

Abstract—The paper aims at gathering information about attacks

from real internet infrastructure and their analysis. For this purpose,

we prepared a set of honeypots monitoring various aspects of

nowadays VoIP infrastructure, from emulating an end point device

through SIP proxy to SSH terminal emulation. All these application

called honeypots bring valuable data about hacker’s activity with no

threat to the running system. Grouping single honeypots in one cloud

solution enables to gather more data on hacker activities and to

provide results with higher information value. Analysis of a honeypot

data is crucial for further improvement of existing security

mechanisms in VoIP networks. The paper describes each honeypot

used, brings an analysis of observed malicious activity and a design

of the honeypot cloud concept.

Keywords—Dionaea, Honeypot network, Kippo, VoIP attacks,

VoIP honeypot

I. INTRODUCTION

HE paper describes the use of honeypots in a VoIP

infrastructure. These systems become increasingly

necessary as the number of IP-based telephony solutions rises.

Nearly all large companies today rely on some kind of IP

telephony in their internal communication. This situation only

induces greater hacker interest in these services. Nowadays,

many companies have experienced abuse such as social

engineering or SPIT (Spam over Internet Telephony) calls.

The way to protect this infrastructure is to keep up with

hackers and constantly improve security mechanisms. But

achieving this simple goal is not easy at all. The basic rule is to

keep all systems and their versions up to date, with at least

access policies properly set and encryption of all crucial data.

But this is not always possible in VoIP systems. The question

is how do we find the system’s bottleneck? There is an option

in security audit of whole VoIP network or using some

penetration testing software [2]. Other way is in monitoring of

malicious traffic with honeypots.

M. Voznak is an associate professor with Dpt. of Telecommunications,

Technical University of Ostrava and he is also a researcher with Dpt. of

Multimedia in CESNET (association of Czech universities and Czech

Academy of Sciences), Zikova 4, 160 00 Prague 6, Czech Republic

(corresponding author provides phone: +420- 603565965; e-mail: voznak@

ieee.org).

J. Safarik is a PhD. student with Dpt. of Telecommunications, Technical

University of Ostrava and he is also a researcher with Dpt. of Multimedia in

CESNET, Czech Republic (e-mail: kuba.safarik@gmail.com).

F. Rezac is an assisstant professor with Dpt. of Telecommunications,

Technical University of Ostrava and he is also a researcher with Dpt. of

Multimedia in CESNET, Czech Republic (e-mail: filip@cesnet.cz).

Honeypots lure hackers through exposed security holes or

vulnerabilities while emulating target services. Using

honeypots we obtain real data about hacker activities and map

actual attacks in the network, which is otherwise not possible

[1], [3] and [4].

II. STATE OF THE ART

The main purpose of a honeypot is to simulate the real

system and interact with anyone in the same way as the

production system would. It watches the behaviour of anyone

who interacts with it [5]. This article provides a close look on

individual honeypot applications and its integration in

honeypot cloud solution.

Most important parts of honeypot image are honeypot

application, which log and monitor malicious activity.

Nowadays exists many honeypot solutions emulating both

single and multiple services. Because of our focus on IP

telephony we decide to deploy VoIP oriented honeypots. Each

honeypot emulates different aspects of VoIP network, its

features are described below.

A. Artemisa features

An Artemisa honeypot can be deployed in any VoIP

infrastructure which uses a SIP protocol. In this infrastructure

it plays a role of a regular SIP phone represented by the VoIP

Honeypot application installed on PC, the situation is depicted

on Fig. 1. The application connects to SIP proxy with the

extensions defined in a configuration file. The extensions

should be within the range which is typically used for real

accounts. The main purpose is to establish a better masking

against the potential attackers. Artemisa itself does not

simulate PBX but rather an active end point device.

Once the call is established on one of Artemisa extensions,

the honeypot simply answers the call. At the same time, it

starts to examine the incoming SIP message. Artemisa then

classifies the call and saves the result for a further review by

the security administrator, the situation is depicted on Fig. 2.

The message is classified in the following steps. First of all,

Artemisa looks for fingerprints of well-known attack tools. If

the attacker uses some popular hacking tool, the fingerprint of

this tool can easily reveal the malicious intentions. Then it

checks domain names and SIP ports on the attacker side

(provided they are really opened). There is also a similar check

for media ports. Requested URI are also checked, as well as

the ACK message received from the user. Finally, Artemisa

checks the received RTP stream – provided a RTP stream was

Threat Prevention and Intrusion Detection

in VoIP Infrastructures

Miroslav Voznak, Jakub Safarik, Filip Rezac

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 69

established (the audio trail of the received call can be stored in

a WAV format).

Fig. 1 A VoIP topology with a honeypot

This sequence of procedures helps Artemisa to classify the

call. The result is then shown in a console. The results can be

saved into a pre-defined folder or they can be sent as a

notification by e-mail.

Fig. 2 An example of the output file

Once the call has been examined, series of bash scripts are

executed. These scripts are executed with pre-defined

arguments. Artemisa can launch some countermeasures against

the incoming attacks.

B. Kippo features

The second used honeypot is based on different foundations.

It is not VoIP oriented as Artemisa. It simulates a SSH server.

When someone tries to connect to a server with a honeypot

running on it, the twistd application redirects this user to the

honeypot. This happens where the user IP address is not

included in the list of permitted IP address. Once the

connection with the honeypot is established, the attacker must

enter correct username and password. These are set to the most

used username root and password is the second most common

combination of numbers 123456, Table I lists Top 10 most

frequently used passwords. Other combinations for the root

access can be added to data/pass.db file.
Kippo logs every login attempt. Where the entered

combination is valid, the intruder is granted access to a fake

filesystem. Every command entered into the honeypot is

logged and behaviour typical for a particular command is

emulated (for the most common commands only). If the user

tries to download something from the Internet, Kippo saves

this file into a secure folder for further examination.

All logs made by Kippo are saved in a MySQL database which

facilitates the subsequent analysis.

C. Dionaea features

All previously mentioned honeypots were single service

oriented ones. Dionaea belongs to a multi-service oriented

honeypot which can simulate many services at a time.

Typically are information from these multiple services only

general but dionaea serves only small number of them like

SMB (Microsoft’s printers, files, serial ports sharing protocol),

HTTP, FTP, TFTP, MSSQL (Microsoft SQL server), SIP

protocols. Attackers abuse these protocols in most cases.

Dionaea has also ability to save malicious content needed by

hackers securely, but as a contrary to Kippo can also emulate

code from these files.

Describing features of all this protocols is beyond the scope

of this article and further features focus only on the SIP

protocol. Dionaea works in a different way as Artemisa. There

is no need for connecting to an external (or production) VoIP

server. It simply waits for any SIP message and tries to answer

it. It supports all SIP requests from RFC 3261 (REGISTER,

INVITE, ACK, CANCEL, BYE, OPTIONS). Dionaea

supports multiple SIP sessions and RTP audio streams (data

from stream can be recorded). For better simulation of a real

IP telephony system, it is possible to configure different user

agent phone mimics with custom username, password

combinations. There is functionality for a different pickup time

on simulated phones via pickup delay feature. All traffic is

monitored, and logs are saved in plain-text files and in SQLite

database.

III. DESIGNED HONEYPOT NETWORK CONCEPT

Running individual honeypot application on a single server

brings valuable information. Exceeding numbers of running

honeypots, especially if running in different networks on

various geographic locations, causes unwanted overhead in

data analysis. Without an automatic aggregation mechanism,

this situation leads to decreasing profit from honeypot’s data.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 70

Fig. 3 Honeypot network concept

Fig. 3 illustrates a honeypot cloud concept with centralized

point for data analysis. Whole concept is based on prepared

honeypot image. The image can run on virtual or physical

machine, and there is no need in installing software or

configuration of the server. This image contains all software

needed for correct honeypot functionality, data pump and

client application for communication with server. Deployment

of this honeypot image should be as easy as possible.

Data from all honeypot images pass through data pump and

cleaning function. Clients send the prepared data to server

application via encrypted SSH tunnels as is depicted on Fig. 3.

Centralized server provides a data store for all honeypots data

and esnures a monitoring all running honeypot images. Server

side application transforms and integrates data from client to

the data store. Results are available via web interface for

further analysis and the security improvements. This

architecture provides unified honeypots images with easy

scalability for other honeypot modules. We focused our intent

only on VoIP infrastructure but honeypot images can contain

various honeypots or different honeypots in each image

connected to the only one server. This solution gives us

flexible platform for independent observation and evaluation

of real threats.

IV. HONEYPOT USABILITY TESTS

A. Artemisa’s usability tests

As mentioned before, Artemisa investigates all traffic which

is routed to its extensions. That’s not the whole truth. Artemisa

can run in three different modes depending on the settings in

the behavior.conf file. These modes are called passive, active

and aggressive. In the passive mode, Artemisa only takes the

incoming calls and answers them. Using the active mode, we

can achieve the same functionality as in the passive mode. In

addition, Artemisa starts to examine the incoming SIP

messages as described above. The last mode – the aggressive

mode – attacks the intruder with its own bash script (the scripts

are located under the /scripts directory). Typically, we run

Artemisa is the active mode so that all SIP messages routed to

the honeypot are analysed.

Fig. 4 Artemisa testing topology

To test the usefulness of an Artemisa honeypot, we prepared

some tests in our testing topology as is depicted on Fig. 4. We

built a simple VoIP network with Asterisk running as PBX and

some end-point hardware and software phones. The honeypot

was installed on a machine inside our network with five

extensions. These extensions were running in the active mode.

Since we are developing our own IPS (Intrusion prevention

system), we have chosen to test the honeypot under test

scenarios similar to that IPS system.

First of all, we should start scanning the whole network

from the point of view of a typical intruder. Many applications

can be used for this purpose. We used two such applications –

nmap and SIPVicious.

Both these applications yielded useful information. Yet

neither nmap nor svmap was detected by the honeypot. In case

of svmap there was information about the incoming SIP

message, but this message was not analysed. No results were

created after the network was scanned. This behaviour was

quite surprising as typically, each attack starts by scanning the

network. Artemisa should take account of such situations. With

svmap we know about the running user-agent at honeypot’s IP

address as is listed below.

158.196.244.241:5060 | Twinkle/1.4.2 |

T-Com Speedport W500V / Firmware v1.37

MxSF/v3.2.6.26

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 71

Using this information we began looking for extensions

running in the testing network. Direct scanning of the SIP

proxy server was not detected by the honeypot, but when we

use the svwar tool directly against the IP address on which a

honeypot is running, we get information about all active

extensions. This scan was recognized by the honeypot and an

adequate result file has been created. Artemisa correctly

concludes that messages received came from a SIPVicious

scanner. On the other hand we know from the SIPVicious

output that these extensions do not behave as normal clients.

This can stir up more caution on the side of the intruder.

The aim of other attacks was to flood the client´s device

with various types of SIP messages. Using some of these

attacks, the intruder can achieve a DoS attack on a closed

group of end-point devices [7], [9]. For this kind of attack we

used a number of tools including udpflood, rtpflood,

inviteflood and sipp [7], [10].

Each of these applications can launch a simple DoS attack.

As Artemisa is a mere VoIP honeypot, it only detects attacks

using the SIP protocol. Accordingly, only flood attacks from

inviteflood and sipp were detected [6]. In case of inviteflood,

the application was successfully recognized thanks to its well-

known fingerprint.

The Sipp application was not designed for hacking or

penetration testing but this functionality can be achieved

easily. We used specific call scenarios with a similar impact as

the above mentioned flooding tools. Using sipp we can

generate a high number of SIP messages which was

immediately detected as a flood attack by the honeypot. In this

situation, the whole honeypot stopped responding shortly and

no result was recorded for the attack at all, mere 250 SIP

messages per second caused this situation. If we use lower

sending rates, the attack was recognized well and the output

file was successfully created.

Identifying a SPIT call is one of the most important features

of the honeypot. We used application called SPITFILE for

simulating these calls [8]. SPITFILE is an open-source SIP

penetration tool which we developed for purposes of research

and development of new protection alogorithms against spam

in IP telephony. SPITFFILE puts much emphasis on the

simplicity of using and generating SPIT attacks. SPITFILE

was programmed in Python using wxPython GUI and the

objective of the designed application is to generate phone calls

and to replay a pre-recorded voice message. We adopted the

SIPp application which focuses on testing and simulating SIP

calls in VoIP infrastructure. SIPp is a open-source test tool or

traffic generator for the SIP protocol and can read custom

XML scenario files describing from very simple to complex

call flows and also send media traffic through RTP [11], [12].

SPITFILE implements a graphic interface for SIPp and works

with ready-made .xml diagrams. Thus, the simulation of a

SPIT attack is much simpler.

Its control is very intuitive – the requested values are

submitted into relevant fields and the SPIT attack is launched

by clicking the SEND button. SPITFILE is available both for

Linux and for MS Windows. SPITFILE can generate spam in

two modes.

 Direct mode, it generates SPIT on IP phone directly

without using a SIP Proxy.

 Proxy mode, it generates SPIT via SIP Proxy and

thereupon can run against anything that is available

behind the Proxy, theoretically involving not only IP

phones but also ordinary phones and the whole

telephone world. The proxy mode's menu is depicted

on Fig. 5.

Fig. 5 SPITFILE interface in proxy mode

Before SPITFILE can be opened, preconfigured .xml

diagrams should be imported into /etc/ directory. Afterwards

we can launch SPITFILE and choose one of the two above

mentioned attacks that we want to carry out. To run

SPITFILE, just type the following command to the terminal:

python <location of the SPITFILE.py file>.

Using this tool, we can easily generate arbitrary calls. All of

these calls were successfully detected by Artemisa and the

appropriate output files were generated.

At last we tried to make a call to the honeypot extensions

with hardware and software phone. Calls were marked as a

scanning and a ringing attack in both cases. So it seems that

Artemisa evaluated almost every SIP message aiming at its

extensions as some kind of attack.

The results from the detected attacks are stored in the

results/directory inside the Artemisa folder. The output is in a

simple text format and in html format, both of them containing

the same data. All functionalities mentioned before concern

honeypots running in the active mode. The aggressive mode

looks more interesting with its ability to counterattack the

intruder. Artemisa contains three bash scripts to stop malicious

activity. However, a close look at these scripts was surprising.

Let’s start with the last script on_spit.sh. Inside this script,

there is only one comment. This comment may activate a

firewall rule, but the command is not included. This script is

totally useless unless we rewrite it. Even the remaining scripts

do not contain anything but comments inside. A simple

condition (commented) is included in the on_scanning.sh

script, which runs a python script to crash the scanning by the

SIPVicious application (but only this particular application).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 72

The on_flood.sh script has a commented command inside to

apply an IPtables rule on the IP address and port. These are

given by a parameter. This solution is not bad but if we want to

block some traffic, there is a chance that a false positive attack

will be blocked, so some automatic recovery mechanism

should also be included. This can be easily solved by adding

another script. This script will remove the rule after a certain

interval. The main issue in blocking traffic using IPtables is

that the command applies the rule on a local machine.

However, it only blocks the consequences on the honeypot, not

on the main firewall which protects the whole infrastructure.

This feature makes the aggressive mode useless against the

attack of any intruder.

Using the honeypot in the passive mode is worthless because

Artemisa only answers the call with no further analysis and

without results being saved to a file.

B. Kippo data analysis

We use a Kippo honeypot to analyse SSH traffic in a real

network with seven active monitoring sensors. The honeypot

has been active and gathering data for a month. During this

period, 873342 connection attempts were observed.

Only a small part of these connections was successful. Table

1 lists ten most frequently used password combinations

enabling connections.

TABLE I

10 MOST FREQUENTLY USED PASSWORD COMBINATIONS

Password count

 28146

123456 17625

password 6325

1234 5663

12345 5501

123 5342

1qa2ws3ed 5278

a 5121

test 4743

qwerty 4601

As we can see from the table, password 123456 was used

17625 times. The correct username root was used only in 2551

cases. These 2551 cases led to a connection to a fake

filesystem. An intruder then typically uploads some kind of

a script which should be used for a DoS attack on an outside

server. The in-depth analysis of the attacker’s input is beyond

the scope of this article.

Another interesting information acquired from the honeypot is

the approximate location of the origin of the attacker’s

connection as is depicted on Fig. 6.

The Fig. 6 shows only the first ten positions. Attacks from

Germany account for 25.21% of the total connection attempts.

China came second with 20.33% and Mongolia third with

15.52%. Almost 75% of connection attempts were made from

one of the first four countries.

Fig. 6 Country of origin for logging attempts

As mentioned above, we have seven different sensors. With

nearly a million attempts, each sensor was tested every 23

seconds.

C. Dionaea data analysis

Dionaea was monitoring malicious traffic for 18 days. Number

of attack is not as high as in Kippo case but still high enough.

Distribution of an attacking IP addresses is depicted on Fig. 7.

Figure 7: Hits on attacker IP address

Most attacking attempts come from Israel, first peak in Fig.

7 with IP address 37.8.54.135. The second most used IP was

originated in Germany and third in Russia.

TABLE II

SIP MESSAGES TYPES ANALYSIS

SIP message Groups Count Ratio

ACK 40 303 7,575

BYE 4 4 1,000

CANCEL 1 11 11

INVITE 18 85 4,722

OPTIONS 76 76 1,000

REGISTER 28 1745
62,32

1

Dionaea provides also additional information about attacks

like used SIP messages, SIP header information, SDP and RTP

statistics. Interesting is typical attack behaviour based on send

SIP messages. All attacks occur in typical sequences. Table II

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 73

shows gathered SIP message data. In column groups is the

number of SIP message’s grouped by different connections.

One connection is a single session with emulated honeypot’s

SIP proxy. Ratio simply illustrates average number of

messages in each connection group.

Most of observed attacks can be divided into 2 groups. First

represents various types of a PBX scanning & probing.

Attackers send OPTION message and wait for a response or

simply try to place a call with immediate cancelation, (it means

INVITE message followed by CANCEL message.

Other group represents flood attacks. Our previous tests

confirmed an extraordinary vulnerability of SIP proxy against

OPTIONS floods, but attackers still use only REGISTER

message flooding.

At last we observed several attacks which could not be

simply classified into groups or generally categorized.

V. CLIENT STRUCTURE

Client part of our honeypot image consists of several

components, the crucial part is a honeypot application. The

presented usability tests in previous chapter demonstrate pros

and cons of selected applications. In order to prepare efficient

tool we decided to include two honeypots in final image,

Dionaea and Kippo. Artemisa is not included for several

factors. Most limiting is the necessity of running existing PBX.

Artemisa itself only emulates an end-point device and without

PBX is not able to work. Preparing a special PBX on the

image only for Artemisa honeypot is counterproductive.

Dionaea comprises also ability to answer INVITE messages

therefore the part of call investigation is not affected.

Information about attacks from Artemisa are only general and

our testbed proved their low usability. Last flaw of Artemisa is

a lack of database support. All malicious traffic information

are in plain-text formatted files, no connectors to databases

exist and we would have to start from scratch. The final

structure of client is illustrated in Fig. 8.

Both Dionaea and Kippo support logging information into a

database. Each application uses a different type of database

and different database scheme. There is a data pump for data

mining and information are gathered from both databases. The

data pump is based JDBC connector (Java Database

Connectivity) and data are also cleaned and checked for errors.

Communication with server handles another part of

application which we developed for honeypot image. Whole

communication between client and server application is

encrypted via SSH tunnelling. This feature also brings a

possibility to easily authenticate client nodes with certificates.

SSH is a good way for ensuring secure communication without

a necessity of developing a new protocol or handling an

encryption and an authentication for the particular purpose

[13].

Data gathered through data pump are converted into

serialized objects. These objects are periodically sent to server

for further operations and analysis. The honeypot client

includes so-called dead man switch mechanism. With this

functionality is possible to monitor honeypot status easily and

there is no necessity of developing a specialized monitoring

application. Clients send a simple UDP packet to server each 5

minutes, the dispached information are checked on server by

timers which are individually configurable for each image.

Fig. 8 Honeypot image – client structure

The server identifies a non-active honeypot after three

undelivered messages and creates a system warning which is

reported in standard log file and eventually an administrator is

notified by e-mail as well.

All honeypot images are prepared for final deployment.

There is already configured firewall allowing only traffic

specific for each honeypot application and internal client

communication with server. The image contains also automatic

NTP (Network time protocol) checking mechanism for the

proper time settings. It is possible to administrate the client

images through SSH with proper certificate but there is almost

no reason for this action except for initial settings. This

connection is active only 10 minutes after image boot and can

be reopened from the server application.

VI. SERVER STRUCTURE

Some features of server side applications were already

described in the previous section. Server’s main task is

collection of received data and their analysis. Due to this

functionality is whole application implemented as a ROLAP

(Relational online analytical processing) and the concept is

depicted on Fig. 9.

Otherwise from a client (honeypot image), server is

considered as enterprise application and not as an image.

Before ROLAP receives data from nodes and stores the data to

database, several last steps are performed. Nodes send already

cleaned and fixed data structures, so ROLAP can proceed to

data transformation and integration according to data store

scheme. All data are divided in two groups – on the

dimensions (date and time, honeypot, locations, …) and the

facts. Data warehouse consists of a star or a constellation

design. Internally run data store on the relational database

MySQL 5.5 release. Built-in aggregation function ensure the

aggregation of all stored data in groups by hours, days, months

and years. This function is implemented for higher

performance of database. The server also comprises a self-

monitoring mechanism for logging important information like

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 74

system logins and analysis of actions or failures. System log

contains details information about each honeypot node outage.

Fig. 9 Server side application structure

Each honeypot node must be activated and authorized

before establishing a full connection between server and client.

Node authentication is included in SSH tunnel assembly, and

there is no other mechanism. After successful authentication

and authorization start client periodical notification and data

transfers. The gathered data from honeypot node are sent

periodically each day. Server operates with data which are

only one day old in the worst case. It is possible to change this

interval to a minimum period of an hour. System contains a

deactivation function for case of removing honeypot.

Fig. 10 Web user interface – main screen

Each attack detected on any honeypot is checked for source

location. This feature works via IP address localization.

System automatically downloads lists of IP address range for

all states. Final file runs through parsing function and the

system operates with information from RIR (regional Internet

registry) databases only one day old. Using IP address

localization brings another information value to already

collected information.

Whole system is controlled via built-in web user interface

running on secured HTTPS protocol. Access to the system is

protected with user accounts, in the future is planned

implementation of other login options using Shibboleth or

OpenID. A wireframe of web user interface, after user login, is

shown in following Fig. 10.

The design of the interface is involved as an intuitive for

users enabling various data analysis. The data analysis

functions are based on user input and illustrated in Fig. 11.

The displayed information can be exported in a single CSV

(Comma-separated values) format file for even further analysis

with an advanced statistical or mathematical software.

Fig. 11 Data analysis of collected data from honeypots

We would like to import a MATLAB feature in a future

version for better and deeper analysis with advanced functions.

Last part of server side architecture is a VoIP attack

classification engine. The performed experiments with

Dionaea proved the existence of several attack groups. These

groups are essential in classification of threats. The Most

harmful type of observed attacks is DoS on application layer

which are based on flooding with SIP messages, these floods

can be easily carried out and mostly result in a depletion of

sources at victim side. Other group of attacks is scanning,

probing, ringing and SPIT calls. The attacks are grouped

according to SIP sessions and source IP addresses.

Classification is based on types, numbers and ratio of received

SIP messages.

VII. CONCLUSION

All experiments with honeypots which were carried out in

our testebed gave us a solid look on its features. The main goal

of our work is to design VoIP honeypot cloud and to

contribute to the improvement of security in IP telephony. In

order to realize our aim we examined functionalities several

existing honeypots, after that we analysed gathered data which

we could exploit for security improvements, finally we

designed our honeypot network concept.

The testbed revealed that Artemisa is not the silver bullet

solution for discovering all security threats. Its main

disadvantage is that it does not recognize a scanning attempt

into the infrastructure. It is freezing while analysing a flooding

attack by the sipp application was also quite surprising. It was

a result of the flooding at higher rates. Accordingly, Artemisa

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 75

can not handle such a big mass of SIP messages.

The default Artemisa mode is the active mode for call

inspection, the mode is configurable and we recommend the

agressive mode to exploit all possibilities. Artemisa honeypot

is not a simulation of PBX, but rather of an endpoint device.

Despite the fact that it freezes at high flooding rates, its

principal utility is to detect suspicious call activity and SPIT

attacks. Similar functionality includes also Dionaea honeypot

without typical Artemisa flaws. Reasons for not including

Artemisa into final image are discussed in foregoing section.

SSH honeypot Kippo gives us a good idea about connection

attempts on a standard SSH port. The information acquired

were used to gain a better understanding of the attacker’s

behaviour, the collected data represent a valuable source of

malicious IP addresses. The database containing the used

username and password combinations is also very interesting.

After some time, the rate of connection attempts decreases, it

happens once if the honeypot has been discovered. Dionaea

honeypot is great in simulating a SIP proxy. The data gathered

show real attacks and gave us valuable feedback for improving

existing security mechanisms. Quite surprising was flooding

attacks using only REGISTER messages. We found no

relations between IP addresses used for attacks on

both Kippo and Dionaea.

Our previous research was focused on creating an open-

source IPS to protect VoIP PBX. Using honeypots to gather

information about hacker’s actions was extremely helpful.

Now we orient our further research on creation of a honeypot

network which should gather information on various locations.

All this information would be stored in one data store for the

following analysis and other improvement of security

mechanisms. Whole honeypot network concept is based on

centralized architecture with modular design, providing a

flexible platform for monitoring attacks not only for IP

telephony infrastructure. Future possibilities of honeypot data

analysis lie in involving a distributed system for

communication with IPS systems and immediate reaction on

attacks on one system to improving security against detected

attacks on other connected systems. This automatic defence

mechanism should detect real threats and raise security in

systems without malicious activity proactively.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education

of the Czech Republic within the project LM2010005.

REFERENCES

[1] N. Provos, T. Holz, Virtual honeypots, Addison-Wesley Professional,

2007.

[2] M. Voznak, F. Rezac, "Web-based IP telephony penetration system

evaluating level of protection from attacks and threats," WSEAS

Transactions on Communications, Volume 10, Issue 2, February 2011,

pp. 66-76.

[3] N. Quynh, Y. Takefuji, "A Novel Stealthy Data Capture Tool for

Honeypot System," WSEAS TRANSACTIONS on COMPUTERS, Issue

1, Volume 5, 2006, pp 209-215.

[4] R.C. Joshi, A. Sardana , Honeypots: A New Paradigm to Information

Security, Science Publishers, 2011.

[5] L. Spitzner, Honeypots: Tracking Hackers, Addison-Wesley

Proffesional, 2002.

[6] M. Voznak, F. Rezac, "Threats to voice over IP communications

systems," WSEAS Transactions on Computers, Volume 9, Issue 11,

November 2010, pp. 1348-1358.

[7] D. Endler, M. Collier, Hacking Exposed VoIP, McGraw-Hill Osborne

Media, 2009.

[8] M. Voznak, F. Rezac, "VoIP SPAM and a defence against this type of

threat," in Proc. 14th WSEAS International Conference on

Communications, 2010, pp. 172-177.

[9] M. Voznak, J. Safarik, "DoS attacks targeting SIP server and

improvements of robustness," International Journal of Mathematics

and Computers in Simulation, Volume 6, Issue 1, 2012, pp. 177-184.

[10] D. Sisalem, J. Kuthan, T.S. Elhert, F. Fraunhofer, “Denial of Service

Attacks Targeting SIP VoIP Infrastructure: Attack Scenarios and

Prevention Mechanisms.” IEEE Network, 2006.

[11] M. Voznak, J. Rozhon,"SIP infrastructure performance testing," in Proc.

9th WSEAS International Conference on Telecommunications and

Informatics, 2010, pp. 153-158.

[12] M. Voznak, J. Rozhon,"Methodology for SIP infrastructure performance

testing," WSEAS Transactions on Computers, Volume 9, Issue 9,

September 2010, pp. 1012-1021.

[13] W. Yang, R. Jan,"Requirements for security protocols," WSEAS

Transactions on Computers, Volume 5, Issue 7, July 2006, pp. 1576-

1581.

[14] R. Chochelinski, I. Baronak, "Private Telecommunication Network

Based on NGN " in Proc. 32nd International Conference on

Telecommunications and Signal Processing, Dunakiliti, 2009, pp. 162-

167.

Miroslav Voznak is an Associate Professor with Dpt.

of Telecommunications, Technical University of

Ostrava. He is also a researcher with Dpt. of

Multimedia in CESNET (association of Czech

universities and Czech Academy of Sciences). He

received his M.S. and Ph.D. degrees in

telecommunications, dissertation thesis “Voice traffic

optimization with regard to speech quality in network

with VoIP technology” from the Technical University

of Ostrava, in 1995 and 2002, respectively. Topics of his research interests

are Next Generation Networks, IP telephony, speech quality and network

security. He was involved in several FP EU projects.

Filip Rezac was born in 1985 and his M.S. received

from Technical University of Ostrava in 2009. Since

2009, he has continued in PhD. study in Dpt. of

Telecommunications and he gained position of

assistant professor with the same Dpt. in 2010. His

research interests are focused on Voice over IP

technology, Network Security and Speech Quality.

Since 2008, he has become a researcher with Dpt. of

Multimedia in CESNET.

Jakub Safarik received his M.S. degree in

telecommunications from Technical University of

Ostrava, Czech Republic, in 2011 and he continues in

studying Ph.D. degree at the same university. His

research is focused on IP telephony, computer

networks and network security. He has been involved

in the research activities of CESNET association

since 2011.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 7, 2013 76

