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Abstract—This paper addresses the problem of position control
for robot manipulators. A new family of controllers with grav-
ity compensation for the global position is presented. This new
family called Hyperbolic controller has its structure composed by
exponential hyperbolic functions, that force the position error to
move to zero position. This paper offers enough conditions that are
sufficient in order to prove directly global asymptotic stability of the
closed-loop system composed by the nonlinear robot dynamics for
n degrees of freedom and the proposed scheme. In addition to the
theoretical results, real-time experiments are presented to compare the
performance of the proposed family with other well-known control
algorithms such as the PD on a three degrees of freedom direct-drive
robot arm.

Keywords—Global asymptotic stability, Lyapunov function, PD
controller, robot manipulators, position control.

I. INTRODUCTION

POSITION control, otherwise known as the so-called
regulation problem is one of the most relevant issues

in the practice of manipulators. This is a particular case of
the trajectory control. Regulation has attracted a considerable
amount of attention (see [1] and the references cited therein).
It is based on moving the manipulator from any initial state
to a fixed desired configuration [2] [3] . The problem of
designing regulators is ensuring asymptotic position error and
joint velocity to zero. Regulators that achieve this objective
for all desired targets and all initial conditions are said to be
globally convergent [4] .

Lyapunov functions are an indispensable tool in analysis
and design of controllers for nonlinear systems and play an
important role in the stability study of robot manipulators. The
asymptotic stability is achieved using the LaSalle invariance
principle [5] .

We use the methodology by energy shaping plus damping
injection technique introduced by Takegaki and Arimoto[6]
to study the simple PD control with gravity compensation,
considered a landmark in robot control. Using energy
shaping it yields a global stable closed–loop system for a
trivial selection of proportional and derivative gains, and
by applying LaSalle’s invariance principle the asymptotic
stability is achieved [7] . Many authors have used energy
shaping to design control schemes using a weak Lyapunov
function [8] — [10] .
They obtain a global stable closed–loop system. The global
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asymptotic stability is obtained with LaSalle’s invariance
principle [11] — [16] .

In view of the simplicity and applicability of the simple
PD controller in industrial applications, the purpose of this
paper is to unify the previous results of the linear PD control
on a large class of Hyperbolic-type controllers for robot
manipulators that lead to global asymptotic stability of the
closed–loop system (dynamics model of robot manipulator
plus controller) by using the direct method of Laypunov. The
proposed control scheme has a nonlinear structure, which in-
corporates components of hyperbolic type to quickly drive the
position error to zero position. In addition to the theoretical
issues of the proposed family; this paper also presents a real-
time comparative study of four position controllers : three
membership controllers of the proposed family vs. the PD
controller on a three degrees of freedom direct–drive arm.

This paper is organized as follows. Section 2 recalls the
robot dynamics and useful properties for stability proof. In
Section 3, the proposed hyperbolic family is presented and
its analysis of global asymptotic stability with a Lyapunov
function. Section 4 summarizes the main components of
the experimental set–up. Section 5 contains the experimental
comparison with three controllers of the proposed family vs
the PD controller on a three degrees of freedom arm. Finally,
some conclusions are offered in Section 6.

II. ROBOT DYNAMICS

In the absence of friction phenomena and other disturbances,
the dynamics of a serialn-link rigid robot [17] can be written
as:

M (q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

whereq is then×1 vector of joint displacements,q̇ is then×1
vector of joint velocities,τ is then×1 vector of input torques,
M (q) is the n × n symmetric positive definite manipulator
inertia matrix,C(q, q̇) is then × n matrix of centripetal and
Coriolis torques, andg(q) is then× 1 vector of gravitational
torques obtained as the gradient of the robot potential energy
due to gravity.

It is assumed that the robot links are joined together
with revolute joints. Although the equation of motion (1) is
complex, it has several fundamental properties which can be
exploited to facilitate control system design. For the proposed
controller, the following important properties are used:
Property 1. The inertia matrixM (q) is a symmetric, positive
definite, therefore∃ M (q)−1 and it is also a symmetric, pos-
itive definite matrix. BothM (q) and M (q)−1 are uniformly

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 3, 2009 159



bounded as a function ofq ∈ IRn, this is ||M (q)|| < β, where
β is a positive real constant, strictly speaking, boundedness
of the inertia matrix requires in general, that all joints be
revolute:[18] [19]

β ≥ n
(
maxi,j,q|Mij(q)|

)

whereMij are elements ofM (q).
Property 2. See Koditschek[18] Spong & Vidyasagar[17]
and Romeoet al. [19] the matrixC(q, q̇) defined using the
Christoffel symbols and the time derivativėM (q) of the inertia
matrix satisfy:

1. q̇T
[

1
2Ṁ (q) − C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn.

2. Ṁ (q) = C(q, q̇) + C(q, q̇)T ∀ q, q̇ ∈ IRn.

Property 3. The Coriolis matrix C(q, q̇)satisfies the
following:[17] [19]

1. If q̇ = 0 thenC(q, q̇) = 0 ∈ IRn×n ∀q ∈ IRn.
2. q̇T C(q, q̇)q̇ is bounded as a function ofq, q̇ ∈ IRn, then

||q̇T C(q, q̇)q̇|| < ||q||2kc, wherekc ∈ IR+.

III. A FAMILY OF HYPERBOLIC AND
EXPONENTIAL–TYPE CONTROLLERS

This section presents the proposed hyperbolic and exponen-
tial family of controllers and its global asymptotic stability
analysis. We intend to extend the results on the simple PD
controller to a large class of hyperbolic-type controllers for
robot manipulators. Consider the following control scheme
with gravity compensation given by

τ = Kp
sh(λq̃)(1 − e−ch(λq̃))
ch(λq̃) + e−ch(λq̃)

− Kv
sh(αq̇)(1 − e−ch(αq̇))

ch(αq̇) + e−ch(αq̃)
+ g(q) (2)

whereKp ∈ IRn×n is the proportional gain which is a diagonal
matrix, Kv ∈ IRn×n is a positive definite matrix, so-called
derivative gain, and the following terms are defined as:

sh(λq̃)(1 − e−ch(λq̃))
ch(λq̃) + e−cosh(λq̃)

=




sh(λ1q̃1)(1−e−ch(λ1 q̃1))

ch(λ1q̃1)+e−ch(λ1 q̃1)

...
sh(λnq̃n)(1−e−ch(λn q̃n))
ch(λn q̃n)+e−cosh(λn q̃n)


 (3)

sh(αq̇)(1 − e−ch(αq̇))
ch(αq̇) + e−ch(αq̇)

=




sh(α1q̇1)(1−e−ch(α1 q̇1))

ch(α1 q̇1)+e−ch(α1 q̇1)

...
sh(αn ˙qn)(1−e−ch(αn ˙qn))

ch(αn ˙qn)+e−ch(αn ˙qn)


 (4)

whereλi and αi ∈ IR+, q̃ ∈ IRn is the position error vector,
which is defined as̃q = qd−q, whereqd ∈ IRn represents the
desired joint position; ch() and sh() are the hyperbolic cosine
and sine functions respectively ande is the Base of Natural
Logarithms.

The control problem can be stated by selecting the design
matricesKp andKv such as the position error̃q and the joint
velocity q̇ vanish asymptotically, i.e.,ĺımt→∞ [q̃(t), q̇(t)]T =
0 ∈ IR2n.

Proposition. Consider the robot dynamic model (1), togeth-
er with the control law (2), then the closed–loop system
is globally asymptotically stable and the positioning aim
ĺımt→∞ q(t) = qd ∧ ĺımt→∞ q̇(t) = 0 is achieved.

Proof: The closed–loop system equation obtained by combin-
ing the robot dynamic model (1) and control scheme (2) can
be written as

d

dt

[
q̃

q̇

]
=

[ −q̇

M (q)−1

[
Kp

sh(λq̃)(1−e−ch(λq̃))

ch(λq̃)+e−ch(λq̃)

−Kv
sh(λq̇)(1−e−ch(λq̇))

ch(λq̇)+e−ch(λq̇ )
− C(q, q̇)q̇

]
]

(5)

which is an autonomous differential equation. Now, it is
demonstrated that the equilibrium point exists and it is unique.
Note that−q̇ = 0 ⇒ -Iq̇ = 0 ⇒ q̇ = 0, whereI ∈ IRn×n is
the identity matrix.
For the second component of the equation (5)C(q, q̇) = 0
according to the property (3).M (q) > 0 ⇒ ∃ M (q)−1 > 0
therefore

M (q)−1Kp
sh(λq̃)(1 − e−ch(λq̃))
ch(λq̃) + e−ch(λq̃)

= 0 ⇔ sh(λq̃i) = 0

sh(λq̃i) = 0 ⇔ q̃i = 0

Kp
sh(λq̃)(1 − e−ch(λq̃))
ch(λq̃) + e−ch(λq̃)

= 0 ⇔ q̃i = 0

with kpi ∈ <+, Kp = diagonal(kpi).
Therefore, the origin of the state space is its unique equilibri-
um point.

To carry out the stability analysis of equation (5), the
following Lyapunov function candidate is proposed:

V (q̃, q̇) =
1
2
q̇T M (q)q̇

+




√
ln( ch(λq̃1)+e−ch(λq̃1 )

1+e−1 )
...

√
ln( ch(λq̃n)+e−ch(λq̃n )

1+e−1 )




T

ΛKp




√
ln( ch(λq̃1)+e−ch(λq̃1 )

1+e−1 )
...√

ln( ch(λq̃n)+e−ch(λq̃n )

1+e−1 )




(6)

whereΛ is a diagonal matrix and it is represented as:

Λ =




1
λ1

· · · 0
...

...
...

0 · · · 1
λn



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The first term ofV (q̃, q̇) is a positive definite function with
respect toq̇ becauseM (q) is a positive definite matrix. The
second term of Lyapunov function candidate (6), which can be
interpreted as a potential energy induced by the position error
is also a positive definite function with respect to position error
q̃, becauseKp is a positive definite diagonal matrix.

Therefore, the Lyapunov function candidate (6) is a radially
unbounded and a globally positive definite function. The time
derivative of Lyapunov function candidate (6) is:

V̇ (q̃, q̇) = q̇T M (q)q̈ +
1
2
q̇T Ṁ (q)q̇

+




√
ln( ch(λq̃1)+e−ch(λq̃1 )

1+e−1 )
...√

ln( ch(λq̃n)+e−ch(λq̃n )

1+e−1 )




T

Kp




sh(λq̃i)(1−e−ch(λq̃i))

ch(λq̃i)+e−ch(λq̃i)√
ln( ch(λq̃i)+e−ch(λq̃i )

1+e−1 )


 ˙̃q

(7)

after simplifying some terms:

V̇ (q̃, q̇) = q̇T M (q)q̈ +
1
2
q̇T Ṁ(q)q̇

−q̇T Kp
sh(λq̃i)(1 − e−ch(λq̃i))

ch(λq̃i) + e−ch(λq̃i)
(8)

along the trajectories of the closed–loop equation (5) is:

V̇ (q̃, q̇) = q̇T M (q)

[
M (q)−1

[
Kp

sh(λq̃)(1 − e−ch(λq̃))
ch(λq̃) + e−ch(λq̃)

−Kv
sh(λq̇)(1 − e−ch(λq̇))
ch(λq̇) + e−ch(λq̇)

− C(q, q̇)q̇

]]

+
1
2
q̇T Ṁ (q)q̇ − q̇T Kp

sh(λq̃i)(1 − e−ch(λq̃i))
ch(λq̃i) + e−ch(λq̃i)

(9)

and after some algebra is:

V̇ (q̃, q̇) = q̇T Kp
sh(λq̃i)(1 − e−ch(λq̃i))
ch(λq̃i) + e−ch(λq̃i)

−q̇T Kv
sh(λq̇i)(1 − e−ch(λq̇i))
ch(λq̇i) + e−ch(λq̇i)

−q̇T C(q, q̇)q̇ +
1
2
q̇T Ṁ (q)q̇

−q̇T Kp
sh(λq̃i)(1 − e−ch(λq̃i))
ch(λq̃i) + e−ch(λq̃i)

(10)

then:

V̇ (q̃, q̇) = −q̇T Kv
sh(λq̇i)(1 − e−ch(λq̇i))
ch(λq̇i) + e−ch(λq̇i)

+q̇T

[
1
2
Ṁ (q) − C(q, q̇)

]
q̇ (11)

and using property 2 it can be written as:

V̇ (q̃, q̇) = −q̇Kv




sh(λq̇1)(1−e−ch(λq̇1))

ch(λq̇1)+e−ch(λ ˙q1 )

...
sh(λ ˙qn)(1−e−ch(λ ˙qn))

ch(λ ˙qn)+e−ch(λ ˙qn )


 ≤ 0 (12)

which is a negative semidefinite funtion, We therefore
concluded that the equilibrium point is stable. In order to
prove the asymptotic stability in a global way, we make use
of the autonomous nature of closed-loop (2) when we applied
LaSalle’s invariance principle:

In the region

Ω =
{[

q̃
q̇

]
∈ <n : V̇ (q̃, q̇) = 0

}
(13)

the unique invariant is
[
q̃T q̇T

]T
= 0 ∈ R2n, therefore

ĺım
t→∞

[
q̃(t)
q̇(t)

]
→ 0.

IV. EXPERIMENTAL SET-UP

An experimental system for researching robot control al-
gorithms has been designed and built at The ”Benemérita
Universidad Autónoma de Puebla”. It is a direct–drive robot
manipulator with three degrees of freedom moving in 3–
dimensional space (see Fig. 1).

Fig. 1. Experimental robot. Home position

The experimental robot consists of links made of 6061
aluminum, actuated by brushless direct drive servo actuator
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from Parker Compumotor to drive the joints without gear
reduction. Advantages of this type of direct-drive actuator
include freedom from backslash and significantly lower joint
friction compared with actuators composed by gear drives. The
motors used in the experimental robot are listed in Table I.

TABLE I
SERVO ACTUATORS OF THE EXPERIMENTAL ROBOT.

Link Model Torque p/rev
[Nm]

Base DM-1015B-60 15 2621440
Shoulder DM-1050A-115 50 4096000
Elbow DM-1004C-115 4 2621440

The servos are operated in torque mode, so the motors
act as torque source and they accept an analog voltage as
a reference of torque signal. Position information is obtained
from incremental encoders located on the motors. The standard
backwards difference algorithm applied to the joint position
measurements are used to generate the velocity signals. The
manipulator workspace is a sphere with a radius of 1m.

Besides position sensors and motor drivers, the manipulator
also includes a motion control board manufactured by Pre-
cision MicroDynamic Inc., which is used to obtain the joint
positions. The control algorithm runs on a Pentium–II (333
Mhz) host computer.

With reference to our direct–drive robot, only the gravi-
tational vector is required to implement the new family of
controllers (2), which is available in [20]

g(q) =




0
1,02 sin(q1) + 0,20 sin(q1 + q2)

0,20 sin(q1 + q2)


 [Nm].

V. EXPERIMENTAL RESULTS

In this Section an experimental comparison of four position
controllers on a three–degrees–of–freedom direct-drive robot
manipulator which support our theoretical developments is
presented. To investigate the performance among controllers,
they have been clasified as HE1, HE2 and HE3 for the
hyperbolic and exponent family where the coefficientλ = 1,
2, and 3, respectively. We denote the PD for the simple PD
controller.

In order to compare the perfomance of the controllers on
direct - drive robot, an experiment of position control whose
objective is to move the manipulator end - effector from its ini-
tial position to a fixed desired target has been designed. For the
present application there are two configurations of desired joint
positions, the first one as:[qd1, qd2, qd3]T = [45, 45, 90]T de-
grees and the second one as[qd1, qd2, qd3]T = [135, 70, 110]T

degrees, whereqd1, qd2, qd3 represents the base, shoulder, and
elbow joints, respectively. The initial positions and velocities
were set to zero (for example in home position). The friction
phenomenona was not modeled for compensation purpose. As
a result, all the controllers did not show any type of friction
compensation, therefore it has been decided to consider the
friction unmodeled dynamics. Evaluated controllers have been
written in C language. The sampling rate was executed at 2.5

msec. Fig. 1 and Fig. 2 show the initial and one of the desired
configurations for the experimental robot, respectively.

Fig. 2. Desired position for experimental robot

VI. EXPERIMENTAL RESULTS FOR THEHYPERBOLIC
EXPONENTIAL FAMILY CONTROLLER

From equation (2), with n = 3 degrees of freedom for the
experimental arm, (see Fig.1) the following class of controllers
can be obtained:

With the coefficientλ = 1, this member of the family is
called HE1, the equation for the three joints of the robot arm
are as follows:

τHE11 = Kp1
sh(q̃1)(1 − e−ch(q̃1))
ch(q̃1) + e−ch(q̃1)

−Kv1
sh(α11q̇1)(1 − e−ch(α11q̇1))
ch(α11q̇1) + e−ch(α11q̇1)

τHE12 = Kp1
sh(q̃2)(1 − e−ch(q̃2))
ch(q̃2) + e−ch(q̃2)

−Kv1
sh(α12q̇2)(1 − e−ch(α12q̇2))
ch(α12q̇2) + e−ch(α12q̇2)

+1,02 sin(q2) + 0,2 sin(q2 + q3)

τHE13 = Kp1
sh(q̃3)(1 − e−ch(q̃3))
ch(q̃3) + e−ch(q̃3)

−Kv1
sh(α13q̇3)(1 − e−ch(α13q̇3))
ch(α13q̇3) + e−ch(α13q̇3)

+0,2 sin(q2 + q3) (14)

With the coefficientλ = 2, this member of the family is
called HE2, the equation for the three joints of the robot arm
are as follows:

τHE21 = Kp1
sh(2 ∗ q̃1)(1 − e−ch(2∗q̃1))
ch(2 ∗ q̃1) + e−ch(2∗q̃1)

−Kv1
sh(α21q̇1)(1 − e−ch(α21q̇1))
ch(α21q̇1) + e−ch(α21q̇1)

τHE22 = Kp1
sh(2 ∗ q̃2)(1 − e−ch(2∗q̃2))
ch(2 ∗ q̃2) + e−ch(2∗q̃2)
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−Kv1
sh(α22q̇2)(1 − e−ch(α22q̇2))
ch(α22q̇2) + e−ch(α22q̇2)

+1,02 sin(q2) + 0,2 sin(q2 + q3)

τHE23 = Kp1
sh(2 ∗ q̃3)(1 − e−ch(2∗q̃3))
ch(2 ∗ q̃3) + e−ch(2∗q̃3)

−Kv1
sh(α23q̇3)(1 − e−ch(α23q̇3))
ch(α23q̇3) + e−ch(α23q̇3)

+0,2 sin(q2 + q3) (15)

With the coefficientλ = 3, this member of the family is
called HE3, the equation for the three joints of the robot arm
are as follows:

τHE31 = Kp1
sh(3 ∗ q̃1)(1 − e−ch(3∗q̃1))
ch(3 ∗ q̃1) + e−ch(3∗q̃1)

−Kv1
sh(α31q̇1)(1 − e−ch(α31q̇1))
ch(α31q̇1) + e−ch(α31q̇1)

τHE32 = Kp1
sh(3 ∗ q̃2)(1 − e−ch(3∗q̃2))
ch(3 ∗ q̃2) + e−ch(3∗q̃2)

−Kv1
sh(α32q̇2)(1 − e−ch(α32q̇2))
ch(α32q̇2) + e−ch(α32q̇2)

+1,02 sin(q2) + 0,2 sin(q2 + q3)

τHE33 = Kp1
sh(3 ∗ q̃3)(1 − e−ch(3∗q̃3))
ch(3 ∗ q̃3) + e−ch(3∗q̃3)

−Kv1
sh(α33q̇3)(1 − e−ch(α33q̇3))
ch(α33q̇3) + e−ch(α33q̇3)

+0,2 sin(q2 + q3) (16)

where (τHE11 , τHE21 , τHE31), (τHE12 , τHE22 , τHE32) and
(τHE13 , τHE23 , τHE33) represent the applied torques for the
base, shoulder, and elbow joints, respectively. The controllers
gains were selected empirically. However, several trials for
selecting gains were necessary in order to ensure an acceptable
behavior in practice, that is, fast response and a smaller steady
- state error.

In order to avoid torque saturation of the actuators, but to
function in its linear part, the proportional gains were chosen
such thatτ < ‖τmax‖, whereτmax represents the maximum
applied torque of theıth joint (see limits of actuators in Table
I).

The empirical formula that was used to select the tuning of
the proportional gain is given by:kpi = 80 %τimax/qdi. For
that reason the values forkp1, kp2 and kp3 are: 12, 32 and
3.2 respectively, that correspond to the 80 % of the nominal
torque of the actuators, see Table II.

TABLE II
SETTINGS FOREXPONENT HYPERBOLIC,kpi VALUES.

kp [Nm]

kp1 12

kp2 32

kp3 3.2

With the proportional gains fixed, derivative ones were
adjusted to obtain a low under - damped response. For a lower
α a proportional relation between velocity and derivative value
is obtained.

For each member of this proposed family of controllers:
HE1, HE2, HE3 that correspond to the coefficient,λ = 1, 2,
and 3, there are particularlyKp andKv matrixes.

VI-A. Desired position[45, 45, 90]T

For the first configuration of desired positions, that is
[qd1, qd2, qd3]T = [45, 45, 90]T degrees, values forkvij and
αij are shown in Table III.

TABLE III
SETTINGS FOREXPONENT HYPERBOLIC,λi , kvij AND αij VALUES

[qd1, qd2 , qd3]
T = [45,45,90]T DEGREES

kv [Nm] α [ rad∗s
degrees

]

kv1 3 α11 0.015

λ = 1 kv2 0.5 α12 0.002

kv3 0.1 α13 0.0002

kv1 17 α21 0.01

λ = 2 kv1 1.4 α22 0.001

kv1 0.04 α23 0.001

kv1 28 α31 0.01

λ = 3 kv1 0.32 α32 0.006

kv1 2.4 α33 0.004

Fig. 3 to 8 contain the experimental results of the hyperbolic
and exponential family. There are three members of the family
HE1, HE2, HE3, the graphic of position error and applied
torque are shown for each one. The graphics of position error
show that the three links tend to a small neighborhood near
zero. This characteristic demonstrates the properties of the
proposed family. The graphic of applied torque shows that the
actuator works in its linear zone but not in that of saturation.

Fig. 3. Position errors of the HE1 controller.
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Fig. 4. Applied torques of the HE1 controller.

Fig. 3 and 4, correspond to the HE1 conntroller. The
steady state position begins approximately at t = 2 sec, and
[q̃1, q̃2, q̃3]T = [0,001, 0,399, 0,113]T degrees.

Fig. 5. Position errors of the HE2 controller.

Fig. 5 and 6, correspond to the HE2 controller . The
steady state position begins approximately at t = 1.5 sec., and
[q̃1, q̃2, q̃3]T = [0,001, 0,385, 0,096]T degrees.

Fig. 6. Applied torques of the HE2 controller.

Fig. 7. Position errors of the HE3 controller.

Fig. 8. Applied torques of the HE3 controller.

Fig. 7 and 8, correspond to the HE3 controller. The steady
state position begins at t = 3 sec., and[q̃1, q̃2, q̃3]T =
[0,009, 0,298, 0,076]T degrees.

VI-B. Desired position[135, 70, 110]T

For the second configuration of desired positions, that is
[qd1, qd2, qd3]T = [135, 70, 110]T degrees, values forkvij and
αij are shown in Table IV.

TABLE IV
SETTINGS FOREXPONENT HYPERBOLIC, λi , kvij AND αij VALUES FOR

[qd1, qd2, qd3]
T = [135,70,110]T DEGREES

kv [Nm] α [ rad∗s
degrees

]

kv1 9 α11 0.01

λ = 1 kv2 0.1 α12 0.01

kv3 0.1 α13 0.0002

kv1 50 α21 0.02

λ = 2 kv1 0.001 α22 0.040

kv1 0.15 α23 0.002

kv1 22 α31 0.013

λ = 3 kv1 0.05 α32 0.01

kv1 1 α33 0.04

Fig. 9 to 14 contain the experimental results of the hy-
perbolic and exponential family for the desired position
[qd1, qd2, qd3]T = [135, 70, 110]T degrees.
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Fig. 9. Position errors of the HE1 controller.

Fig. 10. Applied torques of the HE1 controller.

Fig. 9 and 10, correspond to the HE1 conntroller. The
steady state position begins approximately at t = 2 sec, and
[q̃1, q̃2, q̃3]T = [0,011, 0,95,−0,0028]T degrees.

Fig. 11. Position errors of the HE2 controller.

Fig. 11 and 12, correspond to the HE2 controller . The
steady state position begins approximately at t = 2.5 sec., and
[q̃1, q̃2, q̃3]T = [0,004, 0,53, 0,027]T degrees.

Fig. 12. Applied torques of the HE2 controller.

Fig. 13. Position errors of the HE3 controller.

Fig. 14. Applied torques of the HE3 controller.

Fig. 13 and 14, correspond to the HE3 controller. The
steady state position begins at t = 3 sec., and[q̃1, q̃2, q̃3]T =
[−0,030, 0,31, 0,0005]T degrees.

VII. EXPERIMENTAL RESULTS FOR THEPD CONTROLLER

This Section presents the results of the PD controller. The
desired positions and the initial conditions were the same as
in the previous Section. Fig. 15 to 18 contain the experimental
results of this part. The PD controller for the three degrees of
freedom robot arm are given by the following equations.

τPD1 = Kp1(q̃1) − Kv1(q̇1)
τPD2 = Kp2(q̃2) − Kv2(q̇2)

+1,02 sin(q2) + 0,2 sin(q2 + q3)
τPD3 = Kp3(q̃3) − Kv3(q̇3)

+0,2 sin(q2 + q3) (17)

whereτPD1 , τPD2 andτPD3 represent the applied torques
for the base, shoulder, and elbow joints, respectively.

Extensive experiments were carried out with the PD con-
trollers to select their gains, such that the best time response
without overshoot and minimum steady - state position error
were obtained without entering the saturation zone of the
actuator’s torques. The PD gains were selected as:kpi =
80 % | τ imax | /q̃i(0) and kvi << kpi. After a trial and
error procedure, proportional and derivative gains have been
selected as suitable choices for preventing the actuators from
saturation. Fig. 16 and 18 are inside the limits of torque for
its respective actuator but not in the saturation zone.

Values forkpi and kvi for the PD controller are shown in
Table V.
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TABLE V
SETTINGS FOR THEPD CONTROLLER.

[qd1, qd2, qd3]
T kp [Nm] kv [ rad∗s

degrees
]

kp1 0.3 kv1 6E-4

[45,45,90]T kp2 0.9 kv2 0.01

[degrees] kp3 0.045 kv3 0.001

kp1 0.09 kv1 4.0

[135,70,110]T kp2 0.46 kv2 10

[degrees] kp3 0.03 kv3 0.2

VII-A. Desired position[45, 45, 90]T

Fig. 15. Position errors of the PD controller.

Fig. 15 contains the experimental result of position er-
rors of the PD controller. The steady state position be-
gins approximately at t = 2.5 sec., and[q̃1, q̃2, q̃3]T =
[0,8108, 11,9658, 27,1879]T degrees. Fig. 16 show the applied
torque with the PD controller for the base, shoulder and elbow.

Fig. 16. Applied torques of the PD controller.

VII-B. Desired position[135, 70, 110]T

Fig. 17. Position errors of the PD controller.

Fig. 17 contains the experimental result of position errors
of the PD controller. The steady state position begins approxi-
mately at t = 1.5 sec., and[q̃1, q̃2, q̃3]T = [18, 39, 54]T degrees.

Fig. 18 shows the applied torque with the PD controller for
the base, shoulder and elbow.

Fig. 18. Applied torques of the PD controller.

VIII. I NDICES OF PERFORMANCE

The robot manipulators are very complex mechanical sys-
tems, due to the nonlinear and multivariable nature of their
dynamical behavior. For this reason, in the robotic community
there are no well–established criteria for a proper evaluation
of controllers for robots. However, it is accepted in practice to
compare the performance of controllers by using the scalar–
valued L2 norm as an objective numerical measure for an
entire error curve Whitcomb et. al [21] De Jager & Banens
[22] Berghuis et. al [23] Jaritz & Spong [24] . TheL2[q̃] norm
measures the root–mean–square average of theq̃ position
error, which is given by:

L2[q̃] =

√
1

t − t0

∫ t

t0

‖q̃‖2dt (18)

wheret0, t ∈ IR+ are the initial and final times, respectively.
A smallerL2[q̃] represents smaller position error and it gives
the best performance of the evaluated controller. The data are
compared with respect to the PD controller. To average out
stochastic influences, the data represent the mean of root -
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mean - square position error vector norm of ten runs.

Fig. 19 and 20 show the performance indices of all the
controllers, for [qd1, qd2, qd3]T = [45, 45, 90]T degrees and
[qd1, qd2, qd3]T = [135, 70, 110]T degrees respectively. The
overall results are summarized by Table VI which includes
the performance indices of all the controllers. In general the
proposed controller improves the perfomance of the PD, the
two first members of the proposed family ( HE1, HE2 ) in
about 32 % - 33 % and the last member (HE3) in about 21%
- 24 %.

The result from one run to another was observed, and the
difference with the average are the following: 0.5 %, 0.6 %,
1.6 %, 0.7 % for HE1, HE2, HE3, and the PD respectively,
which underline the repeatability of the experiments.

Fig. 19. Performance index for transient and stationary states.

Fig. 20. Performance index for transient and stationary states

TABLE VI
L2 NORM FOR TRANSIENT AND STATIONARY STATES.

[qd1, qd2, qd3]
T L2 [degrees] difference [ %]

HE1 25.67 32

[45,45,90]T HE2 25.64 32

[degrees] HE3 27.79 21

PD 37.7 –

HE1 57.8 33

[135,70,110]T HE2 57.7 33

[degrees] HE3 65.4 24

PD 85.7 –

In order to compare the error, the values ofL2 norm for
the stationary state have been obtained (Fig. 21 and Fig. 22)
These values are taken in the last second of each test, between
the 4th and 5th second, and are summarized in table VII.

TABLE VII
L2 NORM FOR STATIONARY STATE.

[qd1, qd2, qd3]
T L2 [degrees] difference [ %]

HE1 0.15 99

[45,45,90]T HE2 0.14 99

[degrees] HE3 0.10 99

PD 9.7 –

HE1 0.43 95

[135,70,110]T HE2 0.24 97

[degrees] HE3 0.14 98

PD 8.35 –

Fig. 21. Performance index for stationary state case.
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Fig. 22. Performance index for stationary state case.

Fig. 21 and 22 shows the results and evidence for the poor
perfomance of the PD controller in the stationary state.

The L2 norm for the stationary state of the proposed
controller is about 95 % - 99 % less than the PD controller.

IX. CONCLUSIONS

The hyperbolic and exponential family of controllers for
position control of robot manipulators has been introduced in
this paper. A rigorous stability analysis has been carried out
and the theoretical results determinate conditions for ensuring
global regulation.

The performance of the new scheme was compared with
a well known algorithm such as the PD controller by using
a real - time experimental comparison on a three degrees of
freedom direct - drive robot. From the experimental results
the new scheme was sufficient to produce a brief transient and
minimum steady - state position error in comparison with the
PD controllers that showed to be less robust than the proposed
scheme.

This new family show the lessL2[q̃] norm, therefore the
best performance than the evaluated controller and the less
L2[q̃] norm for stationary state, which indicate a smaller error
than with the PD controller. For this reason, the usefulness
of the proposed family can be concluded to represent an
attractive scheme from a practical viewpoint; for example in
manufacturing systems.
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