
 

 

  
Abstract— Non-delay real parameter stability and stabilization 

for a quasipolynomial of a retarded structure is studied in this 
contribution. In the sense of this paper, quasipolynomials are 
considered to be over real coefficients and in only one variable. 
Unlike some other methods and analyses, a non-delay real parameter 
is being to set in a quasipolynomial with two independent delay 
terms. Retarded quasipolynomial stability is given by the requirement 
that all its roots (of an infinite spectrum) are located in the open left-
half complex plane. The proposed stabilization methodology is based 
on the argument principle, i.e. on the Mikhaylov stability criterion. 

This problem has many applications especially in the control 
theory since such a quasipolynomial can characterize the dynamics of 
a closed-loop system with delays. In the presented paper, we 
introduce two problems connected with stabilization and control of 
time delay systems. The first one deals with a coprime factorization 
for algebraic controller design, the second one propose stabilization 
of an anisochronic model of a high order system. Stability features 
and application problems are accompanied with simulation examples 
in the Matlab-Simulink environment. 
 
Keywords—Stabilization, quasipolynomial, argument principle, 

time delay systems, simulations.  

I. INTRODUCTION 

HE existence of delays, latencies and distributed 
parameters in dynamics of continuous-time linear systems 

is known to engineers and scientists for decades. For example, 
heating and thermal processes are frequently introduced in the 
literature, see e.g in [1]-[3]. Time delay systems (TDS) and 
models are considered not only with input-output delays, but it 
is mainly supposed that internal (state) delays appear in their 
dynamics [4]. Considering continuous and linear (or 
linearized) models, one can naturally utilize the Laplace 
transform yielding in single-input single-output case the 
transfer function as a ratio of so-called quasipolynomials [5]. 
Unlike some other modeling and analytic approaches, which 
consider quasipolynomials in two independent variables s and 
z [6], we utilize only one complex variable s [7]-[8]. Roots of 
the transfer function denominator (i.e. poles) decide (except 
some cases of distributed delays [9]) about the asymptotic 
stability as in the case of polynomials; however, the system 
spectrum is infinite. 
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of delayed systems in the recent years can be observed, e.g. in 
[10-13] where the task was solved using various analytical and 
numerical tools. The decision about asymptotic stability of 
plants, feedback stabilization or control of systems with 
internal delays can be done via studying of the corresponding 
characteristic quasipolynomial. For these purposes, a powerful 
tool is the conventional argument principle (i.e. the Mikhaylov 
criterion) which holds for characteristic quasipolynomials of 
delayed systems of retarded type. Note that neutral delayed 
systems require rather modified Mikhaylov criterion [14].  

      In this contribution, we address the investigation the 
stability of the selected retarded quasipolynomial with two 
independent delays.  The aim is to find lower and upper 
bounds for a real selectable non-delay parameter so that all its 
zeros are located in the open left-half complex plane, which 
implies the asymptotic stability of the quasipolynomial. In 
contrast to other authors who usually have studied the stability 
w.r.t. the delay, not w.r.t. a non-delay parameter, the presented 
paper deal with stabilization by a non-delay parameter and two 
independent delays. Presented derivations and calculations are 
based on the argument principle (i.e. the Mikhaylov criterion) 
and the desired shape of the Mikhaylov plot. The result can 
serve engineers in setting the unknown controller parameter in 
the characteristic quasipolynomial of a delayed system 
properly, or to decide about system or quasipolynomial 
stability. 

The paper is organized as follows: The studied 
quasipolynomial stability and stabilization problem is introduced 
in Chapter II. Chapter III contains a brief overview of analytic 
tools for stability analysis. In Chapter IV, lemmas, propositions 
and theorems explaining the stability properties are derived. As a 
result, the acceptable stability interval for a non-delay parameter 
is obtained. The application of presented results on problems of 
a coprime factorization and the stabilization of an anisochronic 
model of a high order system is demonstrated in Chapter V. This 
chapter is supported by some simulation examples. Conclusions 
and references finalize the presented paper.  

II. RETARDED QUASIPOLYNOMIAL 

It is a well known fact that single-input single-output linear 
time-invariant systems with time delays can be expresses in the 
input-output relation by a ration of two quasipolynomials. 
Input-output and internal point (lumped) or distributed delays 
in the Laplace transform yield exponentials which appear in 
the transfer function. Some authors comprehend a 
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quasipolynomial as a polynomial in two independent variables 
s and ( )sz −= exp  over real numbers. However, there is no 

reason to introduce two variables (which the analyses more 
difficult) and thus one complex variable s in a quasipolynomial 
can be considered. 

Hence, quasipolynomials have a general form 
 

( ) ( )∑ ∑
= =

−+=
n

i

h

j
ij

i

ij

n
i

ssmssm
0 1

exp ϑ  (1) 

 
There are two basic types of quasipolynomials. A neutral 

type is obtained if 0≠njm , a retarded one if 0=njm . It is 

said that a quasipolynomial is asymptotically stable if there is 
no root σ of (1) such that 

 
{ } ( ) 0:0Re =≥ σσ m  (2) 

 
Both quasipolynomial types have different spectral 

properties; namely, neutral quasipolynomials can have an 
infinite number on unstable poles which create “stripes” 
asymptotically tracing a vertical line in a complex plane. 
Moreover, a small delay perturbation can move even stable 
spectrum into the right-half plane which gives rise to the 
notion of strong stability [15], [16]. On the other side, retarded 
quasipolynomials are free from these two unpleasant 
properties. 

The quasipolynomial denominator of a transfer function 
decides about system stability except some cases of distributed 
delays where the numerator and denominator have some 
identical unstable roots. In this case, there exists a stable state-
space realization avoiding these unstable transfer function 
poles. 

The main goal of this paper is to found upper and lower 
bounds for the parameter ∈≠ 0q ∇ such that the 

quasipolynomial with two independent delays 
 
( ) ( ) ( )skqsassm τϑ −+−+= expexp  (3) 

 
is stable, where ∈≠ 0a ∇; ∈> 0,, τϑk ∇. This 

quasipolynomial can represent, for example, the feedback 
stabilization problem when control a system with both input-
output delay τ  and state (internal) delay ϑ  by a proportional 
controller q . 

III.  ARGUMENT-INCREMENT BASED STABILITY CRITERION 

During last decades a various techniques for time-delay 
system and quasipolynomial stability analysis have been 
investigated, see e.g. [7], [12]-[14], [17], [18], either for 
neutral and retarded cases. In this chapter a very important fact 
about TDS and quasipolynomial stability is recalled which is 
usable if a frequency-domain description is available. Since a 
general quasipolynomial (1) is a complex variable analytic 
function, the argument principle based on the evaluation of the 

increment of ( )sm -argument resulting from a closed counter-

clockwise (positive) Jordan curve running around all 
quasipolynomial zeros can be used. Namely, if it is required 
that all zeros are located in the open left-half plane, a curve 
identical with the imaginary axis can be taken. It can be shown 
that for a general retarded quasipolynomial the following 
statement holds. 
Assumption 1. If retarded ( )sm  has no zero on the 

imaginary axis, then ( )sm  has no zero in the right-half s-plane 

if and only if  
 

( )
) 2

arg
,0[j,
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ωω

n
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s

=∆
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 (4) 

 
see e.g. [8], [17].  

This principle is the well-known Mikahylov stability 
criterion. The idea used in this contribution is a sort of “loop 
shaping” methodology. Thus, one can calculate the desired 
number of quadrants in the complex plane which the 
Mikhaylov plot has to pass according to (4), and then to 
restrict quasipolynomial parameters in order to obtain the 
desired shape of the curve. 

IV. MAIN RESULTS 

Result (4) is now used when stability analysis and non-delay 
parameter stabilization of quasipolynomial (3). According to 
the criterion, the Mikhaylov curve of (3) for [ )∞∈ ,0ω   must 

produce the overall argument change equal to 2/π . 
Quasipolynomial stability investigation via lemmas, 
propositions and theorems follows; however, due to a rather 
high complexity of such type of quasipolynomials, some 
statements remain unproven. 
Lemma 1. For ω = 0, the imaginary part of the Mikhaylov 

curve of quasipolynomial (3) equals zero and it approaches 
infinity for ω → ∞. 
Proof. Decompose ( )ωjm  into real and imaginary parts as 

follows 
 

( ){ } ( ) ( )τωϑωω coscosjRe kqam +=  (4) 

( ){ } ( ) ( )τωϑωωω sinsinjIm kqam −−=  (5) 

 
Obviously 
 

( ){ } 0jIm
0

=
=ω
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( ){ } ∞=→∞ ωω jImlim m  □ 

 
Lemma 2. If (3) is stable, the following inequality holds 
 

k

a
q

−
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and thus the Mikhaylov curve starts on positive real axis. 
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Proof. If (3) is stable, the overall argument change equals to 
π/2 according to (2). Moreover, Lemma 1 states that the 
imaginary part goes to infinity. These two requirements imply 
that for stable quasipolynomial is 

 

( ){ } 0jRe
0

>
=ω

ωm  (7) 

 
By application of (7) onto (4) the condition (6) is obtained. □  
Lemma 3. A point on the Mikhaylov curve of (3) lies in the 

first quadrant for an infinitesimally small 0>∆=ω  if and 
only if 

 
1≤+ τϑ kqa  (8) 

 
This point lies in the fourth quadrant if and only if 
 

1>+ τϑ kqa  (9) 

 
Proof. (Necessity.) If the point goes to the first quadrant for 

an infinitesimally small 0>∆=ω , then the change of function 
( ){ }ωjIm m  in 0=ω  is positive or this function is increasing 

in ∆=ω . It is known fact that this is satisfied if either 
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(i.e. there is a local minimum of ( ){ }ωjIm m  in 0=ω ), 

or there is odd n ≥ 3 ∈   such that 
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(i.e. there is a point of inflexion of ( ){ }ωjIm m  in 0=ω ; 

however, the function is increasing in ∆=ω ). 
Analyze now the previous three conditions. First, relation 

(10) w.r.t. (5) reads 
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which gives 1<+ τϑ kqa . 

Second, condition (11) can be taken into account if 
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The second derivation is 
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Generally, any even n-th derivation reads 
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This implies that condition (11) can not be satisfied. 

Third, assume that there exists a non-zero odd n-th, n ≥ 3, 
derivation in 0=ω  
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Test the latter condition in (12), obviously 
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since 
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Analogously to (10)-(12), one can easily verify that if the 

Mikhaylov plot passes through the fourth quadrant first, then 
function ( ){ }ωjIm m  decreases in 0=ω and (9) holds. 

(Sufficiency.) Consider condition (8) and verify that it 
satisfies (10) or (12), respectively. In the same way, formula 
(9) gives rise to 
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which induces the initial tendency of the Mikhaylov plot to go 
to the fourth quadrant.  □ 
Lemma 4. If a, k, q are bounded, then ( ){ }ωjRe m  is 

bounded for all ω  > 0. 
Proof. Assume the following four various condition.  
 

1) If 0>a  and 0>kq , then 

 
( ){ } ( ) ( ) kqakqamkqa +≤+=≤−− τωϑωω coscosjRe  (21) 

 
2) If 0>a  and 0<kq , then 

 
( ){ } kqamkqa −≤≤+− ωjRe  (22) 

 
3) If 0<a  and 0>kq , then 

 
( ){ } kqamkqa +−≤≤− ωjRe  (23) 

 
4) If 0<a  and 0<kq , then 

 
( ){ } kqamkqa −−≤≤+ ωjRe  (24) 

 
It is possible to summarize and unify results (21) – (24) as 
 

( ) ( ){ } kqamkqa +≤≤+− ωjRe  (25) 

 □ 
 
Proposition 1. If (6) and (8) are satisfied simultaneously, 

then 
 

( ) 1≤−τϑa  (26) 

 
Proof. Obviously, 
 

( ) 1≤+<−
−>

τϑτϑ kqaa
akq

 (27) 

 □ 
The preceding proposition also expresses that for a stable 

quasipolynomial (3) when the corresponding Mikhaylov plot 
passes the first quadrant as first, the condition (26) holds. 
Proposition 2. If the following inequality holds 
 

( ) 1>−τϑa  (28) 

 
then the corresponding Mikhaylov plot of a stable 
quasipolynomial (3) passes the fourth quadrant as first. 
Proof. Lemma 2 states that (6) reads for stable 

quasipolynomial (3). Then 
 

( ) τϑτϑ kqaa
akq

+<−<
−>

1  (29) 

 
which induces that the Mikhaylov plot goes to the fourth 

quadrant as first, due to Lemma 3. 
Proposition 3. There always exists an intersection of the 

Mikhaylov curve of (3) with the imaginary axis. 
Proof. The intersection exists if ( ){ } 0jRe =ωm , i.e. 

 
( ) ( )τωϑω coscos kqa −=  (30) 

 
for some 0>ω . Obviously, since 0>ϑ , 0>τ , there is 

0>ω  satisfying relation (30). □ 
The upper stability bound will now be found via some 

observations and a theorem. Due to highly complicated 
formulas (4) and (5) caused by goniometric functions, some 
numerical unproven observations compensate for exact 
analytic statements. 
Definition 1. Let (6) holds. A crossover frequency 0ω  is an 

element of the set 
 

( ){ } ( ){ }{ }0jIm,0jRe,0::0 ==>=Ω ωωωω mm  (31) 

 
for some crossover gain 0q  and 0,,,0 >≠ ϑτka . ■ 

A crossover frequency, hence, has to satisfy simultaneously 
these two identities 
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Relations (32) can also be expressed by transcendental 

equation 
 

( ) ( )( )( )000 sincos ωτϑτωω −= a  (33) 

 
Note that equation (33) is in the form suitable for utilization 

of numerical methods, i.e. some ratios of goniometric 
functions are not desirable for this purpose.  

The crossover gain 0q  can be calculated from (32) as  
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Definition 2. Let (6) holds. The critical frequency Cω  is 

defined as 

( )
)

( )
) 
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for the corresponding critical gain Cq  given by (34), where 

Cω  is placed instead of 0ω , and 0,,,0 >≠ ϑτka . ■ 

Obviously, the critical frequency is the least crossover 
frequency for which the argument change is zero for 

[ )Cωω ,0∈  and consequently it equals 2/π  for [ )∞∈ ,Cωω . 

The quasipolynomial is then on the stability border for Cq , 

which has to satisfy the necessary stability condition (6). There 
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can hence exist some crossover frequencies less then the 
critical one which do not mean the stability border. 

The difference between the crossover and the critical 
frequencies is clarified in Fig. 1. Whereas (a) displays the 
critical frequency, position (b) shows the crossover one only, 
because the phase shift of ( )sm  for 0ω  is 2/3π−  and there is 

not another 0ω . 

 

 
Fig. 1 The difference between Cω (a) and Cωω ≠0  (b) 

 
Observation 1. Let Cqq = , then the Mikhaylov plot of (3) 

circumscribes curves in the clockwise direction around the 
center of the rotation (like a “whirligig”). Moreover, if (8) 
holds, then the Mikhaylov plot of (5) initially moves to the 
first quadrant (as proved in Lemma 3) followed by the fourth 
quadrant for some frequencies 0>ω . It means that although 
relation (8) quarantines that the plot tends to move to the first 
quadrant for 0=ω , it immediately passes over the positive 
real axis to the fourth quadrant anyway. The situation is 
displayed in Fig. 2. 

 

 
Fig. 2 Explanation of Observation 1 

 
Remark 1. In [19] and [20] is proved a lemma which states 

that the spectrum of a general retarded quasipolynomial is 
continuous with respect to continuous changes of all its 
parameters. This fact implies that the Mikhaylov plot of an 
appropriate quasipolynomial is continuous in both axes with 
respect to these parameters’ changes, and viceversa. 
Theorem 1. If ( ) 0sin >Cτω , then quasipolynomial (3) is 

stable if and only if 

( )
( )C

CC

k

a
q

k

a

τω
ϑωω

sin

sin−
<<

−
 (36) 

Contrariwise, if ( ) 0sin <Cτω , then quasipolynomial (5) is 

stable if and only if 
 

( )
( ) k

a

k

a
q

C

CC −
≥

−
>

τω
ϑωω

sin

sin
 (37) 

 
where Cω  is the critical frequency. 

Proof. (Necessity.) The Mikhaylov curve of stable 
quasipolynomial (3) starts on the positive real axis, and thus 
the left-hand side of (36) and the right-hand one of (37) hold, 
as proved in Lemma 2. Lemma 3 states the condition (8) 
guaranties that the initial change of the Mikhaylov curve in the 
imaginary axis is positive. i.e. the curve tends to move to the 
first quadrant for 0=ω ; however, according to Observation 1, 
it immediately moves to the fourth quadrant. If (9) is satisfied, 
the curve passes through the fourth quadrant already for an 
infinitesimally small ω . The critical (marginal) case is 
characterized by Cω  and Cq  where the curve crosses the 

origin of the complex plane and a small change of q would 
cause the quasipolynomial stability, i.e. the overall phase 
change would be 2/π , see Remark 1. The limit stable case 
thus obviously means that either when ( ){ } 0jIm =Cm ω , the 

real part must satisfy ( ){ } 0jRe >Cm ω  for some q, or 

( ){ } 0jRe =Cm ω  and ( ){ } 0jIm >Cm ω . However, the former 

condition has one important inconvenience described in the 
following paragraph. 

When τϑ = , the critical case ( ){ } 0jRe =Cm ω , q = qC, 

reads 
 

( ) ( ) 0cos =+ CCkqa ϑω  (38) 

 
Since for 0≠Cω  and a Mikhaylov plot starting on the 

positive real axis, Ckqa −< , i.e. ( ) 0cos =Cϑω  (Lemma 2), 

then it is not possible to satisfy ( ){ } 0jRe >Cm ω  for any q. 

Therefore take the latter limit stable stability condition and 
apply simple calculations on (4) and (5) using (33) when 

( ) 0sin >Cτω , which yields the upper bound in (36). 

Otherwise, if ( ) 0sin <Cτω , the calculations result in the left-

hand side inequality in (37). Evidently, values of q less then 
the necessary stability condition (6) can be discarded. 

A case when ( ) 0sin =Cτω  would mean that q reaches 

infinity which is not physically possible. 
(Sufficiency.) Consider inequality (36) first. The lower 

bound means that the Mikhaylov curve initiates on the positive 
real axis, see Lemma 2. Lemma 3 verifies that the curve 
reaches infinity in the imaginary axis for ω → ∞, and Lemma 4 
states that it is bounded in the real axis. Moreover, if (8) holds 
the Mikhaylov curve tends to move to the first quadrant and, 
consequently, to the fourth quadrant for 0=ω ; otherwise, it 
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moves to the fourth quadrant for ∆=ω  when (9) is satisfied. 
For the quasipolynomial stability, expressed by the overall 
phase shift π/2, it is now sufficient to show that the curve does 
not encircle the origin of the complex plane in the clockwise 
direction.  

Let the critical stability case be expressed by Cω  and qC and 

apply the upper bound in (36) on (4) and (5) together with 
( ) 0sin >Cτω . Hence, the following conditions are satisfied 

simultaneously for a particular q: q < qC, ( ){ } 0jRe =Cm ω , 

( ){ } 0jIm >Cm ω . It means that the imaginary axis is crossed in 

the positive semi-axis first on the critical frequency and thus, 
with respect to Remark 1, the origin is encircled in the anti-
clockwise direction with the overall phase shift π/2. 

As second, the right-hand side of (37) expresses the 
necessary stability condition (6) which guaranties that the 
Mikhaylov curve starts on the positive real axis. Assume now 
that the left-hand side in the inequality holds. Similarly as in 
the previous paragraph, it is sufficient to prove that the curve 
encircles the origin in the complex plane in the anti-clockwise 
direction. Indeed, if ( ) 0sin <Cτω , one can verify that the 

inequality agrees with the statement that ( ){ } 0jRe =Cm ω  and 

( ){ } 0jIm >Cm ω  which gives rise to the stability of 

quasipolynomial (3). □ 
Remark 2. It is not always easy to check, mainly without 

displaying the Mikhaylov plot, whether a crossover frequency 
calculated by (33) is critical and thus whether it can be used in 
Theorem 1. Sometimes only the sufficient stability condition is 
searched for; in this case, it is possible to use the finding based 
on Observation 1. Clearly, if the Mikhaylov plot for q does not 
crosses the negative imaginary semi-axis, then Cωω =0  (if 

there is no less one). This gives rise to the sufficient condition 
for Cω  and, consequently, for the quasipolynomial stability 

according to (36) and (37). 
Remark 3. Definition 2 and Theorem 1 suggest situations 

when the quasipolynomial stabilization by the suitable choice 
of q is not possible. These are two unpleasant possibilities: 

1) If Cω  does not exist. Thus, although 0Ω  is non-empty 

set, it may not contain Cωω =0 . 

2) If q could not satisfy (36), i.e. if 
 

( )
( ) k

a

k

a

C

CC −
≤

−
τω

ϑωω
sin

sin
 (39) 

 
This case is, however, not very likable since the continuity of 
the Mikhaylov curve w.r.t q supposes that there is a stabilizing 
q in the neighborhood of the marginal stability case q = qC. 
Observation 2. Numerical experiments showed that if 
( ) 0sin 0 <τω , then Cωω ≠0 , which might render condition 

(37) useless. 
Observation 3. Assume that q does satisfy neither (36) nor 

(37); however, let (3) be stabilizable. Then the Mikhaylov plot 
begins either on the positive real semi-axis but the overall 

phase change differs from 2/π  or it starts on the negative one 
for 0=ω . In the former case, due to Observation 1, Lemma 1 
and Lemma 3, the overall phase shift is 

( ) ∈−−=∆
∞∈=

kksm
s

,2
2

3
arg

),0[j,
π
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The former case yields 
 

( ) ∈−−=∆
∞∈=
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arg
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π

ωω
 (41) 

 
Observation 3 is usable mainly when applying the Nyquist 

criterion in order to study closed loop stability for an unstable 
delayed controlled system with denominator (3) and a 
proportional controller q. 

The presented approach is also usable for the analysis when 
respecting specific features of this class of quasipolynomials. 

V. SIMULATION EXAMPLES 

The chapter introduces examples which demonstrate the 
application of obtained results. All these are supported by 
simulations of corresponding Mikhaylov curves and/or control 
responses.  

A.  Unstabilizable Quasipolynomial 

This example proposes a demonstration of Remark 3. 
Consider quasipolynomial (3) with a = -5, 1,2.0 == ϑτ , k = 1, 

which gives the following set of crossover frequencies according 
to (33): { },...27.39,562.23,244.10,855.7,663.40 =Ω , giving 

rise to crossover gains calculated from (34) as q0 ∈{-0.4112, 
12.855, 7.423, -18.562, 44.27,...}. One can verify by drawing 
the appropriate Mikhaylov plot that no 00 Ω∈ω is the critical 

frequency. For example, a pair (23.562, -18.562) results in the 
Mikhaylov plot pictured in Fig. 3. It is clear that 

( )
)

π
ωωω

=∆
∈= 0,0[j,

arg
s

sm ; moreover, the necessary condition (6) does 

not hold. 

 
Fig. 3 Mikhaylov plot of the unstabilizable quasipolynomial – 

Example A 
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B. Coprime Factorization 

A wide class of delay systems can be expressed in the form 
( ) ( ) ( )sAsBsG /=  where A  and B  are coprime. Then the 

stabilizing Diophantine equation reads 1=+ BQAP  where 

( ) ( ) ( )sPsQsR /=  is the controller transfer function. P and Q 

then be parametrized in order to obtain desired control 
requirements and performance, see e.g. [21]. In case of unstable 
delay systems, the suitable coprime factorization is a rather 
difficult to find. One possibility is to set A  and B  so that the 
Diophantine equation has a simple solution, say a proper 
controller P = 1, Q = q. 

For instance, the unstable plant  
 

( ) ( )
( )ss

s
sG

−−
−

=
exp5

1.1exp
 (42) 

 
can be (coprimely) factorized as 
 

( )
( )

( ) ( )
( )

( ) ( )sqss

ss

sqss

s

sG

1.1expexp5

exp5
1.1expexp5

1.1exp

−+−−
−−

−+−−
−

=  (43) 

 
The task is to find q so that A  and B are analytic in the closed 
right-half plane, in particular, the denominator 
quasipolynomial is stable. Equation (33) enables to find the 
critical frequency 953.0=Cω  which yields the critical gain 

803.5=Cq . One can verify that ( ) 0sin >Cτω ; hence, Theorem 

1 results in the stabilizing interval 803.55 << q . Let 4.5=q , 

then the corresponding stabilized Mikhaylov plot is displayed 
in Fig. 4. 
 

 
Fig. 4 Mikhaylov plot of the stabilized quasipolynomial, [ ]15,0∈ω  

- Example B 
 
The corresponding feedback control response when using 

proportional controller 4.5=q  is in Fig. 5. Obviously, the 

feedback system is stabilized. 

 
Fig. 5 Proportionally stabilized feedback response – Example B 

 

C. Relay Autotuning 

The aim of this example is to propose stabilization of a 
conventional high order system using a simple time delay 
model. Model parameters identification is based on the relay 
feedback test where a relay (or non-linear element in general) 
is introduced instead of a controller in the feedback loop. After 
transients perpetual oscillations appear, the amplitude and the 
frequency of which enables to estimate model parameters, for 
details the reader is referred to e.g. [22], [23].  

Suppose a tenth order plant 
 

( )1012

1
)(

+
=

s
sG  (44) 

 
which can be identified (approximated) by model 

 

)7.6exp(065.0

)3.15exp(065.0
)(

ss

s
sGM −+

−
=  (45) 

 
see [22], [23]. Again, the objective is not to preset here the 
whole controller design but to stabilize (44) using a 
proportional feedback with model (45). It is obvious that 
calculation gain q for model (45) brings about error in 
stabilizing the nominal plant (44). Therefore, one has to set q 
conservatively enough, for instance, according to desired 
(sufficiently high) gain margin. 

The closed-loop characteristic quasipolynomial reads 
 

( ) ( ) ( )sqsssm 3.15exp065.07.6exp065.0 −+−+=  (46) 

 
Using (33) and (34), one can find 133.0=Cω , 419.1=Cq , 

( ) 894.0sin =Cτω , which gives rise to stabilizing interval 

419.11 <<− q . Set 473.0=q  which means the gain margin 

equal to 3 (with respect to the upper bound). The Mikhaylov 
curve of (46) for 473.0=q  is displayed in Fig. 6 and the 
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comparison of stabilized feedback responses when control 
model (45) and the nominal plant (44) by q introduces Fig. 7. 
 

 
Fig. 6 Mikhaylov plot of the stabilized characteristic quasipolynomial (46) 
 

 
Fig. 7 Feedback response when control the nominal plant (44) and 

the model (45) by a proportional controller q = 0.473 
 

VI. CONCLUSION 

The issue of stabilization of a selected retarded 
quasipolynomial with two fixed independent delays by a non-
delay real parameter has been introduced and studied in this 
contribution. The aim has been to derive acceptable upper and 
lower bounds for a non-delay real parameter so that all 
quasipolynomial zeros are located in the open left-half 
complex plane. The analysis has been based on the 
conventional argument principle, i.e. the Mikhaylov stability 
criterion, which holds also for retarded quasipolynomials in 
order to keep the desired shape of the Mikhaylov curve. 
Presented lemmas and theorems have been proved, except 
some hardly provable observations. The utilization of the 
obtained results has been then demonstrated on simulation 

examples solving the coprime factorization of an unstable 
delayed plant and the feedback stabilization of a high order 
system by a relay-feedback identified model with delays, 
respectively. All examples have been supported by simulation 
examples of corresponding Mikhaylov plots and feedback 
responses. 
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