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 
Abstract—This paper is pointing to numerical simulation of vari-

ous aspects of distributed feedback fiber laser sensors and their ap-
plications mainly in the field of the aeronautical applications. The 
developed numerical analysis has the aim of a better understanding 
of DFB-FL itself and of its interaction with environment in order to 
be operated as a sensor. Numerical analysis concentrates both on the 
FEM and  phenomenological methods. 
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I. INTRODUCTION 

ISTRIBUTED feedback fiber lasers (DFB-FL) and distrib-
uted Bragg reflector fiber lasers (DBR-FL) possess cer-

tain unique properties that make them quite attractive for a 
number of different applications. They are inherently fiber 
compatible, and very simple passive thermal stabilization is 
sufficient to ensure the stability of the laser [4]-[10].  

A number of different active dopants such as erbium, ytter-
bium, neodymium and thulium can be used in order to cover 
different windows of the optical spectrum. These features, 
combined with the ability to define the emitted wavelength 
precisely through the grating structure along with the narrow 
linewidth and low relative intensity noise (RIN), make DFB-
FL and DBR-FL very advantageous for telecommunication 
and sensor applications [1]–[3]. In addition, a number of DFB 
fiber lasers can be configured in a parallel array to provide 
flexibility in pumping conditions and provide pump redun-
dancy [2], [4].  

Robust single polarization and narrow linewidth of DFB la-
sers are very desirable for sensor systems [5]–[7]. Alterna-
tively, DFB lasers can be made to operate in stable dual po-
larization regime so that simultaneous measurements can be 
carried out [8]–[10],[26]. In addition to the sensing and tele-
com applications, DFB fiber lasers suitable for high-power 
applications have been demonstrated [11].  
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II. SPECIFICATION OF DFB-FL AND DBR-FL SENSOR APPLI-

CATION 

An important aeronautical application of fiber optic sensors 
consists in determination of transition zone between laminar 
and turbulent flow of air along the wing surface. Intermittent 
regime occurring in-between these two regions (transition) is 
characterized by turbulent bursts in laminar flow.  

The basic idea of this type of measurement is to evaluate 
the pressure variation in the two zones: 

1. Laminar flow - relative constant value of air static 
pressure, low frequency (~ 100 Hz) and small ampli-
tude (P ~ 1 Pa) pressure variations. 

2. Turbulent flow - larger and nonstationary value of air 
static pressure, higher frequency (~ 10 kHz) and 
higher amplitude (P ~ 10 Pa) pressure variations. 

 
 

 
 

Fig. 1 Schematic representation of the main investigated aeronautical 
application of DFB-FL and DBR-FL 

 
The main investigated aeronautical DFB-FL and DBR-FL 

sensors application consists in determination of the transition 
zone (line) between laminar and turbulent air flow along the 
aircraft wing surface. The laminar and turbulent boundary 
layers can be observed in Fig. 1.   

Possible fiber optic “reaction”: linear glass strain deforma-
tion (glass Young’s modulus of elasticity is E = 50 ÷ 90×109 
N/m2) under air turbulent pressure bursts (deformations of 10-9 
÷10-8 m) is extremely difficult to measure even by optical in-
terferometer methods. In this situation micro-bending of fiber 
optic appears to be more feasible deformation as an effect of 
turbulent air flow pressure bumps. Schematic representation 
of the main investigated aeronautical application of DFB-FL 
and DBR-FL is presented in Fig. 2. The laminar and turbulent 
air flow zones along the aircraft wing surface are indicated. 
One possible position of the fiber optic sensor can be ob-
served. Analyzing the layout presented in Fig. 2 some rough 
estimations of the force applied to the FBG sensor can be 
made. For a 10 mm length of the single mode fiber optic sen-
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sor segment a force of 1.25 µN for the laminar air flow and 
12.5 µN for the turbulent air flow can be estimated. 

 

 
 

Fig. 2 Schematic representation with few relevant insights of the 
main investigated aeronautical application of DFB-FL and DBR-FL 

 
In Fig. 3 it can be observed that the fiber optic sensor is 

embedded close (0.2 mm depth) to the wing surface. The fiber 
optic sensor is placed into a soft material, like paraffin, under 
an 0.2 mm thick aluminum foil. 

 

 
 

Fig. 3 Insights of one possible way of mounting the DFB-FL and/or 
DBR-FL in the wing for determination of transition zone between 

laminar and turbulent air flow along the aircraft wing surface 
 

One possible procedure for reading the fiber optic sensor 
is presented schematically in Fig. 4.  This possible procedure 
is based on precise evaluation of lasing wavelength, lasing, 
which depends on the laser resonant cavity length. 

 

 
 

Fig. 4 Some insights about the structure of the DFB-FL and/or DBR-
FL proposed to be used for the determination of the transition zone 

between laminar and turbulent air flow along the wing surface  
 

Some additional insights about the structure of the DFB-FL 
and/or DBR-FL proposed to be used for the determination of 
the transition zone between laminar and turbulent air flow 
along the wing surface are displayed in Fig. 5. The possible 
fiber optic sensor output reading by measuring the lasing wa-
velength shift () is indicated. 

It is to be noted the role of pumping wavelength used for 
DFB-FL or DBR-FL. This output reading is applicable for 
both diode pumping wavelengths, namely 980 nm or 1480 

nm. The first one, 980 nm wavelength, is more efficient than 
the second but has lower saturation intensity. The second one, 
1480 nm wavelength, seams to be more interesting for sensor 
application because its more extended linearity response do-
main.    

An important observation is that the pressure bumps of the 
turbulent air flow can be recorded by DFB-FL or DBR-FL in 
two possible ways: 

• in the Bragg grating zone; 
• in the zone between two successive such Bragg gratings 

III. DFB-FL AND DBR-FL SENSOR ARCHITECTURE 

Regarding the Distributed Feedback Fiber Laser (DFB-FL) 
and Distributed Bragg Reflector Fiber Laser (DBR-FL) sen-
sors architecture the following are to be observed: 

• Both are built using single-mode optical fiber (core of 5 - 
10 m diameter and cladding of 80 - 100 m overall diameter) 

• Both are built using single-mode optical fiber as active 
medium. The active medium is formed by doping the core of 
the optical fiber with erbium ions (Er3+).  

The important feature consists in the Bragg grating – spatial 
sinusoidal refractive index variation in and along the core of 
the optical fiber. Bragg grating characteristic parameters are: 
- the wavelength of spatial modulation of the refractive in-
dex, B – the Bragg wavelength (defined as 2·neff·, the wave-
length of maximum reflection coefficient), neff – the effective 
value of the refractive index, corresponding to the fundamen-
tal mode of electromagnetic field propagation into the optical 
fiber, being imposed by the geometric characteristics of the 
optic fiber). 

DBR-FL means a laser oscillator formed by the optical fiber 
active medium placed between two mirrors Bragg gratings 
(distributed reflector) while DFB-FL means a laser oscillator 
formed by the optical fiber active medium support of the 
Bragg grating [5]-[10],[13],[14]. 

 

 
Fig. 5 The possible fiber optic sensor output reading by measuring 

the lasing wavelength shift ()  
 

 
Fig. 6 The possible fiber optic sensor output reading by measuring 

the lasing wavelength shift () 
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IV. DFB-FL THEORY 

Traditionally, there have been three main DFB laser cavity 
designs that offer different performance and distinctive opera-
tional characteristics, presented in the followings. 

It was recently shown that the classic parametric optimiza-
tion approach for a DFB laser, i.e., the definition of the opti-
mum resonator geometry and dimensional values, is analo-
gous to Rigrod optimization [17],[18] of reflectivities in 
Fabry–Pérot laser cavities of fixed length. It can also be 
shown that it is possible to further improve the DFB laser effi-
ciency by increasing the effective cavity length without 
changing the total device length and optimum reflectivities, 
using a step-apodized profile. 

Both optimization approaches are parametric in nature. The 
main cavity features are defined a priori, and their parameters 
are continuously varied until a maximum efficiency is 
reached. However, none of these approaches guarantees that 
the ultimate, i.e., maximum possible, efficiency for the given 
medium has been achieved. In this paper, a drastically differ-
ent approach is followed. 

The new method follows an “inverse scattering” philosophy 
in that, for a given medium and pumping arrangement, it first 
derives the maximum possible efficiency and the use of the 
developed algorithm defines the required generalized DFB 
cavity. This is achieved without any significant a priori as-
sumptions about the grating characteristics. Taking into ac-
count the local pump power, the method relies on the calcula-
tion of the optimum intracavity signal distribution that results 
at maximum pump-to-signal conversion at every point along 
the cavity. 

Using this information, the developed algorithm calculates 
the required grating strength distribution that results in the 
desired optimum signal, pump, and gain distribution. 

 

 
 

Fig. 7 Refractive index profile for conventional DFB laser designs. 
The classic design and two-wavelength bidirectional operation  

 
The classic design and two-wavelength bidirectional opera-

tion is displayed in Fig. 7. It consists of a uniform refractive 
index grating, with constant amplitude and constant period, 
incorporated in an active medium. This type of DFB laser 
operates at two fundamental longitudinal modes at different 
wavelengths, corresponding to the edges of the grating band-
gap, and gives symmetric output powers from both ends, 
which are equally divided between these two modes [12]. 
Such a cavity provides dual-wavelength bidirectional opera-
tion. 

 
 

Fig. 8 Refractive index profile for conventional DFB laser designs. 
Symmetric-phase shifted design and single-wavelength bidirectional 

operation  

 
Fig. 8 shows the symmetric-phase shifted design and sin-

gle-wavelength bidirectional operation. In practice, however, 
single-wavelength operation is desirable. This is achieved by 
introducing a –shift in the spatial phase of the grating [13]–
[15]. If the phase shift is located in the middle of the grating 
due to the symmetry of the cavity, the output powers at both 
ends are equal. Such a cavity provides single-wavelength op-
eration, coinciding with the grating Bragg wavelength, and 
bidirectional operation. 

 

 
 

Fig. 9 Refractive index profile for conventional DFB laser designs. 
Asymmetric -phase-shifted design and single-wavelength unidirec-

tional operation  
 

Asymmetric -phase-shifted design and single-wavelength 
unidirectional operation is shown in Fig. 9. In addition to sin-
gle-wavelength emission, unidirectionality is a very desirable 
feature of high-performance lasers. By placing the phase shift 
asymmetrically with respect to the grating center, as shown in 
Fig. 9, larger output power is obtained from the shorter end 
[10], [16]. In this asymmetric design, the maximum output 
power from the desired end is obtained for a particular phase-
shift position and coupling coefficient value. Optimum values 
of parameters and are found by varying them over a defined 
range, either by simulation or by experiment. 

 

 
 

Fig. 10 Standard asymmetric DFB-FL structure  
 

 
Fig. 11 Standard asymmetric DFB-FL structure. Leff represents the 
sum of the electromagnetic field penetration depth into Bragg grat-

ings  
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Standard asymmetric DFB-FL structure is illustrated in Fig. 
10 and 11. The optimum position of the -phase shift position 
(zp) can be observed. D1 and D2 represent the “penetration” 
depth of electromagnetic field into the Bragg grating zones.  

In Fig. 12 is presented Apodized standard asymmetric 
DFB-FL structure. Leff represents the sum of the electromag-
netic field penetration depth into Bragg gratings. Apodization 
consists in modification of refractive index spatial modulation 
depth (amplitude).  

 

 
Fig. 12 Apodized standard asymmetric DFB-FL structure  

 
The standard coupled-mode equations for counter-

propagating fields are used (see, e.g., [20]). The electric field 
(E) is the sum of two counterpropagating fields (A and B) 
[13]-[25]. 

The forward-propagating field amplitude equation of propa-
gation is given by equation: 

 
           ziezBzzAz

dz

zdA    (1) 

 
The backward-propagating field amplitude equation of 

propagation is: 
 
           ziezAzzBz

dz

zdB    (2) 

 
where A(z) is the amplitude of the forward-propagating field, 
B(z) is the amplitude of the backward-propagating field,  

represents the envelope of the forward-propagating 

field,  represents the envelope of the backward-

propagating field,

  )( ziezA 

 zB )( zie 

 z is the field gain,  z is the coupling 

coefficient while (z) is the spatial phase factor or coeffi-
cient. A schematic representation of coupled-mode procedure 
or method, used for numerical evaluation of DFB-FL structure 
is presented in Fig. 13. 

Designating by  (z) the net field gain including the back-
ground loss and  (z) the Bragg grating phase, the spatial 
phase factor/coefficient  (z) will be given by this equation, 
where  is the unperturbed waveguide mode: 

 
     zzz   2  (3) 

 
The equation defining the Bragg grating phase  (z) is: 

 

 
Fig. 13 Schematic representation of coupled-mode procedure/method  

 

   
*

0
*

2
dz

z
z

z

 


  (4) 

 
where  (z) represents the local grating period. The average 
signal intensity definition is: 
 

     zBzAzS 22   (5) 

 
while the definition of the intensity difference between the 
counterpropagating fields is: 
 

     zBzAzD 22   (6) 

 
The intensity difference D(z) can be expressed as: 
 

        **

0

*20 dzzSzDzD
z

   (7) 

The standard coupled-mode propagation equations for 
counterpropagating fields are can be manipulated to provide 
expressions for k(z), the coupling coefficient of the electro-
magnetic field: 

 

 
     

      zDzSz

zzD
z

zdS

zk
22cos

2






 (8) 

 
The usual DFB laser boundary conditions are: 
 
    00  LBA  (9) 

 
The new/transformed DFB laser boundary conditions are: 
 
   
     LSLALD

BD




2

2 000
 (10) 
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These boundary conditions represent the basis of our design 

method. Given S(z), (z) and (z), we can use them to find 
D(z) and then the required coupling coefficient distribution 
can be calculated: 
 
      zznnzn cos0   (11) 

 
The coupling coefficient defines the amount of the periodic 

perturbation required. If this perturbation is sinusoidal the 
varying refractive-index modulation in the form is defined by 
the above equation. n0 is the effective refractive index and n 
is the modulation amplitude [13], [15]-[17]. 

The reflection coefficient of a grating with constant gain at 
the Bragg wavelength is: 

 
 

   LL

Lk
r



sinhcosh

sinh




  (12) 

 

Here  coefficient is 22   k .  

The approximation of reflection coefficient of a grating 
with constant gain at the Bragg wavelength is given by 

.  kLr tanh
The necessary condition for the validation of the above 

equation is  « . 
The reflectivity of the Bragg grating is equal to the reflec-

tivity of a passive grating with no gain: 
 

 kLrR 22 tanh  (13) 

 
Due to the distributed nature of the reflection process in 

gratings, the incident wave penetrates into the grating before 
reemerging at the front end. It refers to the case of the case of 
constant gain and at the Bragg wavelength: 

 

 
   

   LL

L
LL

L
L

D







tanhtanh

tanh
cosh

1tanh

2

1
2

2
2













  (14)        

 
k

r

k

kL
D

22

tanh
  (15) 

 
In the case of a phase-shifted DFB laser, the total length of 

effective cavity in which the fields are circulating is: 
 













2

2

1

1

21 22 k

r

k

r
DDLeff  (16) 

 
D1 and D2 are the penetration depths into the Bragg grating 

segments on the left-hand side and on the right-hand side of 
the phase shift, respectively. 

In the case of a uniform refractive index profile, the cou-
pling coefficient is constant. 

By observing the fact that the electromagnetic field is 
propagating through surfaces of ~10-12 m2 area, nonlinear ef-
fects produced mainly into the core glass have to be consid-
ered. The most encountered such effect is birefringence [21]-
[22], [25]. This effect can divide the peak of the Bragg grating 
reflection spectrum into two parts at the Bragg wavelength. 
Since the Bragg wavelength depends on the grating period and 
the effective index, physical and environmental effects such as 
temperature, stress and stretching the Bragg wavelength can 
change as: 

 
dTdPd PPB    (17)    

 
where and represent the pressure and temperature 

variation coefficients of Bragg wavelength. 
P T

P and T  are 

defined as 
 























P

n
P

n
B

eff

eff

BP

 0,0, 22  (18)    























T

n
T

n
B

eff

eff

BT

 0,0, 22  (19)    

 
In the above equations, P and T denote pressure and tempera-
ture respectively. Birefringence is due to the changes in propa-
gation constants of the guided light. The value of birefrin-
gence (B) along the z-axis is defined as: 
 

0

||

0 n

nn
BB


  (20) 

 

where B0 is the unperturbed birefringence value and n and 

||n are the parallel and perpendicular refraction indices. Fi-

nally, n and ||n differences will induce Bragg wavelength 

variation.  
An important detail of the performed numerical and theo-

retical analysis has to be mentioned. It is concerning at field 
gain coefficient (z). It has to be calculated by considering the 
phenomena which are produced during the erbium ions pump 
cycle, namely the up-conversion from second and third Er3+ 
excited levels and, the second kind of them, the excited state 
absorption of pumping radiation. In Table I coefficients de-
scribing these ionic scale processes are defined. 

V. DBR-FL REFLECTOR THEORY 

A mode propagating on a straight fiber or waveguide fabri-
cated from non-absorbing, non-scattering materials will in 
principle propagate indefinitely without any loss of power. 
However, if a bend is introduced, the translational invariance 
is broken and power is lost from the mode as it propagates 
into, along and out of the bend. This applies to the fundamen-
tal mode in the case of single-mode fibers and waveguides and 
to all bound modes in the case of bent multimode fibers or 
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waveguides [21].  
Two types of optic fiber bend losses can be considered [20], 

[12] – [16]: 
• Transition loss is associated with the abrupt or rapid 

change in curvature at the beginning and the end of a bend; 
• Pure bend loss is associated with the loss from the bend 

of constant curvature in between the optic fiber.  
The transition loss can be described by an abrupt change in 

the curvature k from the straight waveguide (k ~ 0) to that of 
the bent waveguide of constant radius Rb (k = 1/Rb). The fun-
damental-mode field is shifted slightly outwards in the plane 
of the bend, thereby causing a miss-match with the field of the 
straight waveguide, as presented in Fig. 14. 

The fractional loss in fundamental-mode power, P/P, can 
be calculated from the overlap integral between the fields. 
Within the Gaussian approximation to the fundamental mode 
field and assuming that the spot size s and core radius or half-
width are approximately equal, where V is the fiber or wa-
veguide parameter and D is the relative index difference this 
gives: 

 

2

2

2

4

16

1

bR

V

P

P 



  (21) 

 
Minimizing transition loss can be achieved by considering a 

number of techniques for significantly reducing transition 
loss. In the case of planar waveguides it is often possible to 
fabricate the bend so that there is an abrupt offset between the 
cores of the straight and bent waveguides in the plane of the 
bend. In Fig. 14 this can be seen as being equivalent to dis-
placing the bent core downwards so that the two fundamental-
mode fields overlap. Alternatively, if a gradual increase in 
curvature is introduced between the straight and uniformly 
bent sections, the fundamental field of the straight waveguide 
will evolve approximately adiabatically into the offset field of 
the uniformly bent section. 

 
Fig. 14 Outward shift in the fundamental-mode electric field on en-

tering a bend  
 

The pure bent loss is defined by the fundamental mode con-
tinuously optical power loses when propagating along the 
curved path of the core of constant radius Rb. It is assumed 
that the cladding is essentially unbounded and not affected by 
the fiber optic bent, keeping a constant cladding refractive 
index value, ncl. The radiation loss increases rapidly with de-

creasing bend radius and occurs predominantly in the plane of 
the bend; in any other plane the effective bend radius is larger 
and hence the loss is very much reduced, as presented in Fig. 
15.  

It has to be observed that the phase velocity anywhere on 
the modal phase front rotating around the bend cannot exceed 
the speed of light in the cladding. Hence, beyond radius Rrad 
the modal field must necessarily radiate into the cladding, the 
radiation being emitted tangentially. 
 

 
Fig. 15 Schematic of the bending effect of a fiber laser  

 
The interface between the guided portion of the modal field 

around the bend and the radiated portion at Rrad is known as 
the radiation caustic, and it is the apparent origin of radiation. 
Between the core and the radiation caustic, the modal field is 
evanescent and decreases approximately exponentially with 
increasing radial distance from C. As the bend radius in-
creases, the radiation caustic moves farther into the cladding, 
and the level of radiated power decreases. Rrad can be defined 
by the equation: 

 

cl

rad n

C
R


  (22) 

 
The present theoretical analysis is developed by considering 

step-index optical fibers (with a step profile of the refractive 
index). In terms of the core and cladding modal parameters U 
and W, respectively, relative index difference , core radius , 
fiber parameter V and the bending radius Rb, an approximate 
expression for  for the fundamental mode of a step-index 
fiber has the form [20 – 22]:  

 











2

3

2

2

3

4
exp

2 V

WR

U

WV

R
b

b 
  (23) 

 
where Rb is necessarily large compared to  because it is not 
possible to bend a fiber into a radius much below 10 mm with-
out breakage. The pure bend loss coefficient is most sensitive 
to the expression inside the exponent because Rb and . Loss 
decreases very rapidly with increasing values of Rb or  or V 
(since W also increases with V), and becomes arbitrarily small 
as Rb tends to infinity.  
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VI. NUMERICAL SIMULATIONS RESULTS 

The parameters of the investigated active FBG sensor are 
presented in Table I. 

 
In Figure 16 the Bragg wavelength variations due to applied 

force of different strength are presented. It is to be observed 
that a Bragg wavelength variation of ~0.6 nm can be obtained 
for an applied force of 100 N.  
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Fig.16 The Bragg wavelength variations versus applied force. Solid 

line represents n while the dashed line represents n║ 
 

Two types of an active FBG sensor numerical analysis 
were performed. The first one is focused on using the mathe-
matical apparatus defined in Section IV pointing to evaluation 
of active FBG spectral characteristics versus environment 
parameters (pressure and temperature). The second type relies 
on evaluating the laser intensity field distribution inside the 
optic fiber with the purpose of evaluation of laser power.  

For second type of numerical analyses two numerical si-
mulation procedures were used: 

• one relaying on  MATLAB - MuPAD software package, 
based on the above mentioned equations; 

• the second one relaying on COMSOL software packages.  

Numerical simulations were performed for optical fiber 
with and without doping with erbium ions (Er3+). No signifi-
cant differences were observed for doped or undoped optical 
fibers. The numerical simulations were performed using 1.550 
µm as the laser wavelength. 

In the first stage, transition loss was simulated. Using (16) 
relative input power variation was calculated as: 
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where  = 5 µm is the core radius, Rb = 5 mm is the radius of 
curvature, while  – relative index difference and  V – modal 
parameter are calculated as it follows: 
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ncore = 1.4457 is the refractive index of the core, with a di-

ameter of 10 µm, nclad = 1.4378 is the refractive index of the 
cladding with an external diameter of 80 µm, while  = 1.55 
µm denotes the wavelength. Fig. 17 illustrates the variation of 
relative input power Prel vs. radius of curvature Rb. 

TABLE I 
ACTIVE FBG MODEL PARAMETER 

Parameter Value 

Pump wavelength 0.978 .. 0.980 ·10-6 m  
Signal wavelength 1.551 .. 1.554 ·10-6 m 
Absorption cross-section 3·10-25 m2 

Er3+ concentration 3·10-25 m-3 

Er  2I13/2 life-time 10-2 s 
Er  2I11/2 life-time 0.6·10-6 s 
Er  2F7/2 radiative transition rate 1.4·106 s-1 
Er  2F7/2 non-radiative transition rate 103 s-1 

Er  4S3/2 radiative transition rate 1.4·106 s-1 
Er  4S3/2 non-radiative transition rate 103 s-1 

Er  2H11/2 radiative transition rate 1.4·106 s-1 
Er  2H11/2 non-radiative transition rate 103 s-1 

Up-conversion level 2 coefficient 10-24 m3s-1 
Up-conversion level 3 coefficient 10-24 m3s-1 
Excited state absorption level 2 coefficient 10-27 m3s-1 
Excited state absorption level 3 coefficient 10-27 m3s-1 
Signal background loss 0.15 m-1 
Core radius 2.3·10-6 m 
Core refractive index 1.4509 
Cladding refractive index 1.4378 
Refractive index spatial modulation wavelength 1.5·10-6 m 
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Fig. 17 Relative input power vs. radius of curvature 
 
The numerical simulation performed using COMSOL Mul-

tiphysics is aiming to obtain an insight on the laser intensity 
distribution across the transverse section of the optic fiber. 
The option 2D was used for the Space Dimension. Then the 
RF Module -> Perpendicular Waves -> Hybrid-Mode 
Waves -> Mode analysis options was used. The geometry of 
the transverse optical fiber cross section was developed con-
sidering realistic parameters. Elliptical deformation of the 
optical fiber was considered in order to resemble the bend.  

Only numerical simulation of single mode optical fiber was 
considered. The developed geometry of the studied optical 
fiber was as realistic as possible. Nevertheless only axis sym-
metric optic fiber was considered. This means that, at this 
stage of development of DFB-FL and DBR-FL numerical si-
mulation the point-by-point description of transverse fiber 
optic profile was neglected. In the future stage of development 
this more realistic geometry will be considered. 
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Fig. 18 The numerical simulated time averaged laser power flow 

across the transverse section of a singlemode optical fiber with a core 
of 10 m diameter and a cladding of an overall 80 m diameter 

 

 
Fig. 19 The numerical simulated time averaged laser electric field 

distribution into the transverse section of a singlemode optical fiber 
with a core of 10 m diameter and a cladding of an overall 80 m 

diameter 
 

 
Fig. 20 The numerical simulated time averaged laser power flow 
across the transverse section of a single mode optical fiber with a 

core of 8.82 m and 11.33 m axes and a cladding of 70.59 m and 
90.67 m axes 

 
Fig. 21 The numerical simulated time averaged laser electric field 

distribution into the transverse section of a singlemode optical fiber 
with a core of 8.82 m and 11.33 m axes and a cladding of 70.59 

m and 90.67 m axes 
 
The procedure tried during numerical simulation consists in 

considering the laser beam propagation along the bending 
such as the optical fiber appears as of an elliptical cross sec-
tion.  

The deformation was considered by imposing a mechanical 
stress/pressure on the external surface of the plastic protection 
layer deposited on the glass cladding. The deformation is ex-
pressed in µm. The deformed dimensions of the glass cladding 
and core (the ellipse axes) are calculated as the area remains 
constant. The maximum value of the considered plastic layer 
deformation (denoted as strain) was of 20 µm. 

VII. CONCLUSION 

The results of the DFB-FL sensor simulation proves that we 
obtained a realistic model of the sensor. The effects of the 
mechanical deformation (bending the optical fiber) were put 
in evidence. Fig. 18-21 reveal that important modifications in 
laser power flow and electric field distributions appear as ef-
fect of microdeformations applied to the studied optical fiber.   
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