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A New Approach to Non-fragiléH ., Fuzzy Filter
of Uncertain Markovian Jump Nonlinear Systems

Wudhichai Assawinchaichote

Abstract—This paper considers the problem of designing a nobtained by “blending” these linear models through nonlinear
fragile Hoo fuzzy filter for uncertain Markovian jump nonlinearfuzzy membership functions. Unlike conventional modelling
systems that the guarantees ig-gain from an exogenous input to Wwhere a single model is used to describe the global behaviour

an estimate error output being less than or equal to a prescribed va L*e t the f delling i tiall i del
Sulfficient conditions for the existence of the., fuzzy filter are given ofa system, the fuzzy modelling IS essentially a muiti-mode

in terms of a set of LMIs. In this paper, the premise variables of tPProach in which simple sub-models (linear models) are
Hoo fuzzy filter are allowed to be different from the premise variablesombined to describe the global behaviour of the system.

of the TS fuzzy model of the plant such that the results are shoxsed on this fuzzy model, a systematic model-based fuzzy
into two cases which are the premise variable of the fuzzy model qsmrd design was developed.
e.

measurable and the premise variable assumed to be unmeasurab R . .
Markovian jump systems, sometimes called hybrid systems

fun}é%"r‘]’ogfz_z y?iﬂgiﬁ%'ﬁﬁ Filtering, Fuzzy systems, Lyapunov yith g state vector, consists of two components; i.e., the state
' ' ' (differential equation) and the mode (Markov process). The
Markovian jump system changes abruptly from one mode to

|. INTRODUCTION another mode caused by some phenomenon such as environ-

ental disturbances, changing subsystem interconnections and
&t variations in the operating point of the system plant. The

. . . itchin ween m i vern Markov pr
due to a great practical importance [1]-[9]. Solutions to tr\ﬁit tching betwee odes is governed by a Markov process

nonlinearH, filtering are characterized in terms of the so h the discrete and finite state space. Over the past few
o . . . . decades, the Markovian jump systems have been extensivel
called Hamilton-Jacobi equation (HJE) in [7]. Until now Jump sy y

however, it is still very difficult to find a global solution studied by many researchers; see [26]-[36]. This is due to the

) . . .~ fact that jumping systems have been a subject of the great

to the HJE either analytically or numerically. The filterin hat JuUmping sy ) ¢
. . ractical importance.

problem can be stated as follows: given a dynamic syst mTh imin thi . dv th bl f desiani
with exogenous input and measured output, design a filter t e aim in this Paper Is t9 study the problem ot designing a
estimate an unmeasured output such that the mapping from r[ﬁhugt or nqn—fraglle fuzzy filter for uncertain Markovian jump
exogenous input to the filter error is minimized or no Iargé}o_nlmear signal processing systems that gua_lranteescihe
than some prescribed level in terms of the, norm. In [4] gain from an exogenous input to a filter error is less or equal
and [5], it has been shown that the existence of solution B a;]presct::bed \]/(alrt:e‘ Baf.sled.on an IaMI. a;()jp_roach, SOI?“O”S
Hoo filtering problem is in fact related to the solvability oft0 the problem of t &1, filtering are derived in terms of a

an appropriate algebraic Riccati equation. This result is th@{n'ly of linear matrix inequalities. In this paper, the premise

extended in [6] to a class of linear systems which are subjectvt%riables of theH., fuzzy filter are allowed to be different

parametric uncertainty. A sufficient condition for the existencféOm the premise variables of the_TS fuzzy model Of. the plant
such that the results are shown into two cases which are the

of a solution is derived also via algebraic Riccati equations: . ble of the f del b bl d th
Recently, a great amount of effort has been made on REMmIse variable of the Tuzzy model be measurable an €

design of fuzzyH . control and filter for a class of nonlinearprem_Ise Va“a'?'e assumed to be unmeasurable_.

systems which can be represented by a Takagi-Sugeno (TSJhiS paper is organized as follows. In Section II, system
fuzzy model; see [10]-[25]. Fuzzy system theory enables us4§Scriptions and definition are presented. Based on an LMI
utilise qualitative, linguistic information about a highly com&PProach, we develop a technique in Section Ill for designing
plex nonlinear system to construct a mathematical model for.non-fragile fuzzyH., filter that guarantees th&,-gain of
Recent studies show that a fuzzy linear model can be usedh§ mapping from the exogenous input noise to the filter error
approximate global behaviours of a highly complex nonline&# less than a prescribed value. The vaI|d|Fy of thls_approgch
system:; see for example, [10]-[25]. In this fuzzy linear model de_monst_rated by an example from thg Iltgrature in Section
local dynamics in different state space regions are represeriédrinally, in Section IV, the conclusion is given.

by local linear systems. The overall model of the system is

I N the last few years, many researchers have studied
Hoo filter design for a general class of linear system
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as follows: where H;,(n), j = 1,2,---,7 are known matrices which
) characterize the structure of the uncertainties. Furthermore,
a(t) = i 1’“1(”@))[[ i(n(t) + AAi(n(t)]= (1) there exists a positive function(n) such that the following
+[B1,(n(t)) + AB1, (n(t)]w(t) inequality holds:
t)) + AB t 0) =0,
+HBa,(1(0) + AB (1O)u(t)], (0 1FG(E),n.8)] < pln). @
2(t) = i pi(v(B)|[Cr(n(t) + ACy, (n())]2(t)
+[Dra, (0(t)) + AD1o, (n(t))]u(t)} I1l. NON-FRAGILE FILTER DESIGN
- This section presents a technique of designing a non-fragile
y(®) = o pa(v(?) [[ (1)) + AC, (n(t))](t) fuzzy filter for a TS fuzzy system with Markovian jumps and
+[Day1, (n(t)) + ADoy, (n(t ))]w(t)} parametric uncertainties. We develop a technique for designing
1) a non-fragile fuzzy filter such that th&,-gain of the mapping
wherev(t) = [v1(t) -+ vy(t)] is the premise variable vectorfrom the exogenous input noise to the estimated error output

that may depend on states in many cage$y(t)) denotes is less than the prescribed value. The proposed design is given
the normalized time-varying fuzzy weighting functions foi" terms of LMIs.

each rule (i.e.u;(v(t)) > 0 and Y7 1/%( ®) = 1), ¥ Without loss of generality, we assumédt) = 0. Let us

is the number of fuzzy sets;(t) € R" is the state vector, "€call the system (1) with(¢) = 0 as follows:

u(t) € R™ is the input,w(t) € R is the disturbance . _ _

which belongs toL,[0, ), y(t) € R¢ is the measurement, i) = Liei {[A (n) + AAi(m)]2(?)

z(t) € R is the controlled output, and the matrix func- +[B1,(n) + ABy, (m)]w(t)|, =(0)=0

tions A;(n(t)), B, (n(t)), Bz, (n(t)), Co(n(t), Co(n(t)), v _ s~ »

Do 1)) Do, ), A, A (n(0) B (), 20 = Tiam|[Cul + A=) 6
AC, (n(t)), ACa, (n(t)), ADia,(n(t)) and ADgy, (n(t)) are y(t) = i1 pi|[C2(n) + AC, ()] (t)

of appropriate dimensions{n(t))} is a continuous-time
discrete-state Markov process taking values in a finiteSset +Dar,(m) + ADzli(n)]w(t)}'

{1,2,---, s} with transition probability matrixPr 2 {Px(t)} The aim is to design a full order dynamii¢., fuzzy filter of

given by the form
Pult) = Pr(nt+A) = kin(t) = 1) B = Tl S s [ Ay 0i(0) + Bilw(0)]
_ { MeA 4+ O(A) if ok } @ ) = S, wCi(0)a(t)
o 1 A A if 1= . . .
FAA+O@R) =k where i(t) € R" is the filter's state vector; € R is the
where A > 0, andlima__.o O(AA) — 0. Here \,, > 0 is the estimate ofz_(t), A;;(v), Bi(x) and C_’i(z) are parameters of
transition rate from mode (system operating mode) to modethe filter which are to be determined, and denotes the
k (1 # k), and normalized time-varying fuzzy weighting functions for each
rule (i.e.,fi; > 0 and)_;_, fi; = 1), such that the following
> e (3) inequality holds
=1,k .
Tf A~ ~
For the convenience of notations, we |et 2 wi(v(t)), E[ 0 {(z(t) g Z(t)) (Z(t) B Z(t)) )
n = n(t), and any matrix/ (u, 1) 2 M (p,m = ). The matrix —72wT(t)w(t)} dt} <0, z(0)=0

functions AA;(n), AB1,(n), ABs,(n), ACL,(n), ACs,(n), i )
AD1s. () and ADQL‘,(U) represent the time-varying uncer- whereE[] stands for the mathematical expectation &nd) —
tainties in the system and satisfy the following assumptmﬁ( %2 ]'S the estimated error output, for &k > 0 andw(?) &
s Lyl
Figure 1 shows the block diagram of a non-fragile fuzzy
filtering problem associated with an uncertain fuzzy system.

Assumption 1. The major implication of this approach is that the structure of

AA;(n) = F(z(t),n,t)Hy, (n), the filter has to take into a account the effect of uncertainty.
The problem addressed is the design of a filter such that the
ABy,(n) = F(x(t),n, t)Hz, (n), induced operator norm of the mapping from the naige) to

(n) = F(x(t),n, t)Hz, (1)
() ((t), 1, £)Hs, (1) the filter errore(t) = 2(t) — 2(¢) is kept within a prescribed
g bound for all admissible parameter uncertainties.
ACy, (n) = F(x(t),m,t)Hy, (1), Clearly, in real control problems, all of the premise variables
are not necessarily measurable, thus two cases will be consid-
(n) (@(t),n, ) Hs, (1) ered in this section. Subsection A considers the case where

ADys. (n) = F(a(t),n,t)He, (), the_ premise van_able of the fuz;y mo_d)ei is measurable,
while in Subsection B, the premise variable is assumed to be
and ADqy,(n) = F(z(t),n,t)Hr,(n) unmeasurable.
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z(0) y By, (1)
1] _ 11
w® . Uncertain Fuzzy System Bd (Z) o B; (Z)Dgl . (’L) ’
®) y(©) ’
+Y_e()=z()-Z(t) y ~ - .
T P Cal (1) = [Cr, (1) D12(1)C;5(2)]
~ with
Non—fragile Fuzzy Filter «o ~

(©6)

Fig. 1. Block diagram of an uncertain fuzzy system with a non-fragie,

fuzzy filter. i 4(2) i 5(2) i
A. Case |-i{t) is available for feedback VIR () HT (1) VER()CT (l)r
The premise variable of the fuzzy mode(t) is available
for feedback which implies that; is available for feedback.
Thus, we can select our filter that dependsigras follows: - T
: e o Dia)) = [00 0 = VaR()]
.’L’(t) = Ei:l Zj:1 Hi [ Al? (Z).T(t) + Bz(l)y(t) (8)
2t) = Yo mCi()E().

Figure 2 shows the block diagram of the non-fragie,
filtering problem associated with uncertain fuzzy system in
case thatu; is available for feedback. Before presenting our

Doy, () = [o 0 6(1)I Doy, (1) 1}

R() = (1+p2<z>zz[|ﬂi<z>ﬂ

20 i=1 j=1
w(®) Uncertain Fuzzy System y(0) 1
3 2
L 0 H 0)]])
| FuzzyFier 1 (=050 . . .
! @ Z“B ! G:) . thenthe inequality (7) is guaranteed.
1 | |
Proof: The closed-loop state space form of the fuzzy system
‘guiéi z(t) model (5) with the filter (8) is given by
| | it) = S 5 (AT + B @)
e | ) = Y Z] 1 Kkt Cog (1) 2(t)
. (11)
Fig. 2. Block diagram of an uncertain fuzzy system with a non-fragile, Where z(t) = [ &7 ] and the matrix functions
fuzzy filter in Case A. A (), B”( ) and C”( ) are defined in Lemma 1 and the

next results, the following lemma is recalled.

Lemma 1: Consider the system (5). Given a prescriied
performancey > 0 and any positive constantg), for + =
= PT(2) such that the

1,2,--- s, if there exist matrice$ ()
following linear inequalities hold:

P(x) > 0(9)
POAG()
+HAG@)P@) | (T ()T
+ k=1 Ak P () <
(POBIOT =1 (9T
Cii () o
wherei,j =1,2,--- ,r,
oy | A 0
Ag() = [ Bi(2)Cs, (1) Aij(2) ] 7
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disturbance is

w(t) =

Let choose a stochastic Lyapunov function

V(#(t),2) = 2T (t)P(1)@(t) V2 €S (12)
where P(z) is a constant positive definite matrix for each
For this choice, we hav& (0,¢) = 0 and V (i(t),2) — oo
only when||z(t)|| — oc.

Consider the weak infinitesimal operatdxr of the joint
process{(i(t),:),t > 0}, which is the stochastic analog of
the deterministic derivative{(#(t),),¢ > 0} is a Markov
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process withinfinitesimal operator given by [32],

#(t)P(2)&(t)

a%T(t)P(z}:z(t) +
+37(t) Z A P(K)E" (1)

k=1

- zzwj(

+i" (t)P ()A”()w(t)
+w” (t)(B: ()) P(1)&(t)
+33T(t)P( )B (1) (t)

T (1) ZAZ;CP k)#7T (¢ )
k=1

Adding and subtracting

_NQ( +'YQZZ Z Zuzuj:umﬂn

i=1 j=1 m=1n=1

to and from (13), we get

T T

AV(x(t), 1) = sz(z)zT(t)z(t)

AT sttt [ ()1 (2)]

i=1 j=1 m=1n=1

+N2( )ZT(t)Z(t)

Y zmwmun B

zljlmlnl

(A”( NT

+P( )A”

+ Zk 1 lkP
(B ()"

Now let us consider the following terms:

72 Z Z Z Z i o o oy ["I)T(t)’d}(t)

i=1 j=1 m=1n=1

T T T T
=V D DD bttt %

i=1 j=1 m=1n=1

Z Z Z ,Uz,ujﬂm,unx

i=1 j=1m=1n=1

[ H{ (1)H,,(2) + HY () Hs,, (1) ] @(t)
+R2 (1) 2w ()w(t)
Issue 2, Volume 4, 2010

)(AG ()T P()(t)

()w(t)]

- (14)

and

N2(2) 2T (1) 2(t)
=R DTN i (1) X

i=1 j=

[CL., () + F(z(t), 0, t)Hy, (1)  — éj(z)r X
[ v F

Cr,, () + Fa(t), o, )H1,, () = Ca)]a(t)
< DYDYt X
i=1 j=1 m=1n=1
N2 (2)z7 (¢) [C 0 —é-(z)r X
(13) ( Li J
(€. () = Cal)] 50 + 223" (1) x
HY () Ha,, (03(1))
(16)
where R() > (1 + p0)|IHEWH, O +

(NI

| BE @) Hz, ()] ) Hence,

VDD D0 D Haktghm pn [T (1) (1)]

=1 j=1m=1n=1

1
+R2(2) 2T (1) 2(1)

<> 1 > it i X
i=1 j=

(FO[00n0) D) x
C1,() Dz, WCa ()] 2(1)) + N2 2w (Bw(t) (17)

—

where

~ T
Dia(e) = [0 00 — \/EN(Z)]}
Substituting(17) into (14), we have

N2(2)2" (1) 2(t) + YR (uw” (w(t)

I

I DTS pittmpin X
ji=1m
T

AV (z(t),1) <

i=1 j= =1n=1

EICEIR"

a(t

where

(A7 ()" P()
+P(2)AZ% () (*)T
Qijmn (1) = +(C (1)) Cm (1) - (19)
+ Zi};:l /\Hcp(k)
(15) (B ()" P(2) -7’1
24
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Using thefact

SNttt tin

=1 j=1m=1n=1

MZ (1) N (2)

1 K I
<5 DD mam[M

i=1 j=1

(1) Mi;(2) + Nij (1) N5 ()],

we can rewrite (19) as follows:

AV( () 1) < N2() T()2(t) + "R ()w” (Hw(?)

Before providing LMI-based sufficient conditions for the sys-
tem (1) withu(¢) = 0 to have anH,., performance, let us
partition the matrixP(z) given by Lemma 1 as follows:

_ | X() Y= (2) = X(2)
PO =1y - x0) X@)-v-1() 27)
where X(1) = XT(2) € R™*" andY (1) = YT (1) € R¥".

Utilizing the partition above, we define the new filter's input
and output matrices as

r «(t) Bi() = [Y7'0) - X()]Bi) ’8
+;;“’“J i ) e[ 5] e & 2 GYo) -
where 4 Using these changes of variable, we have the following theo-

(AZ ()T P(2) rem.
""4 (Z)A”( ) (*)T
Qi) = +(C§7( ))TC?( ) (21) Theorem 1: Consider the system (5). Given a prescribed
+> 1 AP(k) Hoo performancey > 0 and any positive constants(z),
(BY(1))T P(1) —~2] for z = 1,2,---,s, if there exist matricesX(z) = XT(1),
> L
Note that (21) is the Schur complement of (10). Using thfe” Yl (1), B ( )tandC (1), IZ,[_ 1,2+, satisfying the
inequality (10), we have ollowing linear matrix inequalities:

AV(a(t).1) < “NW=T(0):(0) + 22w (u(e). (22) PR 29)
Applying the operatoiE fO -)dt] on both sides of (22), we X)) > 0 (30)
obtain Y1) > 0 (31)

Bl AV(x(t),z)dt] Ui, (1) < 0, i=12,---,r (32
0 Uoo,, (1) < 0, i=1,2,---,r (33)
Tt Ui, () + Wi1,,(0) < 0, i<j<r (34)
2 T 2332 T J J
<E /0 (—=R*(2)2z" (£)2(¢) + ¥R (1w (t)w(t))dt] (23) Woo, (1) + Wgy (1) < 0, i<j<r (35)
From the Dynkin’s formula [27], it follows that where
Ty A; ()Y (1)
E AV (x(t),2)dt +Y (1) AT (1) " "
0 A Y (2) (*) (*)
=BV (@(T)(T)] = BV @000 @y o |\ sym25, 520 (36)
Substitute (24) into (23) yields < C1,(1)Y (1) > IR
T +D12(1)C;(2)
0 < E / (—R2(2) 27 (1) 2(2) +’y2N2(z)wT(t)w(t))dt] NEO)! 0 =Y
0
~E[V (a(Ty),(Ty))] + B[V (2(0),2(0))]. AT()X (o
Using (22) and the fact that’(z(0) = 0,2(0)) = 0 and +X (1) Ai(2)
V(x(Ty),u(Ty)) > 0, we have +Bi(1)Cs, (1) ()7
T Woo. . (2) N 027; (Z)Bf(l) (37)
"L 02(t) — 42T ot +CT ()0, (1)
E /O {z ()2(t) — v*w (t)w(t)}dt] <0.  (25) +Zi;;1 o )
Eéa:]c;r(laatri(.a inequality (7) holds. This completes the prc;of of ( +g;Ti1§Z()Z;;(§)(Z) ) —2I
with
Knowing that the filter's premise variable is the same as
the plant’'s premise variable, the left hand side of (10) can be J[) = [ ALY (2) Aii—1)Y (2)
re-expressed as follows:
PAZ() + (A5 0)T P() Air ¥ (0 A (0)
+y 2P(1) B (2 )( 4 @) P) (26) _
+ 300 A P(R) + (CH ()T CH (1), V() =diag {Y(1), -+, Y(=1), Y(e+1), - V()
Issue 2, Volume 4, 2010 25
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By, () =16 I 0 By, (1) 0]
ety = [t 0 Wz
VAN HE (1) VINWCL ()]
Dia()=[000 —vaReI]"

Do1,(1) =10 0 6(1)I Dy, (1) I]
N(z) = (14—02(@)22 [HHSZ(Z)H%(Z)H

HHE @, 0l])

then the prescribed’”., performancey > 0 is guaranteed.
Furthermore, a suitable filter is of the form (8) with

Y7 ) = X ()]~ My ()Y )
Y1) — X ()] Bilu)
Ci(1)Y ~1(2)

Aij(v)

(38)

~ X()] Bi()) D1, () } BE (0.

(39)

Proof: Suppose there exisK(z) and Y (:) such that the

inequalities (29) and (30)-(31) hold. The inequality (29)

implies that the matrixP(:) defined in (26) is a positive

definite matrix. Using the partition (27), the filter (28) and

multiplying (26) to the left by{ §<2) I ] and to the right

(x) O
by [ YJ@ Yél) ] we have
D1, (2
"5 e | “o
where
O11,(0) = AQ@Y(©)+Y AT () +AY ()
+[Y ()C1, (1) + €] (1) D15 (1)] x
[ ()CHT(ZHCT() ()"
2B ()BT () + TV~ (1) T T (1441)
Doz, (1) = ()X(Z) X(1)Ai(2)
Bi(2)Cs, ()+Cz (@)BJT()
+y~ Q[X : + Bi(1) D2, ()] %

|BL()X() + D3, BT )]
+CT (1)Ch, (2) + Z Ae X (k) (42)

Note that @y,
\:[111 and \1122

and (I)QQ

Issue 2, Volume 4, 2010

are the Schur complements of
Using (32) (35), we have (40) less than zero.

26

Hence, by Theorem 1, we learn that the inequality (7) holds.
|

B. Casell-v(t) is unavailable for feedback

Now, the premise variable of the fuzzy model(t) is
unavailable for feedback which impligs is unavailable for
feedback. Hence, we cannot select our filter which depends
on u;. Thus, we select our filter as follows.

() = Sy Xy ity [ A ()a(t) + Bi(@)y(t)
2(t) 21:1 MzCl( )&(t)
(43)

where/i; depends on the premise variable of the filter which
is different from ;.

&>

By applying the same technique used in Case A, we have the
following theorem.

z(t)
w(® Uncertain Fuzzy System y(©
3
| Fuzzy Filtker V1 4 P
23) iﬁ.ﬁ ! (z: e(t)=z(t)-z(t)

" LS

R0

MG

Fig. 3. Block diagram of an uncertain fuzzy system with a non-fragie,
fuzzy filter in Case B.

Theorem 2: Consider the system (5). Given a prescribed
Ho performancey > 0 and any positive constant§(z),
for 2 = 1,2,---,s, if there exist matricesX(z) = X7 (1),
Y(2) =YT(2), Bi(x) andC;(z), i = 1,2,-- - , r, satisfying the
following linear matrix inequalities:

{ f @) {, (Z) } > 0 (44)
X)) > 0 (45)

Y@ > 0 (46)

Uyp,,(t) < 0, i=1,2,---,r 47

Uoo,, (1) < 0, i=1,2,---,7 (48)

Ui, (1) +¥11,,(0) < 0, i<j<r (49)
‘I’zzij (Z) + \I/zzji(i) < 0, 2<g3<r (50)
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where IV. ILLUSTRATIVE EXAMPLES
Ai(Z)Yy) Example 1:Consider the tunnel diode circuit shown in
+Y (1) A7 (2) T (0T Figure 4 where the tunnel diode is characterized by
+A,.Y ()
Va, (0= \ P77 BLOBLG) (51) . b
C;l (1)Y (1) T m\ . Y
+D1o Z)Cj (Z) ip T Ic i
T _
T 0 =Y RS e
AZT(Z)X(Z Y — @9 Vp
+X () A (2 -
+B; (Z)CQ] (’L) T
+cfwsf@ |
Pa2, (1) = +CLWC, () (52)
+ 2271 A X (k) Fig. 4. Tunnel diode circuit.
BT ()X () 1
+D31,(1)B] (1)
with ip(t) = 0.002vp(t) + avd(t)
whereq is the characteristic parameter. The circuit is governed
J() = {V ALY (1) Ai-1.Y (1) by the following state equations:
A+ Y (1) - vAszY(Z)] Cii(t) = —0.00221(t) — azi(t) + za(t)
Lo (t) = —Il(t) — Rxo (t) + 0.1wsy (t)
V() =diag {¥(1), -+, Y(-1), Y+ 1), -, Y(s)} y(t) = Ja(t) + 01w () (55)
=~ _ Il(t)
Bi,(2) = [5(1)1 10 By, (2) 0] A = [ (1) ]
Ch,(1) = m’;g;) H{ (2) 7(;25;) 11 (1) where w(t) is the disturbance noise inpuj(t) is the mea-

surement outputz(t) is the state to be estimated aodis

the sensor matrix. Note that the variables(t) and zx(t)

are the deviation variables (variables deviate from the desired
trajectories). The parameters in the circuit are given as follows:
C =20 mF, L = 1000 mH and R = 10 €. Suppose that
this system is aggregated into 3 modes as shown in Table 6.1:

V2R(2)p(1) HE () \/ﬁ&(z)CE@)]T

Dis()=[000 —vaR@I]"
Da1,(1) =[0 0 6()I Day,(2) 1]

Ro) = (1+p2<z>zz[|ff§:<z>ff2]<z>||

i=1 j=1

TABLE |
SYSTEM TERMINOLOGY.

L 0z, 0)]) [Mode [ a1 £ 8ol |

1 0.01 £10%
then the pescribed”., performancey > 0 is guaranteed. 2 0.02+10%
Furthermore, a suitable filter is of the form (43) with El 0.03+10%
~ _ 71 _
Aij(2) [Y7(2) = X(2)] AMU(Z)Y o) with the nominal transition probability matrix that relates the
Bi(t) = [Y ') - X(»)] Bi(») (53)  three operation modes
Ci(v) Ci(1)Y ~1(2)
where

Pr=1 030 047 0.23

0.26 0.10 0.64

0.67 0.17 0.16]

With these parameters, (55) can be rewritten as

_ETW[E1 )Y () + Dm(z)cj(z)yu)} #1(t) = —0.1zi(t) — (Mﬁ(t)) -1 (t)
—y X B1, () + [Y10) = X)) Bi(0)Da, (0) } BE (1), +5025(t)
(54) o(t) = —x1(t) — 10z2(t) + 0.1wso(t) (56)
yt) = Jxz(t) +0.1w(t)
Proof: It can be shown by employing the same technique used x1(t)
in the proof for Theorem 1. [ | A = xa(t) |’
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For the sake of simplicity, we will use as few rules
possible. Assuming thate;(t)] < 3, the nonlinear netwo

as
rk

system (56) can be approximated by the following TS fuzzy

model:
Plant Rule 1: IF xy(t) is Mi(x1(t)) THEN

i(t) = [A1() + AL @)]x(t) + Bi, (Yw(t), =(0)=0,
z(t) = Cin,()z(t),
y(t) = Oz (1)z(t) + Da1, (Yw(t).
Plant Rule 2: IF z(t) is M2(x1(t)) THEN
z(t) = [A2(r) + AAs(1)]z(t) + B, (1)w(t), =(0) =0,
z(t) = Ci,()z(t),
y(t) = C2(1)x(t) + Dar, ()w(?)
where
—0.1 50 —4.6 50
—0.1 50 -9.1 50
A1(2) = [ -1 -10 } A2(2) = { -1 =10 ]
—0.1 50 —13.6 50
A1(3) = { -1 -10 ] 42(3) = [ T }
B =Bu) = | § oy |-
e == g ||,

C2, (1) = C2,(1) = J, D21,(1) = Da1,(2)
AA1(2) = F(x(t),2,t)Hy, (2)
and As(1) = F(x(t),t,t)Hy, (2

).
Now, by assuming thatF'(x(t), )| < p(z) = 1, we have

mw=|¢ o] ma=| 5P 0],
m@=g o] me=| 00 0]
H11(3)[8 8] andH12(3)[_1d35 8}.

Note that the plot of the membership function Rules 1 a
is the same as in Figure 5.
Case |-it) is available for feedback

Bl(l) =

[ —50.5324
| —9.7924

[ —50.5324
—9.7924

[ —53.3639
—19.4469

[ —53.3639
—19.4469

0.2743
—0.9846

J

Ci(1) = [ —35.3553 —1.1213 |,

—1.7600
—0.5462

—1.7600
—0.5462

—1.8542
—0.3911

—1.8542
—0.3911

By(1)

C(1) = [ —35.3553 0.1110 |,

In this case,x;(t) = v(t) is assumed to be available for

feedback; for instance/ = [1 0]. This implies thatyu; is

available for feedback. Using the LMI optimization algorithm “22
and Theorem 1 withy = 1 andd(1) = §(2) = §(3) = 1, we

obtain
_ [ 1.3527  4.1536
X1 = [ 4.1536  23.7154 ]
_ [ 15.9976 —0.2409
Y= [ ~0.2409  0.5000 }
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_ [ 11422 3.3069
X@) = [ 3.3069 19.7273 ]
_ [ 88351 —0.1880
Y= { —0.1880  0.3363 }
; _ [ —52.3064 —2.3475
An(2) = | —3.8388  —0.5670
; _ [ —52.3064 —2.3475
A12(2) = | —3.8388 —0.5670
nd 2
i _ [ —58.4742  —2.4526
A2 = | 959706 —0.1006
i (2) = [ —58.4742 —2.4526
~ | —25.9706 —0.1006
- 0.4488 -
Bi(2) = { ~1.6417 ] B2(2) =

28

C1(2) = [ —35.3553 —0.1998 ],

C(2) = [ —35.3553 —0.2554 |,

0.3067
—1.2423

|

0.0851
—0.5918

|



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

X(3) = [ 25472 16,0807 ]

Y(3) = { 05 0nr0. }

A (3) = 150%'73331396 :g%ii

An(3) = T o

An® = | Tynas oo |

o) = | 507080 Zoomes |

b= [ 0 ] = [ 475

C1(3) = [ —35.3553 —1.6653 |,

C5(3) = [ —35.3553  0.2665 |.

The resulting fuzzy filter is

B(t) = Yoy 2oy manAi(0)(1)
+ 2?21 i Bi(2)y(t)

2(t) 2 wiCi()a(t)

where
p1 = My(21(t)) and pg = Ma(21(1)).

Case ll-(t) is unavailable for feedback

In this case,z;(t) = v(t) is assumed to be unavailable

(67)

for feedback; for instance/ = [0 1]. This implies that

1; is unavailable for feedback. Using the LMI optimization

algorithm and Theorem 2 with = 1 and 6(1) = §(2) =

§(3) =1, we obtain

_ [ 13721 4.2243
X = [ 42243 24.1080 ]

_ [ 147533 —0.2063
Y= { ~0.2063  0.4399 }

=] B o]
-] 20 ]
i = [ 558 00 |
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Bi(1) = [

Ca(1)

X(2) = [

ve)= |

|

C1(2) = [ —35.3553 —1.4211 |,

0.1802
—0.7387 |’

By(1) =

Ci(1) = [ —35.3553 1.0222 |,

[ —35.3553 0.1221 |,

1.1564  3.3632
3.3632  20.0687 |’

8.1386  —0.1553
—0.1553 0.2925 |’

[ —52.9363
—15.3598

[ —52.9363
—15.3598

[ —59.2867
—98.1564

[ —59.2867
—28.1564

0.5723
—-1.6360 |’

—2.1627 |

0.3097

—2.1627 ]

0.3097

—2.9823 ]

—0.9187

—2.2823 ]

—0.9187

By(2) =

Co(2) = [ —35.3553 0 |,

X(3) = [

Y(3) = {

B1 (3) =

|

0.9254 2.5969
2.5969 16.4096 |’

5.4341  —0.1491
—0.1491 0.2228 |’

[ —54.8946
| —12.0349

[ —54.8946
—12.0349

[ —64.5265
—24.0698

[ —64.5265

—24.0698

1.0373
—1.1620 |’

—2.9091 ]

0.4766

—2.9091 ]

0.4766

—2.7580 |

—1.2716

—2.7580 ]

—1.2716

B2 (3) =

C1(3) = [ —35.3553 1.4877 |,

C5(3) = [ —35.3553 —0.3775 |.

|

|

|

0.5358

—1.8729

1.0338

—1.7367

1.1281
—1.5550

|

|

I
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The resultingfuzzy filter is

i"(t) = Z?:l 25:1 ﬂzﬂJAU (1)2(t)
+ 3 mBi()y(h) (58)
2t = i uCiat)
where
fir = Mi(21(t)) and fio = Ma(21(t))

Remark 1: Figures 6(a)-6(b), respectively, show the re-
sponses ofzq(t) and zo(t) in Cases | and Il. Figure 7
shows the result of the changing between modes during the
simulation with the initial mode 2. The disturbance input
signal, w(t), which was used during the simulation is given
in Figure 8. The simulation results for the ratio of the filter
error energy to the disturbance input noise energy obtained by
using the non-fragileH, fuzzy filter are depicted in Figure
9. After 15 seconds, the ratio of the filter error energy to
the disturbance input noise energy tends to a constant value
which is about0.33 in Case | and0.38 in Case Il. Thus,
in Case | wherey = +/0.33 = 0.574 and in Case Il where
v = +/0.38 = 0.616, both are less than the prescribed value

1. O
Example2: Considerthe following nonlinear system.
n0 ] _ [ W R0 ][ a0
do(t) —0.005z5(t)  —10 z2(t)
0 0
" [ O'10 09 } u(;(otzs Fig. 6.
+ —a70  aswr2(t) 1 (1)
0 0 xa(t)
o 1 0 xl(t)
(1) = [ 0 1 [ za(1)
y(t) = Sz(t)+ |0 0.1 |w(t)

(59)
wherez(t) = [27(t) z3(t)]T is the state variablesy(t) =
[wT (t) wl'(t)]T is the disturbance inputt) is the controlled
output,y(t) is the measured output artlis the sensor matrix.

Assume that, the system is aggregated into 3 modes as
shown in Table II:

TABLE I
SYSTEM TERMINOLOGY.

Mode

[ Mode: | J(») £AJ() |
1 0.0005+10%
2 0.005+10%
3 0.05+10%

The transition probability matrix that relates the three op-
eration modes is given as follows:

Fig. 7.
0.67 0.17 0.16

0.30 047 0.23
0.26 0.10 0.64
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— X0
Case I: fuzzy estimated xl(t) 1
_ _ Case II: fuzzy estimated xl(t) |

IN
T

The state variable xl(t)
- N

|
w
T

|
IS

Time (sec)

(a) The historiesof x1 (t)

— %,
Case I: fuzzy estimated xz(t) 1
_ _ Case Il: fuzzy estimated xz(t)

061

I
~
T

The state variable xz(t)

15

Time (sec)

(b) The historiesof z2(t)

The histories ok (¢) andz2(¢) in Cases | and Il.

w
T

251

151

10 15
Time (sec)

The result of the changing between modes during the simulation
with the initial mode 2.
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081

0.6

0.4r

0.2r

The disturbance input, w(t)
o

-06} 1 Fig. 10.

0 5 10 15
Time (sec)

Fig. 8. Thedisturbance input noisey(t).

o
3

o o N o o
) w > &) )
. : . T

o
-

Ratio of the filter error energy to the disturbance energy

o

10 15

o
(5]

Time (sec)

Fig. 9. Theratio of the filter error energy to the disturbance noise energy:
Io ! =20 T () —2@dt |
Jo ! wT (Huw()at

NotethatFigure10 shows the plot of the membership function
represented by
—xg(t)+N2 CL‘Q(t) —Nl

Ny — Ny Ny — Ny~
Knowing that z2(t) € [N1 Nz|, the nonlinear system (59)

can be approximated by the following two rules TS model:
Plant Rule 1:

My (22(t) = and M,(zo(t)) =

z(t) = [A1(1) + AA1()]z(t) + By, (0)w(t), =(0) =0,
Z(t) = Cll (l)fﬂ(t),
021 (’L)Jf(t) + D211 (l)w(t)7

Plant Rule 2:
Issue 2, Volume 4, 2010 31

<

—~
~+

~—

—_

(
= (
wnerecty - | 21

M () M(x )

-3 0
Ny X0 N,

Membershipfunctions for the two fuzzy set.

= C1,(0)x(t),
= Oy, (0)x(t) + Da1, ()w(t)
)
T2 t) !
[ =100 10V
A1) = | —0.005N; —10 } ’
[ =100 10N
A1) = | —0.005N> —10 } ’
B ~10 N,
A2 = [ —0.005N; —10 } ’

enm=cne ==, 11,
021(1) = 021 (2) = 021 (3) =38,

D1, (1) = D21,(2) = D21,(3) = [ 0 0.1 ],

B = Bu) =B = | o) ¢ |

Cu)=Cu@ =@ =g ||
Co,(1) = Co,(2) = Ca,(3) = S,
Dy1,(1) = D1,(2) = Da1,(3) = [ 0 0.1 ],
AALG) = F(a(t), ), ()
and AAs(1) = F(x(t),r,t)H1,(2)
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with || F(z(t),,t)|] < 1. Then we define S
0.05 (].()SN 0.8
_ | 7T J 1
Hy, (1) = [ 0(1) (% } 0.6
_0.05 0.05]\]2 % 0.4r
= J(@)  JQ) g
and Hy,(z) { 0 0 } . 2 oa}
]
Applying Theoreml and 2, we obtain the results as shown E 0
in Figure 11-13. The resulting fuzzy filter is 2-02
P 2 2 PPN A S
() = iy Z_j:l fuifij Aij (1) (t) é —04
Jei=1
+ iy i Bi(1)y(t) (60) -06}
A 2 A A A
Z(t) = Zl*l /’l/lcl (Z '/E(t) -0.8
where o= - - — = — .
no— - e = 5 0 5 10 15 20
fir = My(21(t)) and fiz = Ma(21(t)). Time tsec)
Fig. 12. The disturbance input noisey(t).
0.3f — 40 :
: Case I: fuzzy estimated xl(t) é ; ; ;
— _ Case II: fuzzy estimated x, (t) E 031 Casel |
g
g, ]
ol §0.25 1
% 01 5
.§ %
: o g 02 ‘
7] =}
2 =
o
T o1 5 0.15 <
(]
S
-0.2 ©
‘ o
0 5 10 15 5
Time (sec) £
(a) The historiesof z; () 5
T
0 ‘ ‘ ‘
0.06 = % 50 100 150 200
0.04 Time (sec)
0.02
= o0 Fig. 13. Theratio of the filter error energy to the disturbance noise energy:
By JeE®—2)T (2(t) —2(1))dt
g -0.02f JEwT (Hw(t)dt :
<
8 -0.041
£ 005l . )
5 ~0.06 13. After 50 secondsthe ratio of the filter error energy to
F-0.08¢ 1 the disturbance input noise energy tends to a constant value
-0.1f 722([) » imated ) | | which is about0.02 in Case | and0.08 in Case Il. Thus,
ase |: Tuzzy estimated X, . .
—012} o Case”:fuzzyyesﬁmated fz(t) in Case | wherey = +/0.02 = 0.141 and in Case _II where
~014 ‘ ‘ ~v = v/0.08 = 0.283, both are less than the prescribed value
) 5 10 15 1 0
Time (sec) .

(b) The historiesof =2 (t)
V. CONCLUSION

Fig. 11. The histories of1(¢) andz2(t) in Cases | and Il. . . . . .
The aim of a filter is to estimate the values of internal

system variables that are not measured from the available
Remark 2: Figures 11(a)-11(b), respectively, show the reutput. Estimation problems arise in diverse fields such as
sponses of4(t) and z»(¢t) in Cases | and Il. Figure 7 shows communication, control and signal processing. This paper
the result of the changing between modes during the simulatiaddresses the problem of designing a non-fraljile filter for
with the initial mode 2. The disturbance input signal(t), a class of robust uncertain Markovian jump nonlinear systems
which was used during the simulation is given in Figuréhat guarantees th€,-gain from an exogenous input to a
12. The simulation results for the ratio of the filter erroffilter error is less or equal to a prescribed value. Based on
energy to the disturbance input noise energy obtained by LMI approach, solutions to the problem of the non-fragile
using the non-fragiléH,, fuzzy filter are depicted in Figure H, fuzzy filtering are derived in terms of a family of linear
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matrix inequalities.In this article, the premise variables ofi23]
the non-fragileH., fuzzy filter are allowed to be different
from the premise variables of the TS fuzzy model of the plal
such that the results are shown into two cases which are the
premise variable of the fuzzy model be measurable and tRel
premise variable assumed to be unmeasurable. 26]
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