

Abstract—Traditional k-means clustering iteratively performs

two major steps: data assignment and calculating the relocation of

mean points. The data assignment step sends each data point to a

cluster with closest mean, or centroid. Normally, the measure of

closeness is the Euclidean distance. On clustering large datasets, the

k-means method spends most of its execution time on computing

distances between all data points and existing centroids. It is obvious

that distance computation of one data point is irrelevant to others.

Therefore, data parallelism can be achieved in this case and it is the

main focus of this paper. We propose the parallel method as well as

its approximation scheme to the k-means clustering. The parallelism

is implemented through the message passing model using a

concurrent functional language, Erlang. The experimental results

show the speedup in computation of parallel k-means. The clustering

results of an approximated parallel method are impressive when

taking into account its fast running time.

Keywords—Parallel k-means, lightweight process, concurrent

functional program, Erlang.

I. INTRODUCTION

LUSTERING is an unsupervised learning problem

widely studied in many research areas such as statistics,

machine learning, data mining, pattern recognition. The

objective of clustering process is to partition a mixture of

large dataset into smaller groups with a general criterion that

data in the same group should be more similar or closer to

each other than those in different groups. The clustering

problem can be solved with various methods, but the most

widely used one is the k-means method [10], [11], [18], [19].

The popularity of k-means algorithm is due to its simple

procedure and fast convergence to a decent solution.

Computational complexity of k-means is O(nkt), where n is

the number of data points or objects, k is the number of

desired clusters, and t is the number of iterations the algorithm

takes for converging to a stable state. To efficiently apply the

method to applications with inherent huge number of data

objects such as genome data analysis and geographical

information systems, the computing process needs

improvements.

Parallelization is one obvious solution to this problem and

the idea has been proposed [9] since the last two decades. This

paper also focuses on parallelizing k-means algorithm, but we

base our study on the multi-core architecture. We implement

our extension of the k-means algorithm using Erlang language

(www.erlang.org), which uses the concurrent functional

paradigm and communicates among hundreds of active

processes via a message passing method [1]. To create

multiple processes in Erlang, we use a spawn function as in

the following example.

-module(example1).
-export([start/0]).

start() ->
 Pid1 = spawn(fun run/0),

 io:format("New process ~p~n", [Pid1]),

 Pid2 = spawn(fun run/0),

 io:format("New process ~p~n", [Pid2]).

run() -> io:format("Hello ! ~n", []).

The start function in a module example1, which is the

main process, creates two processes with identifiers Pid1 and

Pid2, respectively. The newly created processes execute a run

function that prints the word “Hello !” on the screen. The

output of executing the start function is as follows:

New process <0.53.0>

Hello !

New process <0.54.0>

Hello !

 The numbers <0.53.0> and <0.54.0> are identifiers of the

newly created two processes. Each process then independently

invokes the run function to print out a word “Hello!” on the

screen.

The processes in Erlang virtual machine are lightweight and

do not share memory with other processes. Therefore, it is an

ideal language to implement a large scale parallelizing

algorithm. To serve a very large data clustering application,

we also propose an approximate method to the parallel k-

means. Our experimental results confirm efficiency of the

proposed algorithms.

The organization of the rest of this paper is as follows.

Discussion of related work in developing a parallel k-means is

presented in Section 2. Our proposed algorithms, a lightweight

parallel k-means and the approximation method, are explained

in Section 3. The implementation (a complete source code is

available in the appendix) and experimental results are

A lightweight method to parallel k-means

clustering

Kittisak Kerdprasop and Nittaya Kerdprasop

C

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 144

demonstrated in Section 4. The conclusion as well as future

research direction appears as a last section.

II. RELATED WORK

A serial k-means algorithm was proposed by J.B.

MacQueen in 1967 [11] and since then it has gained mush

interest from data analysts and computer scientists. The

algorithm has been applied to variety of applications ranging

from medical informatics [7], genome analysis [12], image

processing and segmentation [16], [18], to aspect mining in

software design [2]. Despite its simplicity and great success,

the k-means method is known to degrade when the dataset

grows larger in terms of number of objects and dimensions

[5], [8]. To obtain acceptable computational speed on huge

datasets, most researchers turn to parallelizing scheme.

Li and Fang [9] are among the pioneer groups on studying

parallel clustering. They proposed a parallel algorithm on a

single instruction multiple data (SIMD) architecture. Dhillon

and Modha [3] proposed a distributed k-means that runs on a

multiprocessor environment. Kantabutra and Couch [6]

proposed a master-slave single program multiple data (SPMD)

approach on a network of workstations to parallel the k-means

algorithm. Their experimental results reveal that when on

clustering four groups of two dimensional data the speedup

advantage can be obtained when the number of data is larger

than 600,000. Tian and colleagues [14] proposed the method

for initial cluster center selection and the design of parallel k-

means algorithm.

Zhang and colleagues [19] presented the parallel k-means

with dynamic load balance that used the master/slave model.

Their method can gain speedup advantage at the two-

dimensional data size greater than 700,000. Prasad [13]

parallelized the k-means algorithm on a distributed memory

multi-processors using the message passing scheme. Farivar

and colleagues [4] studied parallelism using the graphic

coprocessors in order to reduce energy consumption of the

main processor.

Zhao, Ma and He [20] proposed parallel k-means method

based on map and reduce functions to parallelize the

computation across machines. Tirumala Rao, Prasad and

Venkateswarlu [15] studied memory mapping performance on

multi-core processors of k-means algorithm. They conducted

experiments on quad-core and dual-core shared memory

architecture using OpenMP and POSIX threads. The speedup

on parallel clustering is observable.

In this paper we also study parallelism on the multi-core

processors, but our implementation does not rely on threads.

The virtual machine that we use in our experiments employs

the concept of message passing to communicate between

parallel processes. Each communication carries as few

messages as possible. This policy leads to a lightweight

process that takes less time and space to create and manage.

III. PROPOSED ALGORITHMS

A. Parallel k-Means

Serial k-means algorithm [11] starts with the initialization

phase of randomly selecting temporary k central points, or

centroids. Then, iteratively assign data to the nearest cluster

and then re-calculate the new central points of k clusters.

These two main steps are shown in Algorithm1.

Algorithm 1. Serial k-means

Input: a set of data points and the number of clusters, K

Output: K-centroids and members of each cluster

Steps

 1. Select initial centroid C = <C1, C2, …, CK>

 2. Repeat

 2.1 Assign each data point to its nearest cluster

center

 2.2 Re-compute the cluster centers using the

current cluster memberships

 3. Until there is no further change in the assignment of

the data points to new cluster centers

The serial algorithm takes much computational time on

calculating distances between each of N data points and the

current K centroids. Then iteratively assign each data point to

the closest cluster. We thus improve the computational

efficiency by assigning P processes to handle the clustering

task on a smaller group of N/P data points. The centroid

update is responsible by the master process. The pseudocode

of our parallel k-means is shown in Algorithm 2.

Algorithm 2. Parallel k-means (PKM)

Input: a set of data points and the number of clusters, K

Output: K-centroids and members of each cluster

Steps

 1. Set initial global centroid C = <C1, C2, …, CK>

 2. Partition data to P subgroups, each subgroup has

equal size

 3. For each P,

 4. Create a new process

 5. Send C to the created process for calculating

distances and assigning cluster members

 6. Receive cluster members of K clusters from P

processes

 7. Recalculate new centroid C‟

 8. If difference(C, C‟)

 9. Then set C to be C‟ and go back to step 2

 10. Else stop and return C as well as cluster members

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 145

The PKM algorithm is the master process responsible for

creating new parallel processes, sending centroids to the

created processes, receiving the cluster assignment results, and

recalculating the new centroids. The steps repeat as long as

the old and the new centroids do not converge. The

convergence criterion can be set through the function

difference(C, C’). Communication between the master process

and the created processes can be graphically shown in Fig. 1.

Fig. 1 A diagram illustrating the communication between

master and created processes

B. Approximate Parallel k-Means

For the case of very large datasets or streaming data, we

also design the approximation method (Algorithm 3) in order

to obtain a timely and acceptable result.

Algorithm 3. Approximate parallel k-means (APKM)

Input: a set of data points, the number of clusters (K), and

the sample size (S)

Output: approximate K-centroids and cluster members

Steps

 1. Set initial centroid C = <C1, C2, …, CK>

 2. Sampling data to be of size S

 3. Partition S into P subgroups, each subgroup has

equal size

 4. For each P, create a new process and send C to all

processes for calculating distances and assigning

cluster members

 5. Receive cluster members of K clusters from P

processes

 6. Recalculate new centroid C‟ = average C

 7. If C‟ is diverge, then go back to step 2

 8. else stop and return C‟ as well as cluster members

Our approximation scheme is based on the random

sampling approach with the basis assumption that the

incoming data are uniformly distributed. The data distribution

takes other forms (such as Zipf, Gaussian), the proposed

algorithm can be easily adapted by changing step 2 of the

algorithm APKM to use different approach such as density-

biased sampling.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementation with Erlang

We implement the proposed algorithms with Erlang

language. Each process of Erlang does not share memory and

it works concurrently in an asynchronous manner. The

implementation of PKM and APKM algorithms as an Erlang

program is given in appendix.

Some screenshots of compiling and running the program

(with Erlang release R13B04) are given in Figs. 2 and 3. To

compile the program, we use the command

c(pka, [export_all]).

The first argument, pka, is the name of a module. The second

argument, [export_all], is a compiler directive meaning that

every function in the pka module is visible and can be called

from the Erlang shell. The second command in Fig. 2 calls a

function genData to generate a synthetic two dimensional

dataset containing 800,000 data points with value randomly

ranging from 1 to 10,000. Each data point is a tuple, which is

a data structure enclosed by curly brackets, and all 800,000

points are contained in a single list.

Data points used in our experiments are randomly generated

with the following function:

genData(0, _) ->[];

genData(Count, Max) ->
 [{uniform(Max), uniform(Max)} |
 genData(Count-1,Max)].

A function genData takes two arguments: number of data

points and maximum value of a data point in each dimension

(minimum value is 1 by default). Therefore, the second

command in Fig. 2 generates 800,000 two-dimensional data

points. A data value in each dimension is randomly ranged

from 1 to 10,000. For instance, the first generated data point is

(924, 4436). All 800,000 data points are stored in a list

structure that is represented by bracket symbol.

Fig. 2 A screenshot to illustrate compiling Erlang program

and generating data points

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 146

Fig. 3 A series of line commands to clustering and recording

running time

The screenshot in Fig. 3 illustrates commands to create four

initial centroids (command 3), then partition 800,000 data

points into eight subgroups to send to the eight processors

(command 4). A parallel k-means starts at command 5. The

outputs of parallel k-means shown on a screen are the number

of iteration (which is 35 in this example) and the mean points

of four clusters. The last command call a variable TReal to

display the running time of the whole process, which is

129371000 microseconds or 129.371 seconds. This time

includes sending and receiving messages between master and

the eight concurrent processes.

Table 1. Execution time of serial versus parallel k-means

clustering

Data

 points

 (N)

Time

(Ts, sec)

Serial

k-means

Time

 (Tp, sec)

Parallel

k-means

(dual cores)

Time

Difference

(Ts – Tp)

(sec)

Speedup

 (%)

50 0.000 0.0149 - 0.0149 - 1.49

500 0.031 0.030 0.001 3.23

50,000 8.45 5.03 3.42 40.47

100,000 16.59 10.18 6.40 38.60

200,000 34.03 21.92 12.10 35.58

300,000 66.09 50.92 15.17 22.95

400,000 82.34 63.03 19.31 23.45

500,000 94.67 69.35 25.31 26.73

600,000 113.06 90.18 22.87 20.23

700,000 135.20 101.18 34.01 25.15

800,000 173.67 124.79 48.87 28.14

900,000 N/A N/A N/A N/A

B. Performance of Parallel k-Means

We evaluate performances of the proposed PKM and

APKM algorithms on synthetic two dimensional dataset. The

computational speed of parallel k-means as compared to serial

k-means is given in Table1. Experiments are performed on

personal computer with processor speed GHz and GB of

memory.

It is noticeable from Table 1 that when dataset is small

(N=50), running time of parallel k-means is a little bit longer

than the serial k-means. This is due to the overhead of

spawning concurrent processes. At data size of 900,000

points, running time is unobservable because the machine is

out of memory. Running time comparison of parallel against

serial k-means is graphically shown in Fig. 4. Percentage of

running time speedup in is also provided in Fig. 5. Speedup

advantage is very high (more than 30%) at dataset of size

between 50,000 to 200,000 points.

C. Performance of Approximate Parallel k-Means

The experiments on approximated parallel k-means have

been conducted to observe running time of a complete dataset

(sample size = 100%) versus a reduced sample at different

sizes (S). Dataset used in this series of experiments is 500,000

two-dimensional data points, four clusters, and run

concurrently with eight processes (running time is 64.67

seconds).

Fig. 4 Running time comparisons of serial versus parallel

k-means

Fig. 5 Percentage of running time speedup at different

data sizes

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 147

At each sample size, the Euclidean distance of centroid shift

is also computed by averaging the distances of four centroids

that reported as the output of approximate parallel k-means.

We test two schemes of sampling technique. The simple

one is a fixed number of samples appeared as the first S

records in the data stream. Another tested sampling technique

is a randomly picked sample across the dataset (uniform

random sampling with replacement). Centroid distance shift of

both techniques are reported as “mean shift” in Table 2. The

centroid shift may be considered as an error of the

approximation method; the lower the distance shift, the better

the sampling scheme. It turns out that a simple scheme of

picking samples from the first part of dataset performs better

than a uniform random sampling across the entire dataset.

Percentage execution time speedup of the two sampling

schemes is shown in Fig. 6. The error (or centroid shift

computed from the average Euclidean distances of all mean

points) of both schemes to approximate parallel k-means is

shown in Fig. 7. It can be noticed from the experimental

results that the random sampling with replacement scheme

gains a little higher percentage of running time reduction than

the simple scheme of selection the first S records from dataset.

When compare the clustering error measured as the average

centroid shift, the random sampling with replacement scheme

shows worse performance than the simple scheme of selection

the first S records from the dataset. There is only one

exception at the sampling size 20% that random sampling with

replacement produces a better result than the simple scheme of

selection the first S records. This could happen from the

nature of uniform sampling that sometimes a set of good

representatives has been selected.

This series of experiments, however, have been conducted

on a uniformly distributed data. For other forms of data

distribution, the experimental results can be different from the

ones reported in this paper.

Table 2. Performances of approximate parallel k-means

Sample

Size

(N =

500K)

Sample = the first S

records in data

stream

Uniform random

sampling with

replacement

Time

(sec)

Time

reduction

(%)

Mean

shift

Time

(sec)

Time

reduction

(%)

Mean

shift

70% 38.96 39.75 7.07 44.50 31.19 16.45

60% 37.48 42.03 5.78 27.45 57.54 22.11

50% 31.71 50.95 8.83 25.18 61.05 12.62

40% 25.31 60.86 10.73 21.23 67.16 14.15

30% 14.06 78.26 13.64 12.87 80.08 19.26

20% 12.70 80.35 27.49 9.40 85.33 10.49

10% 3.82 94.08 27.19 4.57 92.92 36.61

Fig. 6 Time reduction comparison of the two sampling

schemes on approximate parallel k-means

Fig. 7 Error comparison of the two schemes of approximate

parallel k-means methods

V. CONCLUSION

Data clustering is now a common task applied in many

application areas such as grouping similar functional

genomes, segmenting images that demonstrate the same

pattern, partitioning web pages showing the same structure,

and so on. K-means clustering is the most well-known

algorithm commonly used for clustering data.

The k-means algorithm is simple but it performs intensive

calculation on computing distances between data points and

cluster central points. For the dataset with n data points and k

clusters, each iteration of k-means requires as much as (n×k)

computations. Fortunately, the distance computation of one

data point does not interfere the computation of other points.

Therefore, k-means clustering is a good candidate for

parallelism.

In this paper we propose the design and implementation of

two parallel algorithms: PKM and APKM. The PKM

algorithm parallel the k-means method by partitioning data

into equal size and send them to processes that run distance

computation concurrently. The parallel programming model

used in our implementation is based on the message passing

scheme. The APKM algorithm is an approximation method of

parallel k-means. We design this algorithm for streaming data

applications.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 148

The experimental results reveal that the parallel method

considerably speedups the computation time, especially with

tested with multi-core processors. The approximation scheme

also produces acceptable results in a short period of running

time. Our future work will focus on the real applications. We

are currently testing our algorithms with the genome dataset

and the preliminary outcome is quite promising.

APPENDIX

Source codes presented in this section are in Erlang format.

Erlang is a functional language. Each function takes a format:

functionName(Arguments) -> functionBody.

A line preceded with „%‟ is a comment. We provide two

versions of clustering programs: serial k-means and

approximate parallel k-means. Each program starts with

comments explaining how to compile and run the program.

Serial k—means
%------------k-means clustering ---------

% data file "points.dat" must exist in working directory

% example of data file:

% [2,7]. [3,6]. [1,6]. [3,7]. [2,6].

% [21,25]. [16,29]. [29,25]. [18,23]. [16,33].

% Then test a program with these commands:

% c(cluster). %% compile a program

% cluster:go(). %% then run

-module(cluster).

-export([go/0, clustering/3]).

go() ->

 {_, DataList} = file:consult("points.dat"),

 file:close("points.dat"),

 kMeans(DataList).

% ------------------------

% start k-means clustering

% ------------------------

kMeans(PL) ->

 {_,N} = io:read('enter number of clusters:> '),

 % for this example input "2"

 % then select initial centroids

 CL = take(N, PL),

 io:format("~n AllPoints = ~w ~n",[PL]),

 io:format("~n Initial Centroid = ~w~n",[CL]),

 % report data and initial centroids

 % start clustering process with

 % cluster number 1

 % then move on to cluster number 2

 % and so on

 {TT,{Centroid,DataGroup}} = timer:tc(cluster,

 clustering,[1,CL,PL]),

 T = TT/1000000,

 % record running time and report time

 % in a unit of seconds

 io:format("~n~n__Time for k-means is ~w

 second",[T]),

 io:format("~n~n__Calculated Centroid=~w~n~n",

 [Centroid]),

 printCluster(1, N, DataGroup).

%

% supporting clauses for kMeans

%

% These clauses take firts distinct-n element of list

take(0,_) -> [];

take(N,[H|T]) -> [H|take(N-1,T)].

% to print cluster nicely

printCluster(_,_,[]) -> end_of_clustering;

printCluster(_,0,_) -> end_of_clustering;

printCluster(I,N, [H|T]) ->

 {Centroid, ClusterMember} = H,

 io:format("~n__Cluster:~w Mean point =

 ~w~n",[I,Centroid]),

 io:format(" Cluster member is

 ~w~n",[ClusterMember]),

 printCluster(I+1,N-1,T).

% --------------------------

% repetitive data clustering

% --------------------------

clustering(N,CL,PL)->

 L1 = lists:map(fun(A) -> nearCentroid(A,CL)

 end,

 PL),

 L2 = transform(CL,L1),

 NewCentroid = lists:map(fun({_,GL}) ->

 findMeans(GL)

 end,

 L2),

 if NewCentroid==CL ->

 io:format("~nNo cluster changes~n"),

 io:format("From Loop1->stop at

 Loop~w~n",[N]),

 {NewCentroid,L2};

 % return new centroids and

 % cluster members as a list L2

 N>=90 -> % max iterations=90

 io:format("Force to stop at Loop

 ~w~n",[N]),

 io:format("Centroid = ~w",

 [NewCentroid]),

 {NewCentroid,L2};

 % return new centroids and

 % cluster members as a list L2

 true -> % default case

 io:format("~nLoop=~w~n",[N]),

 io:format("~nNewCentroid=~w

 ~n",[NewCentroid]),

 clustering(N + 1, NewCentroid, PL)

 end.

 % end if and end clustering function

% transform a format "Point-CentroidList"

% to "Centroid-PointList"

% example,

% transform([[1]],[{[2],[1]},{[3],[1]}]).

% --> [{[1],[[2],[3]]}]

transform([], _) -> [];

transform([C|TC], PC) ->

 [{C, t1(C, PC)} | transform(TC, PC)].

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 149

t1(_, []) -> [] ;

t1(C1, [H|T]) ->

 {P,C} = H,

 if C1==C -> [P| t1(C1, T)];

 C1=/=C -> t1(C1, T)

 end.

% -----------------------------

% Given a data point and a centroidList,

% the clause nearCentroid computes a nearest

% centroid and then returns

% a tuple of Point-Centroid

% example:

% nearCentroid([1], [[2],[3],[45],[1]]).

% ---> [[1], [1]]

nearCentroid(Point, CentroidL)->

 LenList = lists:zip(

 lists:map(fun(A) ->

 distance(Point,A)

 end,

 CentroidL),

 CentroidL),

 [{_, Centroid} | _] = lists:keysort(1,LenList),

 {Point, Centroid}.

 % return this tuple to caller

% --------------------------

% compute Euclidean distance

% --------------------------

distance([], []) -> 0;

distance([X1|T1], [X2|T2]) ->

 math:sqrt((X2-X1)*(X2-X1) + distance(T1,T2)).

% ----------------------------------

% calculate mean point (or centroid)

% ----------------------------------

% example,

% findMeans([[1,2], [3,4]]). --> [2.0,3.0]

findMeans(PointL) ->

 [H|_] = PointL,

 Len = length(H),

 AllDim = lists:reverse(allDim(Len,PointL)),

 lists:map(fun(A)-> mymean(A) end, AllDim).

allDim(0, _) -> [];

allDim(D, L) -> [eachDimList(D,L) | allDim(D-1,L)].

eachDimList(_, []) -> [];

eachDimList(N, [H|T]) ->

 [lists:nth(N, H) | eachDimList(N, T)].

mymean(L) -> lists:sum(L) / length(L).

% ---------- End of Serial k-means program -----------
%

% ----------------------------

% Running example:
% -----------------------

% 1> c(cluster).

% {ok,cluster}

% 2> cluster:go().

% enter number of clusters:> 2.

 % AllPoints = [[2,7],[3,6],[1,6],[3,7],[2,6],[1,5],[3,5],

% [2,5],[2,6],[1,6],[21,25],[16,29],

% [29,25], [18,23],[16,33],[25,32],

% [20,24],[27,21],[16,21],[19,34]]

 % Initial Centroid = [[2,7],[3,6]]

% Loop = 1

% NewCentroid = [[1.75,6.0],

% [17.75,23.166666666666668]]

% Loop = 2

% NewCentroid = [[2.0,5.9], [20.7,26.7]]

% No cluster changes

% From Loop1->stop at Loop3

% __Time for k-means is 0.031 second

% __Calculated Centroid=[[2.0,5.9],[20.7,26.7]]

% __Cluster:1 Mean point = [2.0,5.9]

% Cluster member is [[2,7],[3,6],[1,6],[3,7],

% [2,6],[1,5],[3,5],

% [2,5],[2,6],[1,6]]

% __Cluster:2 Mean point = [20.7,26.7]

% Cluster member is [[21,25],[16,29],[29,25],

% [18,23],[16,33],[25,32],

% [20,24],[27,21],[16,21],

% [19,34]]

% end_of_clustering

Approximate parallel k—means

% A parallel k-means program

% Compile program with a command

%

% c(pkm,[export_all]).

%

% To unbinding variables from the previous run

% use a command

%

% f(Var) % means clear Var

%

% Start experimentation by calling a function

% genData to generate 8000 synthetic data points

%

% f(), NumDat = 8000,

% D = pkm:genData(NumDat,10000).

%

% Then identify number of clusters

%

% f(NumCent), f(CL),

% NumCent = 4,

% CL = lists:sublist(D, NumCent).

%

% Start parallelization by identifying

% number of data partitions

%

% f(NumPar), f(DL), NumPar=8,

% DL = pkm:mysplit(length(D) div NumPar,

% D, NumPar).

%

% Record running time with the command

% {TReal,RealCen} = timer:tc(pkm,

% start,[DL,CL,length(DL)]).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 150

% Then record the running time of approximate parallel

% k-means (in this example apply 50%

% data sampling scheme)

%

% f(RDL),

% RDL=pkm:mrand(DL,50),

% {TRand,RandCen} = timer:tc(pkm,

% start,[RDL,CL,length(RDL)]).

%

% Calculate time difference between the parallel

% k-means and the approximate (50% data points)

% parallel k-means with a command

%

% pkm:mydiff({TReal,TRand},{RealCen,RandCen}).

%

% To show different time of different percentages

% from the same Centroid use the following commands

%

% f(RDL), f(Rand),

% RDL = pkm:mrand(DL,40),

% Rand = pkm:start(RDL,CL,length(RDL)),

% f(RealDL), f(Real),

% RealDL = pkm:mrand(DL,100),

% Real = pkm:start(RealDL,CL,length(RealDL)).

% f(RDL), f(Rand), f(TimeR),

% f(TimeReal), f(Per),

% Per = 40, RDL = pkm:mrand(DL,Per),

% {TimeR,Rand} = timer:tc(pkm,

% start,[RDL,CL,length(RDL)]),

% f(RealDL), f(Real),

% RealDL = pkm:mrand(DL,100),

% {TimeReal,Real} = timer:tc(pkm,

% start,[RealDL,CL,length(RealDL)]).

%

% To compute percentage of time difference,

% use a command

%

% io:format("___For ~w Percent, diff.time =

% ~w sec,length=~w",

% [Per, (TimeReal-TimeR) /1000000,

% lists:sum(pkm:diffCent(Real,Rand))]).

%

% All of the commands in clustering experimentation

% are also included in the test function

%

-module(pkm).

-import(lists, [seq/2,sum/1,flatten/1,split/2,nth/2]).

-import(io, [format/1,format/2]).

-import(random, [uniform/1]).

%---- for clustering experimentation ---------

test(_NRand) ->

 NumDat = 8000,

 D = pkm:genData(NumDat,10000),

 NumCent = 4,

 CL = lists:sublist(D, NumCent),

 NumPar=8,

 DL=pkm:mysplit(length(D) div NumPar,

 D, NumPar),

 {TReal, RealCen} = timer:tc(pkm,

 start, [DL,CL, length(DL)]),

 RDL = pkm:mrand(DL,50),

 {TRand,RandCen} = timer:tc(pkm,

 start, [RDL,CL, length(RDL)]),

 pkm:mydiff({TReal, TRand},

 {RealCen, RandCen}).

% ---- spawn a new process

% and start the newly created process

% with a function c(Pid)

myspawn(0) -> [] ;

myspawn(N) ->

 [spawn(?MODULE, c, [self()]) | myspawn(N-1)].

% random sampling without replacement

%

myrand(_, 0) -> [];

myrand(L, Count) ->

 E = nth((uniform(length(L))), L),

 L1= L -- [E],

 [E | myrand(L1, Count-1)].

 % for 100 percent sampling

mrand(L, 100) -> L;

 % random in each partition

mrand([], _) -> [];

mrand([HL|TL], X) ->

 [myrand(HL, trunc(length(HL)/(100/X))) |

 mrand(TL,X)].

mysend(LoopN, [CidH|CT], Cent, [DataH|DT]) ->

 CidH ! {LoopN, Cent, DataH},

 mysend(LoopN, CT, Cent, DT);

mysend(_, [], _ ,_) -> true.

% Compute difference between centroids

%

diffCent([H1|T1], [H2|T2]) ->

 [abs(H1-H2) | diffCent(T1,T2)];

diffCent([], _)->[].

mystop([CH|CT]) ->

 CH ! stop,

 mystop(CT);

mystop([]) -> true.

myrec(_, 0) -> [];

myrec(LoopN, Count) ->

 receive

 {LoopN, L} -> [L | myrec(LoopN,Count-1)];

 Another -> self() ! Another % send to myself

 end.

% generate 2 dimensional data points

% example: [{2,76},...]

%

genData(0, _) -> [];

genData(Count, Max) ->

 [{uniform(Max), uniform(Max)} |

 genData(Count-1, Max)].

mysplit(_, _, 0) -> [];

mysplit(Len, L, Count) ->

 {H, T} = split(Len, L),

 [H | mysplit(Len, T, Count-1)].

start(DataL, Cent, NumPar) ->

 CidL = myspawn(NumPar),

 LastC = myloop(CidL,Cent,DataL,NumPar,1),

 format("~nCentroid=~w",[LastC]),

 LastC.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 151

myloop(CidL, Cent, DataL, NumPar, Count) ->

 mysend(Count, CidL, Cent, DataL),

 L = flatten(myrec(Count, NumPar)),

 C_= calNewCent(Cent, L),

 format("~w.", [Count]),

 if Count >100 -> mystop(CidL),

 C_ ;

 Cent/= C_ -> myloop(CidL, C_, DataL,

 NumPar, Count+1);

 true -> mystop(CidL),

 C_

 end.

c(Sid) ->

 receive

 stop -> true;

 {LoopN, Cent, Data} -> L = locate(Data,Cent),

 Sid ! {LoopN,L},

 c(Sid)

 end.

calNewCent(Cent, RetL) ->

 LL = group(Cent, RetL),

 avgL(LL).

%---- supplementary functions------

%

mydiff({TReal,TRand}, {RealCen,RandCen}) ->

 { (TReal-TRand)/1000000,

 mdiff(RealCen, RandCen) / length(RandCen) }.

mdiff([{X,Y}|T1], [{X1,Y1}|T2]) ->

 distance({X,Y}, {X1,Y1}) + mdiff(T1,T2);

mdiff([], _) -> 0.

group([H|T] , RetL) ->

 [[X || {X,M} <- RetL , M==H] | group(T, RetL)];

group([],_) -> [].

avgL([HL|TL]) ->

 N = length(HL),

 [{sumX(HL) / N, sumY(HL) / N} | avgL(TL)];

avgL([]) -> [].

sumX([{X, _} | T]) -> X + sumX(T);

sumX([]) -> 0.

sumY([{_,Y} | T]) -> Y + sumY(T);

sumY([]) -> 0.

locate([H|T], C) ->

 NearC = near(H,C),

 [{H, NearC} |locate(T, C)];

locate([], _) -> [].

near(H, C) ->

 mynear(H, C, {0,1000000000}).

mynear(D, [H|T], {MinC, Min}) ->

 Min_= distance(D, H),

 if Min>Min_ -> mynear(D, T, {H, Min_});

 true -> mynear(D, T, {MinC, Min})

 end ;

mynear(_ , [], {MinC, _ }) -> MinC.

distance({X, Y}, {X1, Y1}) ->

 math:sqrt((X-X1)*(X-X1) + (Y-Y1)*(Y-Y1)).

ACKNOWLEDGMENT

This research has been funded by grants from the National

Research Council of Thailand (NRCT) and the Thailand

Research Fund (TRF, grant number RMU5080026). The

DEKD Research Unit has been supported by Suranaree

University of Technology.

REFERENCES

[1] J. Armstrong, Programming Erlang: Software for a Concurrent

World, Raleigh, North Carolina, The Pragmatic Bookshelf,

2007.

[2] G. Czibula, G. Cojocar, and I. Czibula, Identifying crosscutting

concerns using partitional clustering, WSEAS Transactions on

Computers, Vol.8, Issue 2, February 2009, pp. 386-395.

[3] I. Dhillon and D. Modha, A data-clustering algorithm on

distributed memory multiprocessors, Proceedings of ACM

SIGKDD Workshop on Large-Scale Parallel KDD Systems,

1999, pp. 47-56.

[4] R. Farivar, D. Rebolledo, E. Chan, and R. Campbell, A parallel

implementation of k-means clustering on GPUs, Proceedings of

International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), 2008, pp.

340-345.

[5] M. Joshi, Parallel k-means algorithm on distributed memory

multiprocessors, Technical Report, University of Minnesota,

2003, pp. 1-12.

[6] S. Kantabutra and A. Couch, Parallel k-means clustering

algorithm on NOWs, NECTEC Technical Journal, Vol.1, No.6,

2000, pp. 243-248.

[7] N. Kerdprasop and K. Kerdprasop, Knowledge induction from

medical databases with higher-order programming, WSEAS

Transactions on Information Science and Applications, Vol.6,

Issue 10, October 2009, pp. 1719-1728.

[8] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham, Weighted

k-means for density-biased clustering, Lecture Notes in

Computer Science, Vol.3589, Data Warehousing and

Knowledge Discovery (DaWaK), August 2005, pp. 488-497.

[9] X. Li and Z. Fang, Parallel clustering algorithms, Parallel

Computing, Vol.11, Issue 3, 1989, pp. 275-290.

[10] C. Li and T. Wu, A clustering algorithm for distributed time-

series data, WSEAS Transactions on Systems, Vol. 6, Issue 4,

April 2007, pp. 693-699.

[11] J. MacQueen, Some methods for classification and analysis of

multivariate observations, Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability, 1967,

pp. 281-297.

[12] F. Othman, R. Abdullah, N. Abdul Rashid, and R. Abdul Salam,

Parallel k-means clustering algorithm on DNA dataset,

Proceedings of the 5th International Conference on Parallel and

Distributed Computing: Applications and Technologies

(PDCAT), 2004, pp. 248-251.

[13] A. Prasad, Parallelization of k-means clustering algorithm,

Project Report, University of Colorado, 2007, pp. 1-6.

[14] J. Tian, L. Zhu, S. Zhang, and L. Liu, Improvement and

parallelism of k-means clustering algorithm, Tsignhua Science

and Technology, Vol. 10, No. 3, 2005, pp. 277-281.

[15] S. Tirumala Rao, E. Prasad, and N. Venkateswarlu, A critical

performance study of memory mapping on multi-core

processors: An experiment with k-means algorithm with large

data mining data sets, International Journal of Computer

Applications, Vol.1, No.9, pp. 90-98.

[16] H. Wang, J. Zhao, H. Li, and J. Wang, Parallel clustering

algorithms for image processing on multi-core CPUs,

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 152

Proceedings of International Conference on Computer Science

and Software Engineering (CSSE), 2008, pp. 450-53.

[17] H. Xiao, Towards parallel and distributed computing in large-

scale data mining: A survey, Technical Report, Technical

University of Munich, 2010, pp. 1-30.

[18] Z. Ye, H. Mohamadian, S. Pang, and S. Iyengar, Contrast

enhancement and clustering segmentation of gray level images

with quantitative information evaluation, WSEAS Transactions

on Information Science and Applications, Vol.5, Issue 2,

February 2008, pp. 181-188.

[19] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, The study of parallel k-

means algorithm, Proceedings of the 6th World Congress on

Intelligent Control and Automation, 2006, pp. 5868-5871.

[20] W. Zhao, H. Ma, and Q. He, Parallel k-means clustering based

on MapReduce, Proceedings of the First International

Conference on Cloud Computiong (CloudCom), 2009, pp. 674-

679.

Kittisak Kerdprasop is an associate

professor at the school of computer

engineering, Suranaree University of

Technology. His current address is School

of Computer Engineering, Suranaree

University of Technology, 111 University

Avenue, Nakhon Ratchasima 30000,

Thailand, Tel. +66-44-224349, e-mail

address KittisakThailand@gmail.com.

He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand, in

1991 and doctoral degree in computer science from Nova

Southeastern University, USA., in 1999. His current research

includes Data mining, Artificial Intelligence, Functional

Programming, Computational Statistics.

Nittaya Kerdprasop is an associate

professor at the school of computer

engineering, Suranaree University of

Technology, Thailand. She received her

B.S. from Mahidol University, Thailand, in

1985, M.S. in computer science from the

Prince of Songkla University, Thailand, in

1991 and Ph.D. in computer science from Nova Southeastern

University, USA, in 1999. She is a member of ACM and IEEE

Computer Society. Her research of interest includes Knowledge

Discovery in Databases, AI, Logic Programming, Deductive and

Active Databases.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 153

