolerance in a reproducing kernel Hilbert space.

II. HYPERCIRCLE INEQUALITY FOR DATA ERROR (HIDE)

The main purpose of this section is to improve the
hypothesis how to identify the minimum of the function Vδ in
(6). For this propose, we introduce the following terminology.

Form the equation (5), we point out that for each e ∈ E
and |e| ≤ ε. There is a unique vector

x(d+ e) ∈ M

which is defined as

LTG−1(d+ e) = x(d+ e) := argmin{||x|| : Lx = d+ e}

and
||x(d+ e)||2 = (d+ e,G−1(d+ e)).

Now, let us point out when H(d|δE) ̸= ∅.
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Lemma 1: H(d|δE) ̸= ∅ if and only if

min
|e|≤ε

(d+ e,G−1(d+ e)) ≤ δ2 (7)

Proof. See [10]

In that case that

min
|e|≤ε

(d+ e,G−1(d+ e)) < δ2.

if only if H(d|δE) ̸= ∅ contain more than on point. Next, let
us provide this lemma before we state the main result of this
section.

Lemma 2: If H(d|δE) contains more than one point then
there exits ê ∈ E and |ê| < ε such that x(d + ê) ∈ H(d|δE)
where x(d+ ê) = LTG−1(d+ ê).

Proof. By our assumption, there exits e ∈ E such that

||x(d+ e)|| < δ and x(d+ e) = LTG−1(d+ e).

That is, we have that

||x(d+ e)||2 = (d+ e,G−1(d+ e)) < δ2.

Let αn ∈ (0, 1) and αn → 1 as n → ∞. We define en =
αne and get that en = αne → e as n → ∞. Since E is
compact subset of Rn and the map e → (d+ e,G−1(d+ e))
is continuous function on E. Hence we obtaint that

(d+ en, G
−1(d+ en)) → (d+ e,G−1(d+ e))

as n → ∞. Since (d+ e,G−1(d+ e)) < δ2, there is

ê = en = αne and |ê| < ε

for some n ∈ Nn such that

(d+ ê, G−1(d+ ê)) < δ2 and |ê| < ε.

Hence, we conclude that there is the vector

x(d+ ê) = LTG−1(d+ ê) ∈ H(d|δE)

. �

Theorem 3: Let | · | be a norm on Rn and | · |∗ be conjugate
norm of | · |. Then

(c, w) ≤ |c||w|∗

and
(c, w) ≤ |c|∗|w|

for all c, w ∈ Rn.

These facts can be found in [9]. Finally, we recall a
useful version of the Von Neumann Minimax Theorem which
appears in [2].

Theorem 4: Let f : C×U → R where C is a closed convex
subset of a Hausdorff topological vector space U and U is a
convex subset of a vector space Y. If for every x ∈ U the
function c → f(c, x) is convex and lower semi-continuous on

C and for every c ∈ C the function x → f(c, x) is concave on
U and there is an x̂ ∈ U such that for all λ ∈ R the set

{c : c ∈ C, f(c, x̂) ≤ λ}

is a compact subset of X then there is a c0 ∈ C such that

sup
x∈U

f(c0, x) := sup
x∈U

inf
c∈C

f(c, x).

In particular, we have that

min
c∈C

sup
x∈U

f(c, x) = sup
x∈U

inf
c∈C

f(c, x)

From the hypothesis above, we recall the lower semi-
continuity means the set {c : c ∈ C, f(c, x) ≤ λ} is a closed
subset of C, for all λ ∈ R and x ∈ U .

Theorem 5: If |·| : Rn −→ R+ is a norm and |·|∗ : Rn −→
R+ its conjugate norm. For any d ∈ Rn, if H(d|δE) contains
more than one point then

m+(x0, d|δE) = min
c∈Rn

Vδ(c)

where the function Vδ(c) := δ||x0 −LT c||+ ε|c|∗ + (d, c) for
all c ∈ Rn.
Proof. For any x ∈ H(d|δE), c ∈ Rn and x0 ∈ H we have
that

⟨x, x0⟩ = ⟨x0 − LT c, x⟩+ (c, Lx− d) + (c, d).

≤ δ||x0 − LT c||+ ε|c|∗ + (c, d).

Thus, we obtain that

m+(x0, d|δE) = max
x∈H(d|δE)

⟨x, x0⟩

≤ inf
c∈Rn

δ||x0 − LT c||+ ε|c|∗ + (c, d).

Moreover, we observer that

inf
c∈Rn

δ||x0 − LT c||+ ε|c|∗ + (c, d) = inf
c∈Rn

max
x∈δB

f(c, x)

where the function f : δB × Rn → R is defined at c ∈ Rn

and x ∈ δB as

f(x, c) := ⟨x, x0 − LT c⟩+ ε|c|∗ + (c, d).

According to Theorem VN, we identify C = Rn and U = δB.
For each x ∈ δB, we see that the function c → f(c, x) is
convex and lower seimi−continuous on C. For any x ∈ U ,
x → f(c, x) is concave on U . Since H(d|δE) contains more
than one point and lemma 2, there is an x̂ ∈ δB and ê ∈ Rn

with Lx̂ = d + ê and |ê| < ε. For any c ∈ C, we claim that
the set

{c : c ∈ Rn, f(c, x̂) ≤ λ}

is a compact subset of Rn. Clearly, {c : c ∈ Rn, f(c, x̂) ≤ λ}
is closed subset of Rn. Next, we observe that for all c ∈ C

f(c, x̂) = ⟨x̂, x0 − LT c⟩+ ε|c|∗ + (c, d)

= ⟨x̂, x0⟩+ ε|c|∗ − (ê, c) ≤ λ

and we obtain that

|c|∗ ≤ λ− ⟨x̂, x0⟩
ε− |ê|
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Therefore, {c : c ∈ Rn, f(c, x̂) ≤ λ} is bounded subset of Rn.
Hence, we have the claim. From Theorem VN, we applies and
have that

min
c∈Rn

δ||x0 − LT c||+ ε|c|∗ + (c, d)

= sup
x∈δB

inf
c∈Rn

⟨x0 − LT c, x⟩+ ε|c|∗ + (c, d).

= sup
x∈δB

inf
c∈Rn

{ε|c|∗ + (c, d− Lx).

Next, we claim that

inf
c∈Rn

ε|c|∗ + (c, d− Lx) =

{
−∞, |Lx− d| > ε
0, |Lx− d| ≤ ε.

(8)

First, we consider |Lx− d| ≤ ε then we have

ε|c|∗ + (c, d− Lx) ≥ ε|c|∗ − |c|∗|Lx− d|
= |c|∗(ε− |Lx− d|)
≥ 0

Therefore, the infimum on the left hand side is achieved for
c = 0. If |Lx− d| > ε then we choose ĉ ∈ Rn \ {0} so that

(ĉ, d− Lx) = |Lx− d| |ĉ|∗
Hence, for any t > 0 we have that

inf
c∈Rn

ε|c|∗ + (c, d− Lx) ≤ ε| − tĉ|∗ + (−tĉ, d− Lx)

= εt|ĉ|∗ − t|Lx− d||ĉ|∗
= t(ε− |Lx− d|)|ĉ|∗

Therefore,

inf
c∈Rn

ε|c|∗ + (c, d− Lx) = −∞

when t → ∞. �

Let us add one remark which ensures that Vδ has a unique
minimum. If H(d|δE) contains more than one point and
either x0 /∈ M or | · |∗ is strictly convex then Vδ has a unique
minimum.

III. HIDE WITH DIFFERENT ERROR TOLERANCE OF DATA
ERROR

In this section, we specializes the results of section II
to circumstance for which there is known different error
tolerance of data error. We denote I which is the subset of
Nn and we let m be the number of element in the set I.
Consequently, we denote J = Nn\I.

For each e = (e1, ..., en) ∈ Rn, we define the notation

eI = (ei : i ∈ I) and eJ = (ei : i ∈ J).

We defined | · | : Rm −→ R+ and ||| · ||| : Rn−m −→ R+ be
norms on Rm and Rn−m respectively. We assume that

E = {e : e ∈ Rn, |e|∞ ≤ 1}

where we define | · |∞ as following

|e|∞ = max
{1
ε
|e

I
|, 1
ε′
|||e

J
|||
}
.

where ε, ε′ > 0. In this case, we define the hyperellipse in
the following ways

H(d|δE) = {x : x ∈ δB, |Lx− d|∞ ≤ 1}

That is, for each x ∈ H(d|δE)

|(Lx− d)I | ≤ ε

and
|||(Lx− d)J ||| ≤ ε′.

First, let us begin by discussing when H(d|δE) ̸= ϕ. Since
G is positive definite, we then assume that

0 < λ1 ≤ λ2 ≤ ... ≤ λn

are eigenvalues of G−1. Consequently. we let {uj : j ∈ Nn}
is a corresponding orthonormal set of eigenvector and write
the vector d in the form

d =
∑
j∈Nn

γju
j

for some constants γj ∈ R. We denote the vector

d∗
I
= (γi : i ∈ I) and d∗

J
= (γi : i ∈ J) (9)

respectively. For any e =
∑
j∈Nn

eju
j ∈ E, we obtain that

(d+ e,G−1(d+ e)) =
∑
i∈Nn

(γi + ei)
2λi

=
∑
i∈I

(γi + ei)
2λi +

∑
i∈J

(γi + ei)
2λi

= (d∗
I
+ eI , DI (d

∗
I
+ eI )) + (d∗

J
+ eJ , DJ (d

∗
J
+ eJ ))

where D
I

and D
J

are m and n − m dimensional diagonal
matrices when the element on diagonal of DI and DJ are λi

for i ∈ I and i ∈ J respectively.

As we show above, we then obtain the following fact.

Theorem 6: H(d|δE) ̸= ϕ if and only if

(d∗
I
+ êI , DI (d

∗
I
+ êI )) + (d∗

J
+ êJ , DJ (d

∗
J
+ êJ )) ≤ δ2

where we define

min
e∈Rm

|e|≤ε

(d∗
I
+ e,D

I
(d∗

I
+ e)) = (d∗

I
+ ê

I
, D

I
(d∗

I
+ ê

I
))

min
e∈Rn−m

|||e|||≤ε′

(d∗
J
+ e,D

I
(d∗

J
+ e)) = (d∗

J
+ ê

J
, D

J
(d∗

J
+ ê

J
))

As we said above, our main gold here is to estimate ⟨x, x0⟩
when x ∈ H(d|δE). That is, our data is generally measured
with different norm and error tolerance. Using midpoint algo-
rithm, we then define

I(x0, d|δE) = [m−(x0, d|δE),m+(x0, d|δE)]

where m−(x0, d|δE) = min{⟨x, x0⟩ : x ∈ H(d|δE)} and
m+(x0, d|δE) = min{⟨x, x0⟩ : x ∈ H(d|δE} respectively.
We need the following theorem to obtain the best predictor.
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According to theorem 5, we found that the conjugate norm
of | · |∞ is given by for each e ∈ Rn

|e|1 = ε|eI |∗ + ε′|||eJ |||∗

where | · |∗ and ||| · |||∗ are conjugate norm of | · | and ||| · |||
respectively.

Theorem 7: Let | · |∗ and ||| · |||∗ be the conjugate norms
of | · | and ||| · ||| respectively. If H(d|δE) contains more than
one point then

m+(x0, d|δE) = min
c∈Rn

Vδ(c)

where the function

Vδ(c) := δ||x0 − LT c||+ ε|cI |∗ + ε′|||cJ |||∗ + (d, c)

for all c ∈ Rn. Moreover, either x0 /∈ M or | · |∗ or ||| · |||∗ is
strictly convex then it has a unique minimum.

Next, we discuss the special case that our data error is
measured with square loss. We define

E2 = {e : e ∈ Rn, |e|∞ ≤ 1}

where | · |∞ is a norm on Rn which is defined by

|e|∞ = max
{1
ε
|eI |2,

1

ε′
|||eJ |||2

}
.

We use this notation for hyperelipse

H(d|δE2) = {x : x ∈ δB,Lx− d ∈ E2}

Consequently, we have that

|(Lx− d)I |2 ≤ ε and |||(Lx− d)J |||2 ≤ ε′.

In this case, we have the formula for checking when
H(d|δE2) ̸= ϕ. Form the equation (5), we will show the
sufficient values of δ such that

H(d+ e, δ) ̸= ϕ

for each e ∈ E2. That is, we obtain that

x(d+ e) = LTG−1(d+ e) ∈ H(d|δE)

for each e ∈ E2. We begin with the following terminology.

Definition 8: Let A be an n×n symmetric matrix and d ∈
Rn . The spectrum of the pair (A, d) is defined to be the set
of all real numbers λ for which there exists an x ∈ Rn with
euclidean norm one such that

A(x− d) = λx. (10)

Theorem 9: The spectrum of the pair (ε2D
I
,
d∗
I

ε ) consists
of all real λ such that

g(λ) =
∑
i∈I

λ2
i γ

2
i

(ε2λi − λ)2
= 1 (11)

togerther with each eigenvalue λk of ε2D
I

for which g(λk) <
1 where k ∈ I = {i : i ∈ I, λiγi = 0}.
Proof. See [5]

Accoring to theorem 6, we obtain the following theorem.
Theorem 10: If ΛI and Λ′

I
are the least and greates value

in the spectrum of the pair (ε2DI ,
d∗
I

ε ) respectively. Then we
have the following

min
e∈Rm

|e|≤ε

(d∗
I
+ e,D

I
(d∗

I
+ e)) =

 Λ
I
+ Λ

I

∑
j /∈I

λj |γj |2

ΛI − ε2λj
, if |d∗

I
| > ε

0, if |d∗
I
| ≤ ε

and

max
e∈Rm

|e|≤ε

(d∗
I
+ e,DI (d

∗
I
+ e)) =

 Λ′
I
+ Λ′

I

∑
j /∈I

λ′
j |γj |2

Λ′
I
− ε2λj

, if |d∗
I
| > ε

0, if |d∗
I
| ≤ ε

Proof. See [5]

Theorem 11: Let Λ
I

and Λ
J

be the least value in the
spectrum of the pair (ε2D

I
,
d∗
I

ε ) and (ε′2D
J
,
d∗
J

ε′ ) respectively.
If |d∗

I
| > ε and |||d∗

J
||| > ε′ then H(d|δE2) ̸= ϕ if and only if

ΛI + ΛJ + ΛI

∑
j /∈I

λj |γj |2

Λ
I
− ε2λj

+ ΛJ

∑
j /∈J

λj |γj |2

Λ
J
− ε2λj

≤ δ2

where we denote I = {j : j ∈ I, λjγj = 0} and
J = {j : j ∈ J, λjγj = 0}.

Proof. See [5]

Before we state the next theorem, let us define

M := {x(d+ e) = LTG−1(d+ e) : e ∈ E2}.

Theorem 12: Let Λ′
I

and Λ′
J

be the greatest value in the

spectrum of the pair (ε2D
I
,
d∗
I

ε ) and (ε′2D
J
,
d∗
J

ε′ ) respectively.
If |d∗

I
| > ε and |||d∗

J
||| > ε′ then

M ⊆ H(d|δE2)

if and only if

Λ′
I
+Λ′

J
+Λ′

I

∑
j /∈I

λj |γj |2

Λ′
I
− ε2λj

+Λ′
J

∑
j /∈J

λj |γj |2

Λ′
J
− ε2λj

≤ δ2 (12)

Proof. See [5]

Therfore, if we choose δ which is satisfied equation (12)
then M is smallest subset of H which contain the best
predictor to estimate the value of ⟨x, x0⟩ when x ∈ H(d|δE2).
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Theorem 13: If H(d|δE2) contains more than one point,
x0 /∈ M and δx0

∥x0∥ /∈ H(d|δE2) then

m+(x0, d|δE2) = min
c∈Rn

V2,δ(c)

where V2,δ(c) := δ||x0 − LT c||+ ε|cI |2 + ε′|||cJ |||2 + (d, c).
Moreover, the function V2,δ has a unique mimimum.

We specialize this results to the case that X is an othonormal
set of vector. First, we point out that the Gram matrix is the
identity matrix. Consequently, all eigenvalue of this case are
1 and {u1, u2, ..., un} is standart basis of Rn which is the
eigenvector corresponding to eigenvalue. In our case, we write
the vector d in the folloing way

d =
∑
j∈Nn

dju
j

The vector d∗ in equation (9) are identified with d∗
I
= d

I
and

d∗
J
= d

J
respectively. Consequently, we obtain the spectrum

of the order pair (ε2D
I
,
d∗
I

ε ) and (ε′2D
J
,
d∗
J

ε′ ) when we obtain
form the euation (11) as the following{

ε±
√∑

i/∈I

d2i

}
and

{
ε′ ±

√∑
i/∈J

d2i

}
.

If
∑
i/∈I

d2i
(ε− 1)2

< 1 and
∑
i/∈J

d2i
(ε− 1)2

< 1 then λk = 1 is

also the spectrum of (ε2D
I
,
d∗
I

ε ) and (ε′2D
J
,
d∗
J

ε′ ). According
to Theorem 4, we obtain

ΛI = min{ε±
√∑

i/∈I

d2i , 1} and Λ′
I
= max{ε±

√∑
i/∈I

d2i , 1}

Λ
J
= min{ε±

√∑
i/∈J

d2i , 1} and Λ′
J
= max{ε±

√∑
i/∈J

d2i , 1}

where we denote

I = {j : j ∈ I, dj = 0} and J = {j : j ∈ J, dj = 0}.

To this end, we add final remark to the case x0 ∈ X . That
is, we assume that x0 = xi for some i ∈ Nn. We obtain the
uncertainty interval as the following

I(x0, d|E2) := {⟨x(d+ e), x0⟩ : x(d+ e) ∈ H(d|δE2)}
= {⟨LT (d+ e), x0⟩ : x(d+ e) ∈ H(d|δE2)}
= {((d+ e), Lx0) : (d+ e, d+ e) ≤ δ, e ∈ E2}
= {di + ei : (d+ e, d+ e) ≤ δ, e ∈ E2}

If M ⊆ H(d|δE2) then the midpoint is given by di.

IV. NUMERICAL EXPERIMENTS
In this section, we shall report some results of numerical

experiment in learning the value of a function in reproducing
kernel Hilbert spapce (RKHS) by the midpoint algorithm
when data error measured with square loss and its have
different error tolerance.

Let HK be the reproducing kernel Hilbert space of real
valued function on a set T . That is, for any element f ∈ HK

we have that f : T → R. The real function K(t, s) of t and
s in T is called a reproducing kernel of H if the following
property is satisfied for every t ∈ T and every f ∈ H

f(t) = ⟨f,Kt⟩

where Kt is the function defined for any s ∈ T as
Kt(s) := K(t, s). The Aronszajn-Moore theorem,[1], gives
an intrinsic characterization of reproducing kernels K for a
RKHS. This result states that K is a reproducing kernel for
some RKHS if and only if for any inputs T = {tj : j ∈ Nn}
the n × n matrix (K(ti, tj) : i, j ∈ Nn) is positive semi-
definite. Moreover, for any kernel K there is a unique RKHS
with K as its reproducing kernel.

In the frist computaional experiment, we choose the gaus-
sian kernel on R. Our example below is organzied in the
fllowing way. Frist, we choose {tj : j ∈ N20} ⊆ R and
t0 = 0. Consequently, we get the gram matrix is given as
G(K(ti, tj))i,j∈N20 . So far, X in equation (1) is identified
with the function {Ktj : j ∈ N20} ⊆ HK and the vector x0

with the function Kt0 . Next, we choose g ∈ HK and define
d = (g(tj) + ej : j ∈ N20) where we choose the vector
e representing ”noise” which is separated into two groups
with different error tolerance. Consequently, the hyperellipse
becomes

H(d|δE2) =
{
f : ||f || ≤ δ, (

∑
j∈I

(f(tj)− dj)
2)

1
2 ≤ ε

I
,

(
∑
j∈J

(f(tj)− dj)
2)

1
2 ≤ εJ

}
We start by compute the sufficient the value of δ

such that H(d|δE2) ̸= ϕ which is obtained by theorem
6 and 11. As midpoint algorithm and Theorem 5,
we need to find numerically the minimum of the
function Vδ± which is defined for c ∈ R as Vδ±(c) =

δ

√
K(t0, t0)− 2

∑
j∈Nn

cjK(t0, tj) +
∑

i,j∈Nn

cicjK(ti, tj) +

εI

√∑
j∈I

c2j + εJ

√∑
j∈J

c2j ±
∑
j∈Nn

cjdj .

Threfore, we obtain the midpoint

m(x0, d|δE) =
1

2

(
Vδ+(c

∗
+)− Vδ−(c

∗
−)

)
where we denote

m+(x0, d|δE) = Vδ+(c
∗
+) := min{Vδ+(c) : c ∈ R20}

and

m+(x0,−d|δE) = Vδ−(c
∗
−) := min{Vδ−(c) : c ∈ R20}.

We use the program fiminunc in the optimization toolbox
of Matlab 7.3.0 to obtain the minimum of the function Vδ±
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Example 1 We choose the gaussian kernel on R which is
defined by

K(t, s) := e−
(t−s)2

10 t, s ∈ R.

We choose the exact function

g(t) := 4e−
(t−7.5)2

10 + 2e−
(t−2.5)2

10

−0.5e−
(t+2.5)2

10 + 5e−
(t+7.5)2

10

and choose t0 = 0. We generated a training set of twenty
points T = {(tj , dj) : j ∈ N20} ⊆ R × R obtained by the
function g. Specifically, we choose t1 = −20, tj+1 = tj + 2
and t11 = 2, tj+11 = t10+j + 2, for all j ∈ N9. We set
dj = g(tj) + ej , j ∈ N20 where

ei ∈
{

(0.1, 0.2) ,if i ∈ I = {1, 2, ..., 5, 16, ..., 20}
(0, 0.01) ,if i ∈ J = {6, 7, ..., 15}

Consequently, we choose ε
I
= 0.75 and ε

J
= 0.09 respec-

tively.

−20 −15 −10 −5 0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

5

 

 

exact function
given data points
approximation point

Fig. 1. Exact function obtained from guassian kernel on R

By Theorem 6, 11 and 12, we compute and obtain that

min
e∈R10

|e|2≤ε1

(d∗
I
+ e,D

I
(d∗

I
+ e)) = 31.4079

min
e∈R10

2|e|2≤ε2

(d∗
J
+ e,D

I
(d∗

J
+ e)) = 8.6115

and
max
e∈R10

|e|2≤ε1

(d∗
I
+ e,D

I
(d∗

I
+ e)) = 71.2428

max
e∈R10

2|e|2≤ε2

(d∗
J
+ e,D

I
(d∗

J
+ e)) = 10.0067

Consequently, we have that

min
e∈E2

(d+ e,G−1(d+ e)) = 40.0194

and
max
e∈E2

(d+ e,G−1(d+ e)) = 81.2495

Therefore, we obtain that H2(d|δE∞) ̸= ϕ if and only if
we choose δ > 6.3261. According to theorem 6, we obtain

that M ⊆ H(d|δE2) if and only if δ > 9.0139. Therefore, we
have the uncertainty interval as the following

I(t0, d|δE) = {⟨Kt0 , f⟩ : f ∈ H(d|δE2)}
= {f(0) : f ∈ H(d|δE2)}

The result of the computation is indicate in Figure 2. while
the exact value g(0) = 0.7993.

10 15 20 25 30 35 40 45 50
0.785

0.79

0.7993

0.795

0.805

0.81

detla Value

g(0) =

Fig. 2. Midpoint estimator from Gaussian kernel on R

Example 2 We choose the gaussian kernel on R2. That is,
we define

K(x, y) := e−|x−y|22 x, y ∈ R2.

We choose the exact function

g := 0.5K(1,1) + 2.75K(1,−1) − 3.25K(−1,−1) + 1.5K(−1,1)

where we define Kx(y) = K(x, y). We choose the values on
T = {ti : i ∈ N20} on a spiral curve surrounding the origin
as show in Figure 3 .

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

g(t
1
)

g(t
20

)

g(t
2
)

g(t
3
)

Fig. 3. Point on spiral
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We set dj = g(tj) + ej , j ∈ N20 where

ei ∈


(0.1, 0.2) ,if i ∈ I1 = {1, 2, ..., 5, }
(0.09, 0.1) ,if i ∈ I2 = {6, 7, ..., 10}
(0.01, 0.02) ,if i ∈ I3 = {11, 12..., 15}
(0.009, 0.01) ,if i ∈ I4 = {16, 17, ..., 20}

Consequently, we choose εi =


0.0361 ,if i = 1
0.2135 ,if i = 2
0.3489 ,if i = 3
0.0214 ,if i = 4

and we define hyperellipse as the following

H(d|δE2) = {f : ||f || ≤ δ, (
∑
j∈Ii

(f(tj)− dj)
2) ≤ ε2i , i ∈ N4}

From Theorem 13 and choose t0 = 0, we obtain the function
V2,δ as follows

V2,δ(c) = δ

√
1− 2

∑
j∈N20

cjK(t0, tj) +
∑

i,j∈N20

cicjK(ti, tj)

+ε1

√∑
j∈I1

c2j+ε2

√∑
j∈I2

c2j+ε3

√∑
j∈I3

c2j+ε4

√∑
j∈I4

c2j+
∑

j∈N20

cjdj .

Ii ΛIi Λ′
Ii

minimun maximum
I1 -0.0779 0.0789 14.8174 15.131
I2 -0.4838 0.6237 3.9087 6.1205
I3 -0.3810 1.2769 0.4273 3.6079
I4 -0.0537 0.1380 0.2635 0.6102

TABLE I
THE MAXIMUM AND MINIMUM OF A POSITVE DEFINITE QUADRATIC

POLYNOMIAL ON A SHERE

Consequently, we have that

min
e∈E2

(d+ c,G−1(d+ c)) = 19.4169

and
max
e∈E2

(d+ c,G−1(d+ c)) = 25.4696

Therefore, we obtain that H2(d|δE∞) ̸= ϕ if and only if we
choose δ > 4.4065. Moreover, we also obtain that for each
e ∈ E2 H(d + e) ̸= ϕ if and only if δ > 5.0467. Again,
the result of the computation is indicate in Figure 4 while the
exact value g(0) = 1.0827.

V. CONCLUSION
In this paper, we have improved the recent work on hy-

percircle inequality for data error. Indeed, we have improved
the hypothesis of nonlinear optimization problem which is
used to obtain the best predictor. Morover, we have provided
material about the Hypercircle inequality for data error which
have different error tolerance and reported further numerical
experiment in Section 4.
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Fig. 4. Midpoint estimator from Gaussian on R2
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