
  
Abstract—The paper highlights the problem of the use of 

computer simulation optimization aimed at increasing the efficient 
production of manufacturing and production systems. The paper 
presents the possibilities of making use of simulation optimization in 
the form of a simulation study that was performed within the 
framework of cooperative ventures between our workplace and an 
industrial partner. The aim was to use the Witness environment for 
the determination of the optimal number of machines for individual 
workstations or respectively, to establish the optimal number of 
production shifts for these workplaces in the production line of short-
barrels for pistols in gun-maker company. The Witness Optimizer 
package was applied to this optimization problem. We used Hill 
Climb optimisation algorithm, which this package offers. The 
objective function includes the production quantity, and machine and 
staff costs. The optimization parameters and their range of variation 
were proposed on the basis of the predefined requirements of the 
entrepreneur. 
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I. INTRODUCTION 
HE computer simulation of discrete events, so-called 
Discrete Event Simulation (DES), is becoming an 

essential support instrument in making the operation of 
production systems more effective. Among other things, this 
is due to its ability to simulate and follow up the stochastic 
and the dynamic properties of individual processes, and thus 
to predict their behaviour. Computer simulation is a widely 
used analytical tool which permits the study of complex 
systems that cannot be modelled by other mathematical and 
statistical methods. This simulation can be used to determine 
the state of certain controllable inputs to a system that will 
cause system outputs to be at their most favourable or optimal 
conditions. This is the principle of simulation optimization 
[1]. Simulation optimization is an extremely valuable 
technique for investigating the behaviour of many business 
processes ranging from manufacturing layouts to the operation 
of modern contact centres, from the handling of patient influx 
into emergency departments to the processing of internet 
enquiries on a web-site. Some common application areas of 
discrete event simulation are service stations such as airports, 
call centres and supermarkets; road and rail traffic; industrial 
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production lines and logistical operations like warehousing 
and distribution [2]-[5]. With a simulation model, the creator 
simply sets up the correct real world rules at each stage where 
a real-world decision is made. The model then plays the 
scenario forward - taking each of these decisions in turn. This 
gives great insight into the performance of the described 
system in terms of throughput, services levels, resource 
utilization, profitability, etc. With a discrete event simulation 
model, it is possible to conduct experiments which show the 
ranges of current and projected outcomes without the need for 
costly pilot schemes that disrupt the on-going process. 

Simulation optimization is the approach used when seeking 
a set of appropriate input values (decision variables) to 
produce the desired outputs and the problem setting thus 
contains the usual optimization components: decision 
variables, objective function and constraints [6]. A decision 
variable is an unknown in an optimization problem and the 
constraints are represented by these variables having to be 
contained in some feasible region. The objective function is a 
real valued function defined on these variables. For the DES 
there are several popular optimization approaches with 
different suitable areas - such as Ranking and Selection, 
Stochastic Approximation, and Ordinal Optimization etc. [7]. 
Various simulation optimization techniques can be classified 
based on the nature of the feasible region. If it is a continuous 
set, then it may be appropriate to use a gradient based search 
method such as stochastic approximation. If it is finite and 
fairly small, then it is possible to use ranking and selection 
methods, whereas if it is finite but with a wide range of 
combination possibilities then a meta-heuristic may be more 
appropriate. The works [8] and [9] provide a descriptive 
review of the main approaches for carrying out simulation 
optimization, and sample some recent algorithmic and 
theoretical developments in simulation optimization research. 
The most relevant approaches that have been developed for 
the purpose of optimizing simulated systems are also 
summarized in [10], where the authors concentrate on the 
meta-heuristic black-box approach that leads the field of 
practical applications. 

II. DISCRETE EVENT SIMULATION SOFTWARE 
Currently, a wide range of commercial products are 

available on the market which are intended for the Windows 
and UNIX platforms, and which offer an extremely wide 
spectrum of possibilities for the modelling and simulation of 
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manufacturing, logistical and other queuing systems [11], 
[12]. The results of a survey on the most widely used discrete 
event simulation software (conducted on 100 people working 
in the simulation field) are presented in [13]. The survey 
considers among other details some critical aspects like 
application domains (specifically, manufacturing and 
logistics), 3D and virtual reality potentialities, simulation 
languages, prices, etc. For each aspect and for each software 
product the survey reports a score between 0 and 10. These 
results help modellers in DES software selection.  

A. Optimisation software packages 
Historically, one of the main disadvantages of simulation 

was that it was not an optimization technique. An analyst 
would simulate a relatively small number of system 
configurations and select the one that appeared to provide the 
best performance. However, the availability of faster PCs and 
improved heuristic optimization search techniques (evolution 
strategies, simulated annealing, tabu search, etc.), are 
important pieces of evidence indicative of the new marriage 
between optimization and simulation in practice. At present, 
nearly every commercial discrete-event simulation software 
package contains a module that performs some sort of 
“optimization” rather than just pure statistical estimation. The 
goal of an “optimization” package is to orchestrate the 
simulation of a sequence of system configurations so that a 
system configuration is eventually obtained that provides an 
optimal or near optimal solution. Furthermore, it is hoped that 
this “optimal” solution can be reached by simulating only a 
small percentage of the potential configurations that would be 
required by exhaustive enumeration. Most of the optimization 
engines (packages) embedded in commercial simulation 
software are based on evolutionary approaches. The paper [9] 
surveys the most prominent simulation optimization software 
packages (either plug-ins or integrated) currently available, 
and their vendors and, the simulation software product that 
they support and the search techniques used.  

B. Simulation studies in the Witness environment 
Our workplace is equipped with a Witness environment, in 

which we have, in close cooperation with industrial partners, 
conducted a number of simulation studies that have led – at 
least in part, to increases in the productivity of manufacturing, 
queuing and logistical systems [14]-[16]. 

The Witness simulation environment is the product of the 
British Lanner Group [17], and is one of the most successful 
world-class environments for the simulation of manufacturing, 
queuing and logistics systems. The Witness simulation 
package is capable of modelling a variety of discrete (e.g., 
part-based) and continuous (e.g., fluids and high-volume fast-
moving goods) elements. Depending on the type of element, 
each can be in any of a number of “states”. These states can be 
idle (waiting), busy (processing), blocked, in-setup, broken 
down, and waiting labour (cycle/setup/repair). Witness models 
are based on template elements. These may be customised and 
combined into module elements and templates for reuse. The 

most basic discrete modelling elements are Parts, Buffers, 
Machines, and Conveyors. Other discrete modelling elements 
include multiple types of tracks and vehicles, labour, carriers, 
shifts, variables and part attributes. The behaviour of each 
element is described on a tabbed detail form in the Witness 
user interface. 

Simulation is not, in and of itself, an optimization 
procedure, but a means to model different scenarios and 
compare the results. Because the number of variable factors in 
a model can be very large, Lanner Group provides a plug-in 
module Witness Optimizer, which can intelligently test 
different combinations of changes within a model, and 
indicate the “best” model based on an objective function 
provided by the model builder [27]. This objective function 
quantifies the objective of the optimization. In addition, users 
provide information on any constraints within the system, i.e. 
factors within the model which can vary, and what their range 
of variation is. Model run-length, as well as number of 
replications, is also indicated by the user. More sophisticated 
users can choose from several different search methods to be 
used in arriving quickly at the optimum. The Witness 
Optimizer provides several optimization methods, ranging 
from simply running all possible combinations to more 
complex algorithms [18]. The Witness environment is used 
for the optimisation of manufacturing, logistics and queuing 
systems in a whole range of simulation studies. Process 
analysis using Witness has been conducted, for instance, in 
the lens manufacturing process flow of at firm in order to 
identify improvement-prone areas and improvement 
alternative solutions were proposed [19]. Other work 
illustrates the use of Witness computer simulation to design 
the production of a manufacturing company that produces 
snow-melting modules. The analysis presented here describes 
the production design process and compares the performance 
of the new design with the existing system’s performance 
[20]. The Witness environment was also used for the 
simulation of the ophthalmology service of the Regional 
Military and University Hospital of Oran in Algeria [21] or for 
analysis of the best layout for an industrial plant [22]. The 
results that were obtained from applying Witness Optimizer to 
a manufacturing example with seven decision variables are 
presented in [23]. Witness’s applications in simulation 
solution deployment have been illustrated in [24]. 

III. FORMULATION PROBLEM 
The paper presents the possibilities of making use of 

simulation optimization in the form of a simulation study that 
was performed within the framework of cooperative ventures 
between our workplace and an industrial partner. To be exact, 
this was the use of the Witness environment for the 
determination of the optimal number of machines for 
individual work-stations or respectively, to establish the 
optimal number of production shifts for these workplaces in 
the production line of short-barrels for pistols in the 
Zbrojovka a.s. (gun-maker) company. The aim was to propose 
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an optimal solution for increasing the productivity of the 
manufacturing system. The production process is described in 
Fig. 1. The machines used in the production process serve for 
the machining of the products in various production phases. 
These are, in particular, lathes, grinding and drilling machines. 
All these machines are used to machine only one product at a 
given moment. Thus, only one part enters the machine and a 
specific operation is carried out on it - and also, only one part 
leaves the machine. Individual machines are organised into 
groups. Each group forms a workplace intended to perform a 
certain operation. Every machine (except for one machine), is 
operated by one operator. For this reason, labour does not 
have to be considered in the model.  
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Fig. 1: Scheme of the operation of the production plant [16] 
 

Table I shows the actual quantities of machines in 
individual workplaces which are used in the current system 
for machining the products, together with the number of shifts 
during which the workplace is in operation.  
 
TABLE I: NUMBER OF MACHINES (SHIFTS) IN INDIVIDUAL WORKPLACES OF THE 

CURRENT SYSTEM 

Workplace 
No. 

Description of workplace Number of 
machines 

Number of 
shifts 

1 Drilling of the short barrel of the 
gun  

3 2 

2 Drilling –countersinking 1 2 
3 Turning-Lathe – Fischer 3 2 
4 Turning-Lathe - SV 18 7 2 
5 Turning-Lathe - Liberty 6 2 
6 Honing  5 2 
7 Forging 2 3 
8 Grinding 6 2 
9 Turning-Lathe – chambers 3 2 
10 Polishing  - chambers 2 2 
11 Manual treatment 9 1 

 
Each workplace performs a certain operation. The product 

comes through some workplaces repeatedly; therefore one 
workplace carries out a variety of different operations. The 
time values of individual operations were provided by the 

plant operator from their planning system, where the data for 
all machines is stored. Data collection has been carried out in 
that workplace for a long time, hence we can consider this 
data to be very correct. So any further measurement directly in 
operation would just be a waste of time. The manufacturing 
plant works in a three-shift operation. Most workplaces are in 
two-shift operation, though.  

In operation, maintenance of the machine is done on a 
regular basis. Thanks to this maintenance, faults on individual 
machines are only exceptional occurrences. Maintenance time, 
together with the elimination of faults, takes up 3 % of 
machine time. 

IV. MODELLING AND SIMULATION OF THE CURRENT 
PRODUCTION LINE 

Every operating workplace of the production line is 
modelled in the Witness environment with the help of the 
Machine of Single type element. The quantity of machines in 
a particular workplace and their cycle-time are set up 
according to Table I and data provided by the operator. If a 
workplace carries out a few operations with a different cycle-
time, this parameter is considered as a variable. The value of 
this variable is then set up in the output rule of the buffer in 
front of the workplace concerned. Product handling in the 
production process is performed by vehicles. These are 
modelled with the help of the Vehicle element. To create the 
process model of maintenance and faults in individual 
workplaces, the auxiliary Machine type element is used, 
which takes care of fault generation (i.e. maintenance on 
individual machines of the particular workplace). Thus, each 
workplace has its own fault generator. In the model, working 
shifts are created with the help of the Shift element. For 
simulation purposes, three one-week shifts were created. The 
shifts were then assigned to the individual workplaces as per 
the number of shifts in which the particular workplace is in 
operation every day. 

After building the model of the production line, the 
proposed model must first be verified. The verified model will 
subsequently be used for simulation experiments and 
optimization. As the system in view works in continuous 
operation, the model would first have to be filled with 
products (reach equilibrium) in order to verify the model with 
the real system. This can be done in the Witness environment 
due to the parameter warm-up period. The value of this 
parameter determines the time when the followed-up statistics 
and variables are zeroed. Determination of the warm-up 
period for the output of a discrete-event simulation model is 
very difficult for the optimization of a solution. If the length 
of the warm-up period is underestimated, there will be some 
bias in the simulation results. If overestimated, output data is 
wasted and the number of experiments that can be performed 
in a period of time is reduced. A wide variety of methods for 
estimating the warm-up period have been proposed over the 
past 40 years. These can be categorised under five headings, 
briefly outlined in [25]: graphical methods, heuristic 
approaches, statistical methods, initialisation bias tests and 
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hybrid methods. It is apparent, that no one single method can 
be recommended above any of the others. We use a very 
simple graphical method. This approach relies upon the visual 
inspection of the time-series of the simulation output - in our 
case the daily production.  

Because the current system is unsteady and it gets saturated 
after 15 days, the steady model No.3 published in [14] is used 
for warm-up determination. The daily production time series 
is presented in Fig. 2. The zero values represent no production 
at the weekend. On the basis of this, the value warm-up period 
is set to 259200 seconds, which corresponds to a time period 
of 3 days. This time is sufficient for filling the whole model 
with products and to reach the steady-state behaviour of a 
system. Total simulation time is 2 weeks (i.e. 3 days Warm 
Up, 11 days testing period).. 
 

 
Fig. 2: The course of daily production over 26 days 

 
Table II shows the results of the simulation of the current 

production line. Only informal and static techniques [26] were 
used for verification, validation and testing.  
 

TABLE II: REPORT ON CURRENT PRODUCTION LINE RESULTS  

Workpl. 
No. 

Description  No. of 
machines No. of shifts Busy 

Time [%] 
Blocked 
Time [%] 

1 Drilling 3 2 35.00 61.97 
2 Countersinking 1 2 47.07 49.77 

3 Turning-Lathe – 
Fischer 3 2 37.34 58.72 

4 Turning-Lathe - 
SV 18 7 2 50.69 46.31 

5 Turning-Lathe - 
Liberty 6 2 35.03 61.97 

6 Honing 2 2 96.95 0.00 
7 Forging 2 3 74.28 6.33 
8 Grinding 6 2 27.29 1.11 

9 Turning-Lathe – 
chambers 3 2 50.42 0.00 

10 Polishing  - 
chambers 2 2 23.38 0.00 

11 Manual treatment 9 1 0.55 0.00 

TOTAL 44 22 43.45 26.02 
 
During the verification process, the percentage capacity 

utilization of individual workplaces and total production of 
the production line were especially monitored. The values of 
the monitored characteristics are in close proximity to those of 

the real system and verify our model.Table II also shows how 
ineffective operation of this manufacturing system is. More 
than half of the workplaces are blocked. This is caused due to 
filling the buffers between individual workplaces (buffer 
capacity is 5000). The busy time of most workplaces is less 
than 50%. The Honing Workplace of is the bottleneck of the 
system (busy time is practically 100%, 3% maintenance). 
Total production is 5531 pieces during the monitored time (11 
days) and 81 labourers work in this process. Due to this poor 
result, optimization of this inefficient system was performed 
and the results are presented in the next section. The Witness 
Optimizer package is applied to this optimization problem.  

V. OPTIMISATION OF PRODUCTION SYSTEM 
This section focuses on experimentation with the model of 

current system to find the best solution. The Witness 
Optimizer package was applied to this optimization problem. 
We used Hill Climb optimisation algorithm, which this 
package offers. The results are presented in the form of many 
tables and graphs. 

Finding the best solution can mean many different things, 
highest throughput levels, lowest costs, highest production, 
etc. Usually, it means a specific combination of these types of 
factors. Within optimization, the key is to define what the best 
solution looks like. This is encapsulated in an objective 
function which can be as simple or as complex as required. In 
Witness the objective function is set inside the simulation 
model as a standard user-defined function. In our case, the 
objective function calculates the marginal profit by 
subtracting the operational costs and staff costs from the 
marginal revenue received from selling the products. We 
consider the marginal revenue to be €15 per unit and worker 
costs €10 per hour. Other variables are denoted in Table III. 
Then the objective function called profit is defined in form 
(2), where variable lab_cost is expressed in form (1). 

 
TABLE III: LIST OF VARIABLES USED FOR OBJECTIVE FUNCTION DEFINITION 

Variable name Description  
n_prod the total number of products produced 

over the monitored period 
m_cost operational costs of machines mainly 

energy costs 
lab_cost total cost of staff over the monitored 

period  
n(wpl) the number of machines in the specific 

workplace 
lab_time(wpl) busy time of a worker at a machine in the 

specific workplace 
 

( )∑
=

⋅⋅=
11

1
10cos

wpl
pl)lab_time(wn(wpl)€tlab_  (1)

 
tlabtmprodnprofit cos_cos_€15_ −−⋅=  (2)
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Now that the objective function of the optimization has 
been established, the next step is to define what can vary. This 
means setting the values of decision variables (also called 
optimisation parameters). The main task of our optimization 
problem is to determine an adequate number of machines in 
an individual workplace, or possibly, to set up an appropriate 
number of working shifts for these workplaces. Therefore, in 
our case the decision variables are simply the number of 
machines in individual workplaces and number of shifts 
operating these workplaces. The values (range of variation) of 
these parameters are defined on the basis of the predefined 
requirements of the user and according to the simulation 
results of the current system and conclusions in [14]. The 
entrepreneur did not allow an increase in the number of 
machines in a workplace (reduction of machine number is 
possible). Further, it is possible to change the number of 
working shifts of individual workplaces and the overall staff 
requirement must be below 81 workers.  

The decision variables are defined in Table IV. The variable 
denoted as n_workplace represents the number of machines in 
a specific workplace and the variable denoted as 
shift_workplace represent the number of working shifts of 
specific workplace. The suggested values and constraints 
shown in Table IV are set according to conclusions in [14]. 
The suggested values are used among other things for the 
analysis of the objective function variation. The constraints 
are defined for some couple of variables and for overall staff 
requirement in the form (3).  

 

( ) 81__
11

1

≤⋅∑
=wpl

workplaceshiftworkplacen  (3)

 
TABLE IV. LIST OF DECISION VARIABLES WITH CONSTRAINTS  

Workpl. 
No. 

Variable name Values Suggested 
value 

Constraint 

1 n_drill 1,2,3 2  
 shift_drill 1,2 1 n_drill*shift_drill<4 

2 n_countersink 1 1  
 shift_countersink 1,2 1 

3 n_fischer 2,3 3  
 shift_fischer 2,3 2  

4 n_SV18 5,6,7 7  
 shift_SV18 2,3 3 n_SV18*shift_SV18>13 

5 n_liberty 3,4,5,6 5  
 shift_liberty 2,3 2 8<n_liberty*shift_liberty<13 

6 n_honing 2 2  
 shift_honing 3 3  

7 n_forging 2 2  
 shift_forging 3 3  

8 n_grind 3,4,5,6 5  
 shift_grind 2,3 2 8<n_grind*shift_grind<13 

9 n_chamber 2,3 3  
 shift_chamber 2,3 3 n_chamber*shift_chamber>5 

10 n_polish 1,2 1  
 shift_polish 2,3 3 2<n_polish*shift_polish<5 

11 n_treatment 1 1  
 shift_treatment 1 1  

Due to these constraints, the total combinations of decision 
variables 294912 are decreased to 12288. Some variables are 
constant. For example, the Honing workplace is potentially 
the bottleneck. Therefore, we can heuristically argue that the 
Honing workplace should be used maximised. It also follows 
that the Forging workplace has to be high-usage. Both 
workplaces have to operate in three shifts and have to use 2 
machines. In contrast, the Manual Treatment workplace can 
operate only with a single shift, with one manual treatment 
station.  

How many replications of each set of decision parameters, 
is question that also need to be answered in order to establish 
an optimization experiment. The analysis of the objective 
function variation can help us to determine the number of 
replications. We used the Analyze option from the Model 
Optimization dialog of the Witness environment for this 
purpose. There is some variation of the objective function in 
results for the suggested values. Therefore, it is appropriate to 
run the optimization algorithm with 5 replications for each set 
of decision variables. After setting the variation of the 
decision variables, defining the constraints and the objective 
function, analyzing the number of replication and discussions 
about the length of the warm-up period and simulation-run 
length, the following approach was proposed for searching for 
the optimal solution to our problem.  

1) Firstly, we ran the optimizer only with single replication 
with the values of decision variables. The simulation-run 
length for this experiment is 11 days with an additional 
warm-up period of 3 days. The objective function profit 
was computed from the final 11 days of each 14 days 
evaluation. 

2) On the basis of the best results analysis the range of 
decision variables variation is reduced. 

3) The optimizer was run with 5 replications with a reduced 
range of decision variables. The simulation-run length 
for this experiment was 25 days with an additional 
warm-up period of 3 days. The objective function profit 
was computed from the final 25 days of each 28 day 
evaluation. 

A. The Witness optimization solution 
The Witness Optimizer package offers an optimization suite 

in its experimental framework. The main optimizer option (see 
Fig.3) offers the easy selection of parameters (decision 
variables) to change, constraints, run/warm-up duration, 
algorithm choice and is also the place to choose whether the 
objective function should be maximised or minimised. This 
engine also includes other useful and time-saving devices. As 
mentioned above, it is possible to use the simple analysis of 
experiments to determine the variability of typical runs which 
helps to determine the number of replications required. Then 
we can set a tolerance to abort multiple runs if the first 
replication is so far removed from the optimal found as to 
make further replications a waste of time and unnecessary or, 
we can optionally track for any other parameters that may be 
of interest in the results set from the simulation.  
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Fig. 3: The main Witness Optimizer control dialog 

 
The Witness optimizer offers a wide choice of options for 

experimentation. We use the Hill Climb. For this algorithm, 
we can set some parameters to control optimum searching. 
Namely it is possible to specify a stopping rule that lets the 
optimization algorithm run until a user-specified number of 
configurations (combinations of decision variables) has been 
completed and the number of configurations for which there is 
no improvement in the value of the objective function. With 
the WITNESS optimizer for typical simulation experiments, 
Lanner’s experience is that if there are around 20,000 
different configurations then the optimizer needs around 200 
experiments to come up with an optimal or near-optimal 
answer. For 2,000,000 configurations, 300 to 500 experiments 
are usually necessary. Of course, these figures are not cast in 
stone – they vary with the nature of the solution space. 
However, these figures illustrate the remarkable value of 
optimization. With 20,000 options, it is likely that by running 
just 1% of the possible experiments, good results can be 
achieved. According to this consideration, for example, we 
can use 200 for the maximum number of configurations and 
20 for the number for which there is no improvement. What 
does this mean? Suppose that the objective function value at 
configuration i is the largest up to that point. Then the 
algorithm will terminate at configuration i + 20 if the 
objective function values at configurations i + 1, i + 2, …, i + 
20 are all less than, or equal to, the objective function value at 
configuration i; however, the algorithm will never go beyond 
200 configurations. 

VI. RESULTS FOR THE HILL CLIMB ALGORITHM 
According to the above defined settings and proposed 

approach, the experiments were carried out using the Hill 
Climb algorithm. The Hill Climb settings dialog in the 
Witness Optimizer enables one to specify that the 
optimization run is to stop after a certain number of 
evaluations or a certain number of consecutive evaluations 
without an improvement in the best result found, whichever is 
first. 
 

TABLE V: RESULTS FOR EXPERIMENTS WITH SINGLE REPLICATION USING THE 
HILL CLIMB ALGORITHM  
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11 231156 2 1 1 2 2 6 3 5 2 5 2 3 3 1 3 
16 230797 2 1 1 2 2 6 3 5 2 5 2 3 3 2 2 
20 230680 2 1 2 2 2 6 3 5 2 5 2 3 3 1 3 
22 230441 2 1 1 2 3 6 3 5 2 5 2 3 3 1 3 

2 229753 2 1 1 2 2 7 3 5 2 5 2 3 3 1 3 
3 229255 2 1 2 2 2 7 3 5 2 5 2 3 3 1 3 

10 229100 2 1 1 2 2 7 3 5 2 5 2 3 3 2 2 
4 228768 2 1 1 2 2 7 3 5 2 6 2 3 3 1 3 
0 228646 2 1 1 3 2 7 3 5 2 5 2 3 3 1 3 

21 228452 2 1 1 2 2 6 3 5 2 6 2 3 3 1 3 
18 228178 2 1 1 2 2 6 3 6 2 5 2 3 3 1 3 

1 227874 2 1 2 3 2 7 3 5 2 5 2 3 3 1 3 
13 224092 2 1 1 3 2 6 3 5 2 5 2 3 3 1 3 
27 221865 3 1 1 2 2 6 3 5 2 5 2 3 3 1 3 
 

The first parameter was set to 120 and the second to 40. 
Table V shows the top results achieved after running the 
optimizer with a single replication using the Hill Climb 
algorithm. The simulation-run length for this experiment was 
11 days, with an additional warm-up period of 3 days. The 
objective function profit was computed from the final 11 days 
of each 14 day evaluation. The optimal result of €231156, 
indicating a marginal profit, was found by the algorithm after 
11 evaluations. On the basis of the results shown in Table V, 
the analysis of decision variable range was performed. The 
number of decision variables was reduced to 9, because the 
optimization parameters shift_drill, shift_SV18, shift_liberty, 
shift_grind, n_chambers and shift_chambers are constant. The 
list of reduced number of decision variables with constraints 
and suggested values is shown in Table VI. Thus, a reduced 
range of decision variables was used for the second 
experiment. This time, the optimizer was run with 5 
replications of each set of decision parameters. 

 
TABLE VI: LIST OF REDUCED RANGE OF DECISION VARIABLES WITH 

CONSTRAINTS  

Variable name Values Suggested 
value 

Constraint Cumulative 
combinations

n_drill 2,3 2  2 
shift_countersink 1,2 1  4 
n_fischer 2,3 2  8 
shift_fischer 2,3 2  16 
n_SV18 6,7 6  32 
n_liberty 5,6 5  64 
n_grind 5,6 5  128 
n_polish 1,2 1 2<n_polish*shift_polish  
shift_polish 2,3 3 n_polish*shift_polish<5 256 
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To save the optimizer time and effort, the suggested values 
were set in accordance with the best found from the single run 
experiment. The simulation-run length for this experiment was 
25 days, with an additional warm-up period of 3 days. The 
objective function profit was computed from the final 25 days 
of each 28 day evaluation.  

Table VII summarises the results of this experiment. This 
table also contains the standard deviation and 95% confidence 
interval of each 5 replications.  

On average, over five replications, the first result in 
Table VI is the best - however the first 11 results are very 
close together. Therefore, the average busy time of all 
workplaces is tracked. Note that the standard deviation for the 
third result is lower and hence, this result should be more 
consistent. The 95% confidence interval and the average value 
of workplace utilization confirm this hypothesis. Therefore, 
the third result can be chosen as the optimal solution for our 
system.

TABLE VII: RESULTS FOR EXPERIMENT WITH 5 REPLICATIONS USING HILL CLIMB ALGORITHM (28 DAYS SIMULATION TIME)  

M
od
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 n
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r 
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al
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tio

n 

Profit 
[Euro] 

Standard 
deviation 

95% confidence 
interval 

Average busy 
time [%] n_

dr
ill

 

sh
ift_

co
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ter
sin

k 

n_
fis

ch
er

 

sh
ift
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is

ch
er

 

n_
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18
 

n_
lib
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ty

 

n_
gr

in
d 

n_
po
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h 

sh
ift

_p
ol

is
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1 9 555987 1450 554185 - 557789 80.84 2 1 2 2 7 5 5 2 2 
2 7 555469 4272 550158 - 560780 82.87 2 1 2 2 7 5 5 1 3 
3 6 555076 308 554693 - 555459 83.48 2 1 3 2 7 5 5 1 3 
4 2 554744 1320 553103 - 556385 81.68 2 1 3 2 6 5 5 1 3 
5 15 553917 131 553753 - 554080 81.57 2 1 2 3 7 5 5 2 2
6 26 553734 148 553549 - 553918 81.34 2 1 3 2 7 5 5 2 2 
7 11 553630 1545 551709 - 555550 79.64 2 1 2 2 7 6 5 2 2 
8 3 553222 1649 551172 - 555272 80.34 2 1 3 2 6 5 6 1 3 
9 4 552884 2126 550240 - 555527 79.37 2 1 3 2 6 5 5 2 2 
10 12 551577 6216 543850 - 559305 76.82 2 2 2 2 7 5 5 2 2 
11 10 547083 14643 528878 - 565288 78.93 2 1 2 2 7 5 6 2 2 
12 13 518962 20291 493735 - 544188 77.40 2 1 2 2 6 5 5 2 2 
13 0 518424 22490 490463 - 546385 79.17 2 1 2 2 6 5 5 1 3 
14 1 510833 23143 482060 - 539606 74.82 2 2 2 2 6 5 5 1 3 

               
VII. RESULTS FOR ADAPTIVE THERMOSTATISTICAL SA 

ALGORITHM 
The optimization experiments using the Adaptive 

Thermostatistical Simulated Annealing algorithm were carried 
out in a similar manner as with the previous algorithm. The 
Simulated Annealing (SA) Settings dialog in Witness 
Optimizer enables one to also set the maximum number of 
evaluations and the number of consecutive evaluations 
without any improvement in the best result found, after which 
the optimization run stops. The values of these parameters 
were set to 120 and 40. For this algorithm it is possible to set 
other parameters for the optimization. The setting dialog 
enables one to check the Split large variables box that 
specifies whether large contiguous variable ranges are split 
automatically into smaller ranges of a maximum of 10 values. 
Another parameter for the algorithm entitled Schedule 
Parameters can be calculated automatically or entered 
manually. The Schedule Parameters should only be set 
manually by users who understand the process of SA. This 
area enables one to define the values for the cooling schedule 
and for the adaptive search. For the cooling schedule, it is 
possible to define Initial Temperature in the simulated 

annealing, Cooling Rate (the multiplier used to reduce the 
temperature at each temperature step) and Cooling Steps (the 
number of times to reduce the temperature during the 
optimization run). The Adaptive Search checkbox controls 
whether the adaptive search method is used during 
optimization. We used automatic settings of these other 
parameters for our experiments. The top results achieved after 
running the optimizer with a single replication using the 
Adaptive Thermostatistical SA algorithm are shown in 
Table VIII. The suggested values of decision variables 
specified in Table IV were reused as starting parameters for 
the optimization procedure. The simulation-run length for the 
initial experiment using this algorithm was 11 days, with an 
additional warm-up period of 3 days. Thus, the objective 
function profit was computed from the final 11 days of each 
14 day evaluation. The optimal result of €230797, indicating a 
marginal profit, was found by the algorithm after 22 
evaluations. Similarly as with the Hill Climb algorithm, the 
analysis of decision variable range was performed according 
to the results shown in Table VIII. The number of decision 
variables was reduced to the same nine parameters as for 
previous algorithm. 
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TABLE VIII: RESULTS FOR EXPERIMENT WITH A SINGLE REPLICATION USING 
THE ADAPTIVE THERMOSTATISTICAL SIMULATED ANNEALING ALGORITHM 

(14 DAYS SIMULATION TIME)  
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22 230797 2 1 1 2 2 6 3 5 2 5 2 3 3 2 2 
20 230133 2 1 2 2 2 6 3 5 2 5 2 3 3 2 2 
4 229753 2 1 1 2 2 7 3 5 2 5 2 3 3 1 3 

17 229100 2 1 1 2 2 7 3 5 2 5 2 3 3 2 2 
0 228646 2 1 1 3 2 7 3 5 2 5 2 3 3 1 3 

18 228581 2 1 2 2 2 7 3 5 2 5 2 3 3 2 2 
24 228472 2 1 1 2 2 6 3 5 2 6 2 3 3 2 2 
14 227955 2 1 1 3 2 7 3 5 2 5 2 3 3 2 2 
2 227874 2 1 2 3 2 7 3 5 2 5 2 3 3 1 3 
8 227595 2 1 1 3 2 7 3 6 2 5 2 3 3 1 3 
5 227072 2 1 1 3 3 7 3 5 2 5 2 3 3 1 3 
9 226962 2 1 1 3 2 7 3 5 2 6 2 3 3 1 3 

40 226344 3 1 1 2 3 7 3 5 2 6 2 3 3 2 2 
33 225191 3 1 1 2 3 6 3 5 2 5 2 3 3 2 2 
36 224980 3 1 1 2 3 6 3 6 2 5 2 3 3 2 2 
39 224215 3 1 1 2 3 6 3 5 2 6 2 3 3 2 2 
6 224092 2 1 1 3 2 6 3 5 2 5 2 3 3 1 3 

27 223211 3 1 1 2 2 6 3 5 2 5 2 3 3 2 2 
25 222388 3 1 1 2 2 6 3 5 2 6 2 3 3 2 2 

 

TABLE IX: LIST OF REDUCED RANGE OF DECISION VARIABLES WITH 
CONSTRAINTS  

Variable name Values Suggested 
value 

Constraint Cumulative 
combinations

n_drill 2,3 2  2 
shift_countersink 1,2 1  4 
n_fischer 2,3 2  8 
shift_fischer 2,3 2  16 
n_SV18 6,7 6  32 
n_liberty 5,6 5  64 
n_grind 5,6 5  128 
n_polish 1,2 2 2<n_polish*shift_polish  
shift_polish 2,3 2 n_polish*shift_polish <5 256 

 
The suggested values were set in accordance with the best 

found from the single-run experiment. Note that these values 
are different for variables n_polish and shift_polish as for Hill 
Climb algorithm. The list of reduced number of decision 
variables with constraints and suggested values is shown in 
Table IX. 

For searching for the right solution, the optimizer was run 
with 5 replications of each set of reduced decision parameters. 
The simulation-run length for this experiment was 25 days, 
with an additional warm-up period of 3 days. Thus the 
objective function profit was computed from the final 25 days 
of each 28 day evaluation. The top results of this experiment 
are presented in Table X.  

 
 

TABLE X: RESULTS FOR EXPERIMENT WITH 5 REPLICATIONS USING THE ADAPTIVE THERMOSTATISTICAL SIMULATED ANNEALING ALGORITHM (28 DAYS 
SIMULATION TIME)  
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Standard 
deviation 

95% confidence 
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1 4 557503 285 557149 - 557857 79.63 2 1 2 3 6 5 5 2 2 

2 5 555987 1450 554185 - 557789 80.84 2 1 2 2 7 5 5 2 2 

3 27 553734 148 553549 - 553918 81.34 2 1 3 2 7 5 5 2 2 

4 10 553527 367 553071 - 553984 77.76 2 1 3 3 6 5 5 2 2 
5 3 552884 2126 550240 - 555527 79.37 2 1 3 2 6 5 5 2 2 
6 12 552196 521 551548 - 552843 74.01 2 2 3 3 6 5 5 2 2 

7 21 551741 908 550613 - 552870 81.47 3 1 3 2 7 5 5 2 2 

8 26 550948 666 550121 - 551776 80.07 2 1 3 2 7 6 5 2 2 

9 28 550661 1143 549240 - 552082 79.39 2 1 3 2 7 5 6 2 2 
10 24 549267 835 548228 - 550305 80.08 3 1 3 2 7 6 5 2 2 

11 22 549005 814 547993 - 550017 80.08 3 1 3 2 7 5 6 2 2 

12 13 548867 135 548700 - 549035 75.66 2 2 3 3 7 5 5 2 2 

13 17 548616 137 548446 - 548787 79.22 3 1 3 3 7 5 5 2 2 
14 46 548018 751 547084 - 548952 78.35 2 1 3 2 7 6 6 2 2 
15 15 547491 145 547311  547672 78.04 2 1 3 3 7 6 5 2 2 

16 40 546480 812 545471  547489 79.04 3 1 3 2 7 6 6 2 2 

17 14 546268 137 546098  546438 74.25 2 2 3 3 7 6 5 2 2 

18 16 545998 136 545830  546167 77.88 3 1 3 3 7 6 5 2 2 
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It can be seen that the objective function values (profit) of 
all displayed results are very close together. Therefore, this 
table also contains apart from the standard deviation and 95% 
confidence interval of each 5 replications, the average busy 
time of all workplaces. These parameters helped us to choose 
the right solution for our system.  

Due to very close results achieved using the Adaptive 
Thermostatistical Simulated Annealing algorithm and values 
of average busy time, it is very difficult to choose the right 
(optimal) result. The first 3 results can be the right solution 
therefore the detail analysis of these results was carried out in 
the next section 

VIII. SUMMARY AND EVALUATION OF THE RESULTS 
Due to ambiguity of previous results it was necessary to 

carry out a more detailed analysis of the proposed solution. 
Therefore, another experiment with 4 proposed models was 
performed. The model No. 3 proposed according to Hill 
Climb algorithm and the first three models proposed 
according to the Thermostatistical SA algorithm are chosen to 
detailed analysis. The simulation-run length for this 
experiment was 6 weeks - which means 39 days, with an 
additional warm-up period of 3 days. The simulation 
experiment was run with 5 replications. Apart from the profit 

variable, the other parameters of the investigated process are 
tracked. The values of these parameters were computed from 
the final 39 days.  

The results of this experiment for suggested models are 
presented in Table XI. It can be seen that it is not possible to 
suggest models B and C as optimal solution. The production 
line modelled through these models is going to be blocked and 
saturated. The values of Average busy time and Average 
blocked time confirm this fact. The full buffers before the 
high-usage machines were the cause of this problem. This 
blocked production system produces a limited number of 
products and subsequently, the values of the profit and 
production costs parameters are affected. In contrast, model A 
and model D achieve very good results. The results for both 
models are very close to each other. Therefore, it is possible to 
choose model A or model D as the right (optimal) solution for 
our production line.  

The detailed settings and simulation results for these 
models are shown in Table XII. If we had to select only one 
model, we would have to choose the model A which provided 
a little bit better result anyway.  

 
TABLE XI: RESULTS FOR EXPERIMENT WITH 4 SUGGESTED MODELS (5 REPLICATIONS, 42 DAYS SIMULATION TIME)  

Tracked parameters Model A 

proposed according to 
 the Hill Climb  

algorithm 
 (the 3rd result) 

Model B 

proposed according to 
 the Adaptive 

Thermostatistical SA 
algorithm  

(the 1st result) 

Model C 

proposed according to 
 the Adaptive 

Thermostatistical SA 
algorithm 

 (the 2nd result) 

Model D 

proposed according to 
 the Adaptive 

Thermostatistical SA 
algorithm 

 (the 3rd result) 

Evaluation 6 4 5 27 

Profit [Euro] 881731 644019 533282 879629 

Standard deviation of profit  322 22909 13595 334 

95% confidence 
interval of profit  881331-882132 615537-672501 516379-550184 879213-880045 

Average busy time of 
workplaces [%] 83.14 60.77 54.09 80.97 

Average blocked time of 
workplaces [%] 0.41 9.01 11.55 0.45 

Necessary staff  75 73 74 76 

Total production  
(39 days period) 69779 53425 46112 69782 

Production costs  
per part 2.36 2.95 3.436 2.39 
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TABLE XII. REPORT ON RESULTS OF TWO OF THE BEST MODELS  

Workplace M  o  d  e  l     A M  o  d  e  l     D 
Number of 
machines 

Number  
of shifts 

Busy 
Time [%] 

Blocked Time 
[%] 

Number of 
machines 

Number  
of shifts 

Busy 
Time [%] 

Blocked Time 
[%] 

Drilling 3 2 96.99 0 3 2 96.99 0 

Countersinking 1 2 86.96 0 1 2 86.96 0 

Turning-Lathe  Fischer 3 2 69.05 0.24 3 2 68.96 0.04 

Turning-Lathe  SV 18 7 2 93.87 2.19 7 2 93.9 2.38 

Turning-Lathe  Liberty 6 2 95.22 1.59 6 2 95.12 1.76 

Honing 2 2 77.81 0 2 2 77.67 0 

Forging 2 3 95.32 0 2 3 95.13 0 

Grinding 6 2 96.91 0 6 2 97 0 

Turning-Lathe  chambers 3 2 97.03 0 3 2 97.01 0 

Polishing chambers 2 2 90.01 0 2 2 66.38 0 

Manual treatment 9 1 16.15 0 9 1 16.15 0 

         
 

IX. CONCLUSIONS 
This paper presents the possibilities afforded by using 

computer simulation optimization for the design, optimisation 
and identification of reserves in production system. The aim 
was to propose an optimal solution for an increase of the 
productivity of the production system. Using the concrete 
example of an assembly line for short-barrels for pistols, the 
utility of the Witness simulation environment and especially 
of the Witness Optimizer has been demonstrated for searching 
for the optimal solution for this production process.  

The optimization problem lies in the correct determination 
of an adequate number of machines in individual workplaces - 
or possibly, to set up an appropriate number of working shifts 
of these workplaces. This optimization case study is based on 
results and conclusions presented in [14]. These results, 
achieved and based upon an experimental approach, were 
verified by using of objective optimization method which the 
Witness Optimizer package offers. We have used the Hill 
Climb optimization algorithms. Our optimization problem (i.e. 
optimal settings of mentioned system) consists of maximizing 
a real objective function. The objective function calculates the 
marginal profit by subtracting the operational costs and staff 
costs from the marginal revenue received from selling the 
products. The solution rested upon the elimination of the 
number of machines in selected work-stations. In other 
workstations, it was suggested that they reduce - or as the case 
may be, increase the number of operational shifts.  

The proposed solution leads not only to increases in 
productivity but also to savings in staff and production costs 
(namely energy). Subsequently, these savings and increased 
production dramatically affect the total marginal profit of the 
company. In our case it is possible to reach up to 25 times 
profit increase. 

In terms of this case study, it is possible to say that 
simulation optimization is a very difficult field of research that 
has the potential of having a considerable impact on the 

practice - and particularly, when computers become 
significantly faster. Therefore, at present, every commercial 
simulation software programme contains a package that 
performs some sort of optimization.  
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