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A Family of Hyperbolic and Exponential-Type
Controllers

Francisco Terneus , Fernando Reyes and Eduardo Lebano

Abstract— This paper addresses the problem of position contraisymptotic stability is obtained with LaSalle’s invariance
for robot manipulators. A new family of controllers with grav-principle [11] — [16] .
ity compensation for the global position is presented. This new . . - . - .
family called Hyperbolic controller has its structure composed by !N view of the simplicity and applicability of the simple
exponential hyperbolic functions, that force the position error t8D controller in industrial applications, the purpose of this
move to zero position. This paper offers enough conditions that apaper is to unify the previous results of the linear PD control
sufficient in order to prove directly global asymptotic stability of theyn 5 |arge class of Hyperbolic-type controllers for robot

closed-loop system composed by the nonlinear robot dynamics far. . : -
n degrees of freedom and the proposed scheme. In addition to gnlpulators that lead to global asymptotic stability of the

theoretical results, real-time experiments are presented to compareipsed—loop system .(dynamic.:s model of robot manipulator
performance of the proposed family with other well-known contraplus controller) by using the direct method of Laypunov. The
algorithms such as the PD on a three degrees of freedom direct-du@posed control scheme has a nonlinear structure, which in-

robot arm. corporates components of hyperbolic type to quickly drive the
Keywords—Global asymptotic stability, Lyapunov function, PD position error to zero position. In addition to the theoretical
controller, robot manipulators, position control. issues of the proposed family; this paper also presents a real-

time comparative study of four position controllers : three
membership controllers of the proposed family vs. the PD
controller on a three degrees of freedom direct—drive arm.
OSITION control, otherwise known as the so-called This paper is organized as follows. Section 2 recalls the
regulation problem is one of the most relevant issuégbot dynamics and useful properties for stability proof. In

in the practice of manipulators. This is a particular case &ection 3, the proposed hyperbolic family is presented and
the trajectory control. Regulation has attracted a consideraBRe analysis of global asymptotic stability with a Lyapunov
amount of attention (see [1] and the references cited thereifyynction. Section 4 summarizes the main components of
It is based on moving the manipulator from any initial statéhe experimental set-up. Section 5 contains the experimental
to a fixed desired configuration [2] [3] . The problem oftomparison with three controllers of the proposed family vs
designing regulators is ensuring asymptotic position error atide PD controller on a three degrees of freedom arm. Finally,
joint velocity to zero. Regulators that achieve this objectiv@dme conclusions are offered in Section 6.
for all desired targets and all initial conditions are said to be
globally convergent [4] . I1.  RoBOTDYNAMICS

Lyapunov functions are an indispensable tool in analysis In the absence of friction phenomena and other disturbances,
and design of controllers for nonlinear systems and play afe dynamics of a serial-link rigid robot [17] can be written
important role in the stability study of robot manipulators. Thas:
asymptotic stability is achieved using the LaSalle invariance
principle [5] . M(q)g +C(a,0)q +g(g) =T (1)

We use the methodology by energy shaping plus dampiriﬁ_‘

I. INTRODUCTION

ereq is then x 1 vector of joint displacementg, is then x 1
ector of joint velocities;r is then x 1 vector of input torques,

(q) is then x n symmetric positive definite manipulator
ertia matrix,C(q, q) is then x n matrix of centripetal and
oriolis torques, ang(q) is then x 1 vector of gravitational
[orques obtained as the gradient of the robot potential energy

injection technique introduced by Takegaki and Arimoto[6
to study the simple PD control with gravity compensation
considered a landmark in robot control. Using energ
shaping it yields a global stable closed—loop system for
trivial selection of proportional and derivative gains, an
by applying LaSalle’s invariance principle the asymptoti )
A . e to gravity.
stability iis achieved [7] . Many authors have used energﬂxult is assumed that the robot links are joined together

shaping to design control schemes using a weak Lyapunoy, - . : .
function [8] — [10] . with revolute joints. Although the equation of motion (1) is

They obtain a global stable closed—loop system. The globa5;omplex, it has several fundamental properties which can be
exploited to facilitate control system design. For the proposed
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bounded as a function ef € R", thisis||M(q)|| < 8, where Proposition. Consider the robot dynamic model (1), togeth-
[ is a positive real constant, strictly speaking, boundednesis with the control law (2), then the closed—loop system
of the inertia matrix requires in general, that all joints bé globally asymptotically stable and the positioning aim
revolute:[18] [19] lim: 00 g(t) = q4 AN lim: o g(t) = 0 is achieved.

8 > n (ma><i7j7q|Mt-j(q)|) Proof: The closed—loop system equation obtained by combin-
ing the robot dynamic model (1) and control scheme (2) can

where M;; are elements o (q). be written as

Property 2. See Koditschek[18] Spong & Vidyasagar[17]
and Romecet al. [19] the matrixC/(g, ¢) defined using the

Christoffel symbols and the time derivative (q) of the inertia dla| _ —q i
matrix SatiSfy: dt q M(q)_l K Sh()\q)(l—efch({q))
5T [ Ly ] : n P ch(A@)+e—rOD
1-q[ﬂﬂw—0wﬂﬂq=0v%qem.
2' M(q) = C(qa q) + C(qa q)T v q, q S IR”- _K sh()\[I)(l_e*Ch(%‘q)) _ C(q q)q :|
Property 3. The Coriolis matrix C(q, g)satisfies the Y ch(AQ)+e=eh D) ,
following:[17] [19] )

1. Ifg=0thenC(q,q) =0 R"™"™ Vqe R".
2. ¢*C(q,q)q is bounded as a function af, ¢ € R", then
llg" C(q,q)ql| < ||ql|*k., wherek, € R;.

which is an autonomous differential equation. Now, it is
demonstrated that the equilibrium point exists and it is unique.
Note that—¢g =0 = -I§ = 0= ¢ = 0, wherel € R"*" is

the identity matrix.

For the second component of the equation (§y, ) = 0

according to the property 3/ (q) >0 =3 M(q)~* >0
This section presents the proposed hyperbolic and expong@ferefore
tial family of controllers and its global asymptotic stability

I1l. A FAMILY OF HYPERBOLIC AND
EXPONENTIAL—TYPE CONTROLLERS

: : : 1. sh(A@)(1 — e=ehOD) B
analysis. We intend to extend the results on the simple PDy/ (4 'K, _ = 0& sh(AG) =0
controller to a large class of hyperbolic-type controllers for ch(A\q) 4+ e~ (A Q)
robot manipulators. Consider the following control scheme sh(AGi)) = 0&¢ =0

with gravity compensation given by
h(AQ)(1 — e=<hOD) )
, ShOD( — 0D O —emsHOD)
ch(A\q) + e—<ch(AQ) K A )
- —ch(ag ch(\q) 4+ e=<h(AD)
_ sh(aq)(1 — e~cheq)) ol @ .
" ch(ag) + emch(e@) g\ with kp; € R+, K, = diagonal(kp;).

Therefore, the origin of the state space is its unique equilibri-
whereK,, € R"*" is the proportional gain which is a diagonalym point.

matrix, K, € R"*" is a positive definite matrix, so-called To carry out the stability analysis of equation (5), the
derivative gain, and the fOIIOW|ng terms are defined as: fo”owing Lyapunov function candidate is proposed:

—0=¢=0

_ - - 1, .
shudi) (e T)) Vig,q) = §qTA4(Q)q
SV(1 — o—ch(AQ) ch(A1d1)+e=mrid
e ' ®3) Jin °h<m>+e*”“*"”>
~ —cos : 14e-!
ch(Aq) +e ShQna) (1—e=HOn )
L ch(hngn)te—coshOndn) +
[ shaig)(a—e”°"19D) —
. . A ch(ayqy)+e—chlarar) ch()\ Gn)+e=cnXin
shlag)(1 —e cho®) | MO (@) in( RO
; —ch(aq) B : ch(AG1)+e—ch(Xa1)
ch(ag) +e shlcnd)(1—e~M@nan)) \/ln (A7 1)-7-_671 )
ch(aingn) e P endn) AKp
where); anda; € R, § € R" is the position error vector, O )+e e
which is defined ag = ¢, — g, whereg, € R" represents the \/ln )
desired joint position; ch() and sh() are the hyperbolic cosine (6)
and sine functions respectively amrdis the Base of Natural
Logarithms. whereA is a diagonal matrix and it is represented as:
The control problem can be stated by selecting the design 1 ... 0
matricesk,, and K, such as the position err@rand the joint A
velocity ¢ vanish asymptotically, i.elim; . [q(t), q(t)]" = A= : o
0 € R™. 0 ... L
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The first term oflV/(q, ¢) is a positive definite function with  and using property 2 it can be written as:

respect tog becauseM (q) is a positive definite matrix. The sh(Ag1)(1—e—chOan))

second term of Lyapunov function candidate (6), which can be ch(Ag1)+e—ehxa1)

interpreted as a potential energy induced by the position error v (g, ¢) = —¢K, : <0 (12)
is also a positive definite function with respect to position error sh(}\qh)(l_.efch(xqm)

g, becausey, is a positive definite diagonal matrix. ch(Agy ) te—ehChan)

Therefore, the Lyapunov function candidate (6) is a radially \yhich is a negative semidefinite funtion, We therefore
unbounded and a globally positive definite function. The timggncluded that the equilibrium point is stable. In order to

derivative of Lyapunov function candidate (6) is: prove the asymptotic stability in a global way, we make use
N . ST A of the autonomous nature of closed-loop (2) when we applied
Vig.q) = ¢ Mlg)g+ §q M(a)q LaSalle’s invariance principle
- In the region
\/l ch(Aql)-i-e*fh(*‘H)) B
e Q:{[g]e%":f/([],q)zo} (13)
\/l °h(Aq”1)I: eh(Agu) Fe M) the unigue invariant is[g” qT]T = 0 € R*", therefore
sh(AGi)(1—e—h M) . |a®)
ch(\; )+e—ch(Adi) B tli>rgo q(t) — 0.

\/l chAgi) e 00T

1+e—1
IV. EXPERIMENTAL SET-UP

()
o An experimental system for researching robot control al-
after simplifying some terms: gorithms has been designed and built at The "Benemerita
Universidad Autbnoma de Puebla”. It is a direct—drive robot
P ) R A . manipulator with three degrees of freedom moving in 3—
1% = ¢M "M . : .
(@,4) 4 M(q)q + 24 (9)d dimensional space (see Fig. 1).

: h(AGi)(1 — e~h@))
4" K> : 8
% ch(\G;) + e—ch(Ag) ®

along the trajectories of the closed—loop equation (5) is:

sh(Ag)(1 — e~°hD)
ch(A\q) + e~ch(AD)

ch(A\q) + e=ch(AD)
sh(Ag;) (1 — e~ M)

ch(Ag;) + e=chAd)
9)

V(g,a) = ¢"M(q) lM(q)_1 [Kp

— K,U

1.7 ..
+§qTM(tI)q - 4K,

and after some algebra is:
sh(Aq;) (1 — e~ "))
P eh(AG;) 4 e—ch(Adi)
sh(\G;)(1 — e—ch(Adi))
Y ch(AG;) + e—ch(Xdo)

. . 1., .
—4"C(q, q)q + §qTM(q)q

: h(AGi)(1 — e~ h@))
—4"K,° _ 10
E ch(\G;) + e—ch(Ad:) (10)

V(a.q)

then:

V(~ ) = o sh(Agi)(1 — @_Ch()@')) Fig. 1. Experimental robot. Home position
q,q v ch()\q-i)_i_e—ch()\q},)
1. NP The experimental robot consists of links made of 6061
T
+a° |5M(g) —Cle, )| 4 (1) aluminum, actuated by brushless direct drive servo actuator
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from Parker Compumotor to drive the joints without geamsec. Fig. 1 and Fig. 2 show the initial and one of the desired
reduction. Advantages of this type of direct-drive actuataronfigurations for the experimental robot, respectively.
include freedom from backslash and significantly lower joint
friction compared with actuators composed by gear drives. The
motors used in the experimental robot are listed in Table I.

TABLE |
SERVO ACTUATORS OF THE EXPERIMENTAL ROBOT

Link Model Torque p/rev
[Nm]
Base DM-1015B-60 15 2621440
Shoulder | DM-1050A-115 50 4096000
Elbow DM-1004C-115 4 2621440

The servos are operated in torque mode, so the motors
act as torque source and they accept an analog voltage a
a reference of torque signal. Position information is obtained
from incremental encoders located on the motors. The standard
backwards difference algorithm applied to the joint position
measurements are used to generate the velocity signals. Thé
manipulator workspace is a sphere with a radius of 1m. . Desired position for experimental robot

Besides position sensors and motor drivers, the manipulato?
also includes a motion control board manufactured by Pre-y,
cision MicroDynamic Inc., which is used to obtain the joint

ositions. The control algorithm runs on a Pentium-Il (333 . .
p g ( From equation (2), with n = 3 degrees of freedom for the

Mhz) host computer. . . .
With reference to our direct—drive robot, only the graVi_experlmental arm, (see Fig.1) the following class of controllers
an be obtained:

tational vector is required to implement the new family of@"’ - . o
d P y With the coefficientA = 1, this member of the family is

controllers (2), which is available in [20 ; o
° ) [20] called HE1, the equation for the three joints of the robot arm
are as follows:

EXPERIMENTAL RESULTS FOR THEHYPERBOLIC
EXPONENTIAL FAMILY CONTROLLER

0 N
. . 7Y (1 — e—ch(d1)
g(q) = | 1,02 sin(q1) + 0,20 sin(q; + ¢2) [Nm)]. THEL, = b1 Sh(qlz( e_ch( = )
0,20 sin(q1 + ¢2) ch(q) +e~cMa _
sh(oznq'l)(l — B_Ch(a“(h))
_K’Ul . -
V. EXPERIMENTAL RESULTS ch(ai1G1) + e chloridr)
In this Section an experimental comparison of four position sh(a)(1 — e~ch(d@))

controllers on a three—degrees—of-freedom direct-drive robot  THE1, =

) . - - ch(ag- +e_0h(q~2)
manipulator which support our theoretical developments is (¢2)

sh(ozmq'Q)(l _ e—Ch(a12q'2))

presented. To investigate the performance among controllers, — Ky _ — _
they have been clasified as HE1, HE2 and HE3 for the ch(a12gz) + e-ch(r2dz)
hyperbolic and exponent family where the coefficient 1, +1,02sin(g2) + 0,2sin(g2 + g3)
2, and 3, respectively. We denote the PD for the simple PD B sh(qs)(1 — e~ ch(@))
controller. THEl; = Hpl ch(gs) + e—h(@)

In order to compare the perfomance of the controllers on . —ch(aisgs)

. . ) Iy sh(aizgs)(1 —e )

direct - drive robot, an experiment of position control whose K1 : —

. . . . . Ch(Oélg(]g) +e ch(ai1sqgs)
objective is to move the manipulator end - effector from its ini- )
tial position to a fixed desired target has been designed. For the +0,2sin(q2 +¢3) (14)

present application there are two configurations of desired jointwith the coefficientA = 2, this member of the family is
positions, the first one asyq1, gz, gas]” = [45,45,90]" de- called HE2, the equation for the three joints of the robot arm
grees and the second one[as:, g2, ga3]” = [135,70,110]7  are as follows:

degrees, wherey:, q42, gq3 represents the base, shoulder, and

elbow joints, respectively. The initial positions and velocities sh(2 % q)(1 — e~ ch+d))

were set to zero (for example in home position). The friction THE2, = HKp1 Ch(2 % G1) + e ch@ed)

phenomenona was not modeled for compensation purpose. As " ] eh(omdt)
a result, all the controllers did not show any type of friction Ky, L (O‘qul?(l € _ )
compensation, therefore it has been decided to consider the ch(azigr) + e-chlezd)
friction unmodeled dynamics. Evaluated controllers have been sh(2 % §a) (1 — e~ ch(Za2))

THE2, = pl

written in C language. The sampling rate was executed at 2.5 ch(2 % §p) + e—ch(2+@)
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K, sh(oaaga)(1 — B_Ch(‘mf”)) With the proportional gains fixed, derivative ones were
ch(agaga) + e—chlaz2d2) adjusted to obtain a low under - damped response. For a lower
+1,02sin(g2) + 0,2 sin(g2 + ¢3) « a proportional relation between velocity and derivative value
Sh(2 % @3)(1 — e~ M(2xd3)) is obtained.
THE2; = Hpl ch(2 * §3) + e~ ch(2*ds) For each member of this proposed family of controllers:

HE1, HE2, HE3 that correspond to the coefficiehts 1, 2,

: _ p—ch(a2sqs)
shlazsgs)(1 — ¢ ) and 3, there are particularli(, and K, matrixes.

Ch(a23q3) + e_Ch(O(23q.3)
+0,2sin(gz + g3) (15)

With the coefficientA = 3, this member of the family is

called HE3, the equation for the three joints of the robot arm For the fiTrst configuratioTn of desired positions, that is
are as follows: [9d1, qaz, gas]” = [45,45,90]" degrees, values fok,;; and

«a;; are shown in Table [l1.

_K’Ul

VI-A. Desired positiorf45, 45, 90|

sh(3 % ¢y)(1 — e~ ch(3*a1))

THE3, = pl ch(3 % G1) + e hBeq) TABLE Il
. —ch(asidy) SETTINGS FOREXPONENTHYPERBOLIC, A;, kyij AND o VALUES
—K1 shlasig)(1 = e : ) [9a1, 442, qq3]T = [45,45,90]T DEGREES
Ch(a31q'1) + e—ch(asziqi)
7o — _Ch(?’*qa) dxs
rups, = Ky sh(3 q22(1 e i ) ko | INM] | o | [z
ch(3 * ¢a) + e—ch(3+@)
sh(aszaga)(1 — B_Ch(a”qé)) ky1 3 ail 0.015
—K’Ul Ch(a32q’2) + e—ch(()é32(jQ)
. . A=1 | kya | 05 | aqo 0.002
+1,02sin(g2) + 0,2 sin(g2 + ¢3)
. B sh(3 x 3)(1 — e~ ch(3+d3)) ks | 01 | a5 | 0.0002
HE33 — pl Ch(3 " q~3) T o—ch(3%ds)
Sh(agg(jg)(l _ e—ch(a33q'3)) ku1 17 a1 0.01
_K’Ul . —ch(assds)
ch(assgs) +e 3343 A=2 | ky1 | 1.4 | am 0.001
40,2 sin(g2 + g3) (16)
where Cug1,, THE2,, THES.), (THE1,, THE2,, THES,) and koi | 0.04 1 ass 0.001
(THE1s, THE24, THE3,) Fepresent the applied torques for the
.. . kvi | 28 | as 0.01
base, shoulder, and elbow joints, respectively. The controllers
gains were selected empirically. However, several trials for A=3 | ko | 032 | as 0.006
. . d = v . .
selecting gains were necessary in order to ensure an acceptable
behavior in practice, that is, fast response and a smaller steady kyi | 24 | as3 | 0.004
- state error.

In order to avoid torque saturation of the actuators, but to
function in its linear part, the proportional gains were chosen Fig. 3 to 8 contain the experimental results of the hyperbolic
such thatr < |74z, WhereT,,q. represents the maximumand exponential family. There are three members of the family
applied torque of theth joint (see limits of actuators in Table HE1, HE2, HE3, the graphic of position error and applied
). torque are shown for each one. The graphics of position error

The empirical formula that was used to select the tuning @how that the three links tend to a small neighborhood near
the proportional gain is given bykp; = 80 %7imaz/q4i- FOr  zero. This characteristic demonstrates the properties of the
that reason the values fdip,, kp; andkp; are: 12, 32 and proposed family. The graphic of applied torque shows that the
3.2 respectively, that correspond to the 80% of the nominattuator works in its linear zone but not in that of saturation.
torque of the actuators, see Table II.

TABLE || Eitor ol
SETTINGS FOREXPONENTHYPERBOLIC, kpp; VALUES. {degrees]q—--._l_ 3
kp | [Nm]
kp1 | 12
kip2 32 “Time (s)
kp3 3.2
Fig. 3. Position errors of the HE1 controller.
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Torque™ T
(Nm) o
'.\T-
e
T3 "
& iTime (s) i TR m ) o s Time(s)
Fig. 4. Applied torques of the HE1 controller. Fig. 8. Applied torques of the HE3 controller.

Fig. 3 and 4, correspond to the HE1 conntroller. The
steady state position begins approximately at t = 2 sec, an

AR v - C1:ig. 7 and 8, correspond to the HE3 controller. The steady
[G1, ¢2, G3]* =10,001,0,399,0,113]" degrees.

state position begins at t = 3 sec., afd, g, )7 =
[0,009, 0,298, 0,076]7 degrees.

Emor
(degrees) —,

VI-B. Desired positiorj135, 70, 110]*

G Time(s) For the second configuration of desired positions, that is
[qa1, qa2, qa3]* = [135,70,110]" degrees, values fok,;; and
Fig. 5. Position errors of the HE2 controller. Qij; are shown in Table IV.

Fig. 5 and 6, correspond to the HE2 controller . The

", . . TABLE IV
steady state position begins approximately at t = 1.5 sec., anSgTTINGS FOREXPONENTHYPERBOLIC, \;, kyi; AND av;; VALUES FOR
[41, G2, G3]T = [0,001,0,385,0,096]7 degrees. 1 Pty *ij

[q41, 9dz> qas)” = [135,70,110]7 DEGREES

[ radxs
degrees

ko [Nm] o

ky1 9 a1 0.01

A=1 | ko 0.1 | aie 0.01

ky3 0.1 13 0.0002

aTime (s) Ku1 50 | am 0.02

Fig. 6. Applied torques of the HE2 controller. A=2 | ky1 | 0.001| a2 0.040

kfvl 0.15 23 0.002

Ermor ! ky1 22 as1 0.013
{dEQrees] w_’\"'-_ i
v A=3 ky1 0.05 a3 0.01

ku1 1 33 0.04

@ Time (s) Fig. 9 to 14 contain the experimental results of the hy-
perbolic and exponential family for the desired position
Fig. 7. Position errors of the HE3 controller. [qa1, qa, qa3)’ = [135,70,110]7 degrees.
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Emor o,
(degrees) ™
.._\- ‘\\ '?1

a3\

“Time ()

Fig. 9. Position errors of the HE1 controller.

fime (s)

Fig. 10. Applied torques of the HE1 controller.

Emor ol
(degrees).., ™

“Time (s)

Fig. 13. Position errors of the HE3 controller.

bt o ' 15 1 25 ] 1 ' M “Time [S}

Fig. 14. Applied torques of the HE3 controller.

Fig. 9 and 10, correspond to the HE1 conntroller. The Fig. 13 and 14, correspond to the HE3 controller. The

steady state position begins approximately at t = 2 sec, apigady state position begins at t = 3 sec., &1z, s

[41, G2, G3]T = [0,011,0,95, —0,0028] degrees.

Ermor 1w
(degrees) « \\_
o g

ey N
o i \\‘:h

“Time (s)
Fig. 11. Position errors of the HE2 controller.

Fig. 11 and 12, correspond to the HE2 controller .
steady state position begins approximately at t =
[G1, G2, @3] = [0,004, 0,53, 0,027]" degrees.

dogroos

bt o5 ' 15 1 25 3 15 ‘ 45 "-Time |:5:|

Fig. 12. Applied torques of the HE2 controller.
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The
2.5 sec., anQ/\lherETppl, Tpp, andTpp, represent the applied torques

I =

[—0,030,0,31,0,0005]7 degrees.

VII. EXPERIMENTAL RESULTS FOR THEPD CONTROLLER

This Section presents the results of the PD controller. The
desired positions and the initial conditions were the same as
in the previous Section. Fig. 15 to 18 contain the experimental
results of this part. The PD controller for the three degrees of
freedom robot arm are given by the following equations.

Tep, = Kpi(q1) — Kui(gh)

Tpp, = Kp (q~2) - KwQ(q'Q)
+1,02sin(g2) + 0,2sin(g2 + ¢3)

Trpy, = Kp3 (q~3) - KwS(dB)

+0,2 sin(g2 + g3) a7)

for the base, shoulder, and elbow joints, respectively.

Extensive experiments were carried out with the PD con-
trollers to select their gains, such that the best time response
without overshoot and minimum steady - state position error
were obtained without entering the saturation zone of the
actuator’s torques. The PD gains were selectedias: =
80% | Tina. | /G:i(0) and k,; << kp;. After a trial and
error procedure, proportional and derivative gains have been
selected as suitable choices for preventing the actuators from
saturation. Fig. 16 and 18 are inside the limits of torque for
its respective actuator but not in the saturation zone.

Values fork,; andk,; for the PD controller are shown in
Table V.



INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

TABLE V VII-B. Desired position135, 70, 110]7
SETTINGS FOR THEPD CONTROLLER.
(91, a2, aas)™ | ko | INMD | ko | L] Eror
(degrees)s- \

kpr | 0.3 | kui 6E-4

45,45,90]7 kpo 0.9 | kuyo 0.01
P

[degrees] kps | 0.045 | ky3 0.001 LA R e

kp1 0.09 | ky1 4.0
1 110" 4 1 i
[ 35,70, 0] k‘pg 0.46 k‘vg 0 ﬂ It lemP.I[S)
[degrees] kps | 0.03 | ky3 0.2

Fig. 17. Position errors of the PD controller.

Fig. 17 contains the experimental result of position errors
of the PD controller. The steady state position begins approxi-
mately att = 1.5 sec., arlds, G2, §3]* = [18, 39, 54]7 degrees.

Fig. 18 shows the applied torque with the PD controller for
the base, shoulder and elbow.

VII-A. Desired position45, 45,90]

Torque

1 (Nm)

Ermor 1 ™
(degrees) , "\ NG

“Time (s)

Fig. 18. Applied torques of the PD controller.

b 05 1 5 2 2 3 ¢ 5 sTmefs)

Fig. 15. Position errors of the PD controller. VIIl.~ INDICES OF PERFORMANCE
The robot manipulators are very complex mechanical sys-
tems, due to the nonlinear and multivariable nature of their
Fig. 15 contains the experimental result of position edynamical behavior. For this reason, in the robotic community
rors of the PD controller. The steady state position pdhere are no well-established criteria for a proper evaluation
gins approximately at t = 2.5 sec., ardi,ds.qs)]7 = of controllers for robots. However, it is accepteq in practice to
[0,8108, 11,9658, 27,1879]7 degrees. Fig. 16 show the applieompare the performance of controllers by using the scalar—

i e, .
torque with the PD controller for the base, shoulder and elbo¥fp/uéd £~ norm as an objective numerical measure for an
entire error curve Whitcomb et. al [21] De Jager & Banens

[22] Berghuis et. al [23] Jaritz & Spong [24] . Th&?[qg] norm
measures the root-mean-square average ofgthgosition

Torgue °, hich is given by:
) 51 error, which is given by:
N2 2l = | —— [ 19)
o , 7 — q| = q
""i T3 \J{ t— tQ to
2“ wheretg, t € Ry are the initial and final times, respectively.
™ A smaller £2[q] represents smaller position error and it gives
0 4
I sz s 3 s 4 a5 sTime(y) the best performance of the evaluated controller. The data are
compared with respect to the PD controller. To average out
Fig. 16. Applied torques of the PD controller. stochastic influences, the data represent the mean of root -
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mean - square position error vector norm of ten runs.

Fig. 19 and 20 show the performance indices of all the
controllers, for[qa1, qa2, qas)’ = [45,45,90]7 degrees and
[qa1, qa2, qa3]T = [135,70,110]7 degrees respectively. The
overall results are summarized by Table VI which includes
the performance indices of all the controllers. In general the
proposed controller improves the perfomance of the PD, the
two first members of the proposed family ( HE1, HE2 ) in
about 32% - 33% and the last member (HE3) in about 21%
- 24%.

The result from one run to another was observed, and the
difference with the average are the following: 0.5%, 0.6 %,
1.6%, 0.7% for HE1, HE2, HES3, and the PD respectively,
which underline the repeatability of the experiments.

7
HE2 HE3 P

Fig. 19. Performance index for transient and stationary states.

In order to compare the error, the values ®f norm for
the stationary state have been obtained (Fig. 21 and Fig. 22)
These values are taken in the last second of each test, between
the 4th and 5th second, and are summarized in table VII.

LZ

(degrees) 257

HE1

"

LZ

(degrees) «

HE1 HE2 HE3 PD

Fig. 20. Performance index for transient and stationary states
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TABLE VI
£2? NORM FOR TRANSIENT AND STATIONARY STATES

[qa1, @42 qas]”

£? [degrees]

difference [ %]

HE1 25.67 32

[45,45,90]T HE2 25.64 32
[degrees] HE3 27.79 21
PD 37.7 —

HE1 57.8 33

[135,70,110|T | HE2 57.7 33
[degrees] HE3 65.4 24
PD 85.7 -

TABLE VII
£? NORM FOR STATIONARY STATE

[ga1, qaz, qas]”

L2 [degrees]

difference [ %]

HE1 0.15 99
[45,45,901T | HE2 0.14 99
[degrees] HE3 0.10 99
PD 9.7 -
HE1 0.43 95
[135,70,110]1T | HE2 0.24 97
[degrees] HE3 0.14 98
PD 8.35 -
£2
{degrees}z
Lo 0.14 0.10
HE1 HE2 HE3 P

Fig. 21. Performance index for stationary state case.
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