
 

 

 

Abstract—Traditional k-means clustering iteratively performs 

two major steps: data assignment and calculating the relocation of 

mean points. The data assignment step sends each data point to a 

cluster with closest mean, or centroid. Normally, the measure of 

closeness is the Euclidean distance. On clustering large datasets, the 

k-means method spends most of its execution time on computing 

distances between all data points and existing centroids. It is obvious 

that distance computation of one data point is irrelevant to others. 

Therefore, data parallelism can be achieved in this case and it is the 

main focus of this paper. We propose the parallel method as well as 

its approximation scheme to the k-means clustering. The parallelism 

is implemented through the message passing model using a 

concurrent functional language, Erlang. The experimental results 

show the speedup in computation of parallel k-means. The clustering 

results of an approximated parallel method are impressive when 

taking into account its fast running time. 

 

Keywords—Parallel k-means, lightweight process, concurrent 

functional program, Erlang.  

I. INTRODUCTION 

LUSTERING is an unsupervised learning problem 

widely studied in many research areas such as statistics, 

machine learning, data mining, pattern recognition. The 

objective of clustering process is to partition a mixture of 

large dataset into smaller groups with a general criterion that 

data in the same group should be more similar or closer to 

each other than those in different groups. The clustering 

problem can be solved with various methods, but the most 

widely used one is the k-means method [10], [11], [18], [19].  

The popularity of k-means algorithm is due to its simple 

procedure and fast convergence to a decent solution. 

Computational complexity of k-means is O(nkt), where n is 

the number of data points or objects, k is the  number of 

desired clusters, and t is the number of iterations the algorithm 

takes for converging to a stable state. To efficiently apply the 

method to applications with inherent huge number of data 

objects such as genome data analysis and geographical 

information systems, the computing process needs 

improvements.  

Parallelization is one obvious solution to this problem and 

the idea has been proposed [9] since the last two decades. This 

paper also focuses on parallelizing k-means algorithm, but we 

base our study on the multi-core architecture. We implement 

 
 

 

our extension of the k-means algorithm using Erlang language 

(www.erlang.org), which uses the concurrent functional 

paradigm and communicates among hundreds of active 

processes via a message passing method [1]. To create 

multiple processes in Erlang, we use a spawn function as in 

the following example.  

-module(example1). 
-export([start/0]). 

start() ->  
              Pid1 = spawn(fun run/0), 

              io:format("New process ~p~n", [Pid1]), 

              Pid2 = spawn(fun run/0), 

              io:format("New process ~p~n", [Pid2]). 

run() -> io:format("Hello ! ~n", []). 

 

The start function in a module example1, which is the 

main process, creates two processes with identifiers Pid1 and 

Pid2, respectively. The newly created processes execute a run 

function that prints the word “Hello !” on the screen. The 

output of executing the start function is as follows: 

New process <0.53.0> 

Hello !  

New process <0.54.0> 

Hello ! 

 The numbers <0.53.0> and <0.54.0> are identifiers of the 

newly created two processes. Each process then independently 

invokes the run function to print out a word “Hello!” on the 

screen. 

The processes in Erlang virtual machine are lightweight and 

do not share memory with other processes. Therefore, it is an 

ideal language to implement a large scale parallelizing 

algorithm. To serve a very large data clustering application, 

we also propose an approximate method to the parallel k-

means. Our experimental results confirm efficiency of the 

proposed algorithms. 

The organization of the rest of this paper is as follows. 

Discussion of related work in developing a parallel k-means is 

presented in Section 2. Our proposed algorithms, a lightweight 

parallel k-means and the approximation method, are explained 

in Section 3. The implementation (a complete source code is 

available in the appendix) and experimental results are 
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demonstrated in Section 4. The conclusion as well as future 

research direction appears as a last section.  

II. RELATED WORK 

A serial k-means algorithm was proposed by J.B. 

MacQueen in 1967 [11] and since then it has gained mush 

interest from data analysts and computer scientists. The 

algorithm has been applied to variety of applications ranging 

from medical informatics [7], genome analysis [12], image 

processing and segmentation [16], [18], to aspect mining in 

software design [2]. Despite its simplicity and great success, 

the k-means method is known to degrade when the dataset 

grows larger in terms of number of objects and dimensions 

[5], [8]. To obtain acceptable computational speed on huge 

datasets, most researchers turn to parallelizing scheme.  

Li and Fang [9] are among the pioneer groups on studying 

parallel clustering. They proposed a parallel algorithm on a 

single instruction multiple data (SIMD) architecture. Dhillon 

and Modha [3] proposed a distributed k-means that runs on a 

multiprocessor environment. Kantabutra and Couch [6] 

proposed a master-slave single program multiple data (SPMD) 

approach on a network of workstations to parallel the k-means 

algorithm. Their experimental results reveal that when on 

clustering four groups of two dimensional data the speedup 

advantage can be obtained when the number of data is larger 

than 600,000. Tian and colleagues [14] proposed the method 

for initial cluster center selection and the design of parallel k-

means algorithm. 

Zhang and colleagues [19] presented the parallel k-means 

with dynamic load balance that used the master/slave model. 

Their method can gain speedup advantage at the two-

dimensional data size greater than 700,000. Prasad [13] 

parallelized the k-means algorithm on a distributed memory 

multi-processors using the message passing scheme. Farivar 

and colleagues [4] studied parallelism using the graphic 

coprocessors in order to reduce energy consumption of the 

main processor. 

Zhao, Ma and He [20] proposed parallel k-means method 

based on map and reduce functions to parallelize the 

computation across machines. Tirumala Rao, Prasad and 

Venkateswarlu [15] studied memory mapping performance on 

multi-core processors of k-means algorithm. They conducted 

experiments on quad-core and dual-core shared memory 

architecture using OpenMP and POSIX threads. The speedup 

on parallel clustering is observable. 

In this paper we also study parallelism on the multi-core 

processors, but our implementation does not rely on threads. 

The virtual machine that we use in our experiments employs 

the concept of message passing to communicate between 

parallel processes. Each communication carries as few 

messages as possible. This policy leads to a lightweight 

process that takes less time and space to create and manage. 

III. PROPOSED ALGORITHMS 

A. Parallel k-Means 

Serial k-means algorithm [11] starts with the initialization 

phase of randomly selecting temporary k central points, or 

centroids. Then, iteratively assign data to the nearest cluster 

and then re-calculate the new central points of k clusters. 

These two main steps are shown in Algorithm1.  

 

Algorithm 1. Serial k-means  

Input:   a set of data points and the number of clusters, K 

Output: K-centroids and members of each cluster 

Steps 

    1. Select initial centroid C = <C1, C2, …, CK> 

    2. Repeat 

         2.1   Assign each data point to its nearest cluster 

center 

         2.2   Re-compute the cluster centers using the 

current cluster memberships 

    3. Until there is no further change in the assignment of 

the data points to new cluster centers 

 

The serial algorithm takes much computational time on 

calculating distances between each of N data points and the 

current K centroids. Then iteratively assign each data point to 

the closest cluster. We thus improve the computational 

efficiency by assigning P processes to handle the clustering 

task on a smaller group of N/P data points. The centroid 

update is responsible by the master process. The pseudocode 

of our parallel k-means is shown in Algorithm 2. 

 

Algorithm 2. Parallel k-means (PKM) 

Input: a set of data points and the number of clusters, K 

Output: K-centroids and members of each cluster 

Steps 

    1. Set initial global centroid C = <C1, C2, …, CK> 

    2. Partition data to P subgroups, each subgroup has 

equal size 

    3. For each P, 

    4.       Create a new process 

    5.       Send C to the created process for calculating 

distances and assigning cluster members 

    6. Receive cluster members of K clusters from P 

processes 

    7. Recalculate new centroid C‟ 

    8. If difference(C, C‟) 

    9.     Then set C to be C‟ and go back to step 2 

  10.     Else stop and return C as well as cluster members  
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The PKM algorithm is the master process responsible for 

creating new parallel processes, sending centroids to the 

created processes, receiving the cluster assignment results, and 

recalculating the new centroids. The steps repeat as long as 

the old and the new centroids do not converge. The 

convergence criterion can be set through the function 

difference(C, C’). Communication between the master process 

and the created processes can be graphically shown in Fig. 1. 

 

 

Fig. 1 A diagram illustrating the communication between 

master and created processes 

 

B. Approximate Parallel k-Means 

For the case of very large datasets or streaming data, we 

also design the approximation method (Algorithm 3) in order 

to obtain a timely and acceptable result.   

Algorithm 3. Approximate parallel k-means (APKM) 

Input: a set of data points, the number of clusters (K), and 

the sample size (S) 

Output: approximate K-centroids and cluster members 

Steps 

   1. Set initial centroid C = <C1, C2, …, CK> 

   2. Sampling data to be of size S 

    3. Partition S into P subgroups, each subgroup has 

equal size 

    4. For each P, create a new process and send C to all 

processes for calculating distances and assigning 

cluster members 

    5. Receive cluster members of K clusters from P 

processes 

    6. Recalculate new centroid C‟ = average C 

    7. If  C‟ is diverge, then go back to step 2 

    8.     else stop and return C‟ as well as cluster members  

 
Our approximation scheme is based on the random 

sampling approach with the basis assumption that the 

incoming data are uniformly distributed. The data distribution 

takes other forms (such as Zipf, Gaussian), the proposed 

algorithm can be easily adapted by changing step 2 of the 

algorithm APKM to use different approach such as density-

biased sampling.  

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

A.  Implementation with Erlang 

We implement the proposed algorithms with Erlang 

language. Each process of Erlang does not share memory and 

it works concurrently in an asynchronous manner. The 

implementation of PKM and APKM algorithms as an Erlang 

program is given in appendix.  

Some screenshots of compiling and running the program 

(with Erlang release R13B04) are given in Figs. 2 and 3. To 

compile the program, we use the command   

c(pka, [export_all]). 

The first argument, pka, is the name of a module. The second 

argument, [export_all], is a compiler directive meaning that 

every function in the pka module is visible and can be called 

from the Erlang shell. The second command in Fig. 2 calls a 

function genData to generate a synthetic two dimensional 

dataset containing 800,000 data points with value randomly 

ranging from 1 to 10,000. Each data point is a tuple, which is 

a data structure enclosed by curly brackets, and all 800,000 

points are contained in a single list. 

Data points used in our experiments are randomly generated 

with the following function: 

genData(0, _) ->[]; 

genData(Count, Max) ->  
                   [ {uniform(Max), uniform(Max)} | 
                     genData(Count-1,Max)]. 

 

A function genData takes two arguments: number of data 

points and maximum value of a data point in each dimension 

(minimum value is 1 by default). Therefore, the second 

command in Fig. 2 generates 800,000 two-dimensional data 

points. A data value in each dimension is randomly ranged 

from 1 to 10,000. For instance, the first generated data point is 

(924, 4436). All 800,000 data points are stored in a list 

structure that is represented by bracket symbol. 

 

 

Fig. 2 A screenshot to illustrate compiling Erlang program 

and generating data points 
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Fig. 3 A series of line commands to clustering and recording 

running time 

  

The screenshot in Fig. 3 illustrates commands to create four 

initial centroids (command 3), then partition 800,000 data 

points into eight subgroups to send to the eight processors 

(command 4). A parallel k-means starts at command 5. The 

outputs of parallel k-means shown on a screen are the number 

of iteration (which is 35 in this example) and the mean points 

of four clusters. The last command call a variable TReal to 

display the running time of the whole process, which is 

129371000 microseconds or 129.371 seconds. This time 

includes sending and receiving messages between master and 

the eight concurrent processes. 

 

Table 1. Execution time of serial versus parallel k-means 

clustering 

 

# Data 

 points     

   (N) 

Time  

(Ts, sec) 

Serial  

k-means 

Time  

 (Tp, sec) 

Parallel  

k-means 

(dual cores) 

Time 

Difference 

(Ts – Tp) 

(sec) 

 

Speedup 

    (%) 

50     0.000     0.0149 - 0.0149  - 1.49 

500     0.031     0.030   0.001    3.23 

50,000     8.45     5.03   3.42  40.47 

100,000   16.59   10.18   6.40  38.60 

200,000   34.03   21.92 12.10  35.58 

300,000   66.09   50.92 15.17  22.95 

400,000   82.34   63.03 19.31  23.45 

500,000   94.67   69.35 25.31  26.73 

600,000 113.06   90.18 22.87  20.23 

700,000 135.20 101.18 34.01  25.15 

800,000 173.67 124.79 48.87  28.14 

900,000    N/A   N/A   N/A   N/A 

 

B. Performance of Parallel k-Means 

We evaluate performances of the proposed PKM and 

APKM algorithms on synthetic two dimensional dataset. The 

computational speed of parallel k-means as compared to serial 

k-means is given in Table1. Experiments are performed on 

personal computer with processor speed GHz and GB of 

memory. 

It is noticeable from Table 1 that when dataset is small 

(N=50), running time of parallel k-means is a little bit longer 

than the serial k-means. This is due to the overhead of 

spawning concurrent processes. At data size of 900,000 

points, running time is unobservable because the machine is 

out of memory. Running time comparison of parallel against 

serial k-means is graphically shown in Fig. 4. Percentage of 

running time speedup in is also provided in Fig. 5. Speedup 

advantage is very high (more than 30%) at dataset of size 

between 50,000 to 200,000 points. 

 

C. Performance of Approximate Parallel k-Means 

The experiments on approximated parallel k-means have 

been conducted to observe running time of a complete dataset 

(sample size = 100%) versus a reduced sample at different 

sizes (S). Dataset used in this series of experiments is 500,000 

two-dimensional data points, four clusters, and run 

concurrently with eight processes (running time is 64.67 

seconds).  

 

 
Fig. 4 Running time comparisons of serial versus parallel 

k-means 

 

 
Fig. 5 Percentage of running time speedup at different 

data sizes 
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At each sample size, the Euclidean distance of centroid shift 

is also computed by averaging the distances of four centroids 

that reported as the output of approximate parallel k-means. 

We test two schemes of sampling technique. The simple 

one is a fixed number of samples appeared as the first S 

records in the data stream. Another tested sampling technique 

is a randomly picked sample across the dataset (uniform 

random sampling with replacement). Centroid distance shift of 

both techniques are reported as “mean shift” in Table 2. The 

centroid shift may be considered as an error of the 

approximation method; the lower the distance shift, the better 

the sampling scheme. It turns out that a simple scheme of 

picking samples from the first part of dataset performs better 

than a uniform random sampling across the entire dataset. 

Percentage execution time speedup of the two sampling 

schemes is shown in Fig. 6. The error (or centroid shift 

computed from the average Euclidean distances of all mean 

points) of both schemes to approximate parallel k-means is 

shown in Fig. 7. It can be noticed from the experimental 

results that the random sampling with replacement scheme 

gains a little higher percentage of running time reduction than 

the simple scheme of selection the first S records from dataset. 

When compare the clustering error measured as the average 

centroid shift, the random sampling with replacement scheme 

shows worse performance than the simple scheme of selection 

the first S records from the dataset. There is only one 

exception at the sampling size 20% that random sampling with 

replacement produces a better result than the simple scheme of 

selection the first S records. This could happen from the 

nature of uniform sampling that sometimes a set of good 

representatives has been selected. 

This series of experiments, however, have been conducted 

on a uniformly distributed data. For other forms of data 

distribution, the experimental results can be different from the 

ones reported in this paper. 

 

Table 2. Performances of approximate parallel k-means 

 

Sample 

Size 

(N = 

500K) 

Sample = the first S 

records in data 

stream 

Uniform random 

sampling with 

replacement 

Time 

(sec) 

Time 

reduction 

(%) 

Mean 

shift 

Time 

(sec) 

Time 

reduction 

(%) 

Mean 

shift 

70% 38.96 39.75   7.07 44.50 31.19 16.45 

60% 37.48 42.03   5.78 27.45 57.54 22.11 

50% 31.71 50.95   8.83 25.18 61.05 12.62 

40% 25.31 60.86 10.73 21.23 67.16 14.15 

30% 14.06 78.26 13.64 12.87 80.08 19.26 

20% 12.70 80.35 27.49   9.40 85.33 10.49 

10%   3.82 94.08 27.19   4.57 92.92 36.61 

 
Fig. 6 Time reduction comparison of the two sampling 

schemes on approximate parallel k-means 

 

 
Fig. 7 Error comparison of the two schemes of approximate 

parallel k-means methods 

 

V. CONCLUSION 

Data clustering is now a common task applied in many 

application areas such as grouping similar functional 

genomes, segmenting images that demonstrate the same 

pattern, partitioning web pages showing the same structure, 

and so on. K-means clustering is the most well-known 

algorithm commonly used for clustering data. 

The k-means algorithm is simple but it performs intensive 

calculation on computing distances between data points and 

cluster central points. For the dataset with n data points and k 

clusters, each iteration of k-means requires as much as (n×k) 

computations. Fortunately, the distance computation of one 

data point does not interfere the computation of other points. 

Therefore, k-means clustering is a good candidate for 

parallelism. 

In this paper we propose the design and implementation of 

two parallel algorithms: PKM and APKM. The PKM 

algorithm parallel the k-means method by partitioning data 

into equal size and send them to processes that run distance 

computation concurrently. The parallel programming model 

used in our implementation is based on the message passing 

scheme. The APKM algorithm is an approximation method of 

parallel k-means. We design this algorithm for streaming data 

applications. 
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The experimental results reveal that the parallel method 

considerably speedups the computation time, especially with 

tested with multi-core processors. The approximation scheme 

also produces acceptable results in a short period of running 

time. Our future work will focus on the real applications. We 

are currently testing our algorithms with the genome dataset 

and the preliminary outcome is quite promising. 

APPENDIX 

Source codes presented in this section are in Erlang format. 

Erlang is a functional language. Each function takes a format: 

functionName(Arguments) -> functionBody. 

A line preceded with „%‟ is a comment. We provide two 

versions of clustering programs: serial k-means and 

approximate parallel k-means. Each program starts with 

comments explaining how to compile and run the program. 

 

Serial k—means 
%------------k-means clustering --------- 

% data file "points.dat" must exist in working directory 

% example of data file: 

%    [2,7].     [3,6].     [1,6].     [3,7].     [2,6]. 

%    [21,25]. [16,29]. [29,25]. [18,23]. [16,33]. 

% Then test a program with these commands: 

%    c(cluster).             %% compile a program 

%    cluster:go().          %% then run 

 

-module(cluster). 

-export([go/0, clustering/3]). 

 

go() -> 

       {_, DataList} = file:consult("points.dat"), 

       file:close("points.dat"), 

       kMeans(DataList). 

        

% ------------------------ 

% start k-means clustering 

% ------------------------ 

 

kMeans(PL) ->  

        {_,N} = io:read('enter number of clusters:> '),  

                                 % for this example input "2"  

                                 % then select initial centroids 

        CL = take(N, PL),    

        io:format("~n AllPoints = ~w ~n",[PL]), 

        io:format("~n Initial Centroid = ~w~n",[CL]),   

                       % report data and initial centroids 

                       % start clustering process with  

                       % cluster number 1 

                       % then move on to cluster number 2  

                       % and so on 

                     

        {TT,{Centroid,DataGroup}} = timer:tc(cluster, 

                                                   clustering,[1,CL,PL]), 

         T = TT/1000000,          

                      % record running time and report time 

                      % in a unit of seconds                             

        io:format("~n~n__Time for k-means is ~w  

                           second",[T]), 

        io:format("~n~n__Calculated Centroid=~w~n~n", 

                           [Centroid]), 

        printCluster(1, N, DataGroup). 

% .................................... 

% supporting clauses for kMeans 

% 

%  These clauses take firts  distinct-n element of list 

 

take(0,_) -> []; 

take(N,[H|T]) -> [H|take(N-1,T)]. 

 

% to print cluster nicely 

 

printCluster(_,_,[]) -> end_of_clustering; 

printCluster(_,0,_) -> end_of_clustering; 

printCluster(I,N, [H|T]) -> 

       {Centroid, ClusterMember} = H, 

       io:format("~n__Cluster:~w  Mean point =  

                       ~w~n",[I,Centroid]), 

       io:format("               Cluster member is  

                       ~w~n",[ClusterMember]), 

       printCluster(I+1,N-1,T). 

 

% -------------------------- 

% repetitive data clustering 

% -------------------------- 

clustering(N,CL,PL)->  

        L1 = lists:map( fun(A) -> nearCentroid(A,CL)  

                                end,  

                                PL), 

        L2 = transform(CL,L1), 

        NewCentroid = lists:map(fun({_,GL}) ->  

                                                   findMeans(GL)  

                                              end,  

                                              L2), 

        if NewCentroid==CL ->  

                          io:format("~nNo cluster changes~n"), 

                          io:format("From Loop1->stop at  

                                          Loop~w~n",[N]), 

                       {NewCentroid,L2};      

                                   % return new centroids and  

                                   % cluster members as a list L2 

  

         N>=90 ->        % max iterations=90 

                          io:format("Force to stop at Loop 

                                           ~w~n",[N]),                 

                          io:format("Centroid = ~w", 

                                             [NewCentroid]), 

                       {NewCentroid,L2};               

                                   % return new centroids and  

                                   % cluster members as a list L2 

 

         true ->           % default case 

                         io:format("~nLoop=~w~n",[N]), 

                         io:format("~nNewCentroid=~w 

                                            ~n",[NewCentroid]), 

                         clustering(N + 1, NewCentroid, PL) 

         end.   

               % end if and end clustering function 

         

% transform a format "Point-CentroidList"  

% to "Centroid-PointList" 

% example, 

%         transform([[1]],[{[2],[1]},{[3],[1]}]).  

%              -->  [{[1],[[2],[3]]} ] 

 

transform([], _) -> []; 

transform([C|TC], PC) ->  

                              [ {C, t1(C, PC)} | transform(TC, PC)]. 
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t1(_, []) -> [] ;           

t1(C1, [H|T]) ->  

                   {P,C} = H,  

       if  C1==C -> [ P| t1(C1, T) ]; 

           C1=/=C -> t1(C1, T) 

       end. 

 

% ----------------------------- 

% Given a data point and a centroidList, 

%     the clause nearCentroid computes a nearest 

%     centroid and then returns 

%     a tuple of Point-Centroid 

% example: 

%     nearCentroid( [1], [[2],[3],[45],[1]] ).  

%                    ---> [ [1], [1] ] 

 

nearCentroid(Point, CentroidL)-> 

     LenList = lists:zip( 

                              lists:map(fun(A) ->  

                                                        distance(Point,A)  

                                                     end, 

                                              CentroidL),  

                                  CentroidL), 

             [ {_, Centroid} | _ ] = lists:keysort(1,LenList), 

             {Point, Centroid}.                 

                          % return this tuple to caller  

   

% -------------------------- 

% compute Euclidean distance 

% -------------------------- 

distance([], []) -> 0;   

distance([X1|T1], [X2|T2]) ->  

            math:sqrt((X2-X1)*(X2-X1) + distance(T1,T2) ). 

 

% ---------------------------------- 

% calculate mean point (or centroid) 

% ---------------------------------- 

% example, 

%      findMeans([[1,2], [3,4]]). --> [2.0,3.0] 

 

findMeans(PointL) -> 

         [H|_] = PointL, 

         Len = length(H), 

         AllDim = lists:reverse( allDim(Len,PointL) ), 

         lists:map(fun(A)-> mymean(A) end, AllDim ). 

  

allDim(0, _) -> []; 

allDim(D, L) -> [ eachDimList(D,L) | allDim(D-1,L) ]. 

 

eachDimList(_, []) -> []; 

eachDimList(N, [H|T]) -> 

          [ lists:nth(N, H) | eachDimList(N, T) ]. 

 

mymean(L) -> lists:sum(L) / length(L). 

 

 

% ---------- End of Serial k-means program ----------- 
%  

% ---------------------------- 

% Running example: 
% ----------------------- 

% 1> c(cluster).   

%    {ok,cluster} 

% 2> cluster:go(). 

%     enter number of clusters:> 2. 

 %     AllPoints = [[2,7],[3,6],[1,6],[3,7],[2,6],[1,5],[3,5], 

%                         [2,5],[2,6],[1,6],[21,25],[16,29], 

%                         [29,25], [18,23],[16,33],[25,32], 

%                         [20,24],[27,21],[16,21],[19,34]]  

 %     Initial Centroid = [[2,7],[3,6]] 

%      Loop = 1 

%      NewCentroid = [ [1.75,6.0], 

%                                [17.75,23.166666666666668]] 

%      Loop = 2 

%      NewCentroid = [ [2.0,5.9], [20.7,26.7] ] 

%      No cluster changes 

%      From Loop1->stop at Loop3 

%      __Time for k-means is 0.031 second 

%      __Calculated Centroid=[[2.0,5.9],[20.7,26.7]] 

%      __Cluster:1  Mean point = [2.0,5.9] 

%              Cluster member is [ [2,7],[3,6],[1,6],[3,7], 

%                                             [2,6],[1,5],[3,5], 

%                                             [2,5],[2,6],[1,6]] 

%       __Cluster:2  Mean point = [20.7,26.7] 

%               Cluster member is [ [21,25],[16,29],[29,25], 

%                                              [18,23],[16,33],[25,32], 

%                                              [20,24],[27,21],[16,21], 

%                                              [19,34]] 

%       end_of_clustering 

 

Approximate parallel k—means 

%  A parallel k-means program 

%  Compile program with a command 

% 

%              c(pkm,[export_all]). 

% 

%  To unbinding variables from the previous run 

%   use a command 

% 

%               f(Var)     % means clear Var 

%   

%  Start experimentation by calling a function 

%   genData to generate 8000 synthetic data points 

% 

%               f(), NumDat = 8000, 

%               D = pkm:genData(NumDat,10000). 

%  

%  Then identify number of clusters 

% 

%               f(NumCent), f(CL), 

%               NumCent = 4, 

%               CL = lists:sublist(D, NumCent).  

% 

%  Start parallelization by identifying  

%   number of data partitions  

% 

%                f(NumPar), f(DL), NumPar=8, 

%                DL = pkm:mysplit(length(D) div NumPar, 

%                                             D, NumPar). 

% 

%  Record running time with the command 

%               {TReal,RealCen} = timer:tc(pkm, 

%                                           start,[DL,CL,length(DL)]). 
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% Then record the running time of approximate parallel 

% k-means (in this example apply 50%  

% data sampling scheme) 

% 

%                f(RDL), 

%                RDL=pkm:mrand(DL,50), 

%                {TRand,RandCen} = timer:tc(pkm, 

%                                       start,[RDL,CL,length(RDL)]). 

% 

%  Calculate time difference between the parallel  

%   k-means and the approximate (50% data points) 

%   parallel k-means with a command 

% 

%          pkm:mydiff({TReal,TRand},{RealCen,RandCen}). 

% 

%  To show different time of different percentages  

%  from the same Centroid use the following commands  

%  

%           f(RDL), f(Rand), 

%           RDL = pkm:mrand(DL,40), 

%           Rand = pkm:start(RDL,CL,length(RDL)), 

%           f(RealDL), f(Real), 

%           RealDL = pkm:mrand(DL,100), 

%           Real = pkm:start(RealDL,CL,length(RealDL)). 

%           f(RDL), f(Rand), f(TimeR),  

%           f(TimeReal), f(Per),  

%           Per = 40, RDL = pkm:mrand(DL,Per), 

%           {TimeR,Rand} = timer:tc(pkm, 

%                                   start,[RDL,CL,length(RDL)]), 

%           f(RealDL), f(Real),  

%           RealDL = pkm:mrand(DL,100), 

%           {TimeReal,Real} = timer:tc(pkm, 

%                              start,[RealDL,CL,length(RealDL)]). 

% 

% To compute percentage of time difference, 

% use a command 

% 

%     io:format("___For ~w Percent, diff.time = 

%                        ~w sec,length=~w", 

%                         [Per, (TimeReal-TimeR) /1000000, 

%                         lists:sum(pkm:diffCent(Real,Rand))]).  

% 

%  All of the commands in clustering experimentation 

%  are also included in the test function 

% 

 

-module(pkm). 

-import(lists, [seq/2,sum/1,flatten/1,split/2,nth/2]). 

-import(io, [format/1,format/2]). 

-import(random, [uniform/1]). 

 

%---- for clustering experimentation --------- 

test(_NRand) -> 

              NumDat = 8000,    

              D = pkm:genData(NumDat,10000), 

              NumCent = 4, 

              CL = lists:sublist(D, NumCent),  

              NumPar=8, 

              DL=pkm:mysplit(length(D) div NumPar, 

                                         D, NumPar), 

              {TReal, RealCen} = timer:tc(pkm,  

                                         start, [DL,CL, length(DL)]), 

              RDL = pkm:mrand(DL,50), 

              {TRand,RandCen} = timer:tc(pkm,  

                                    start, [RDL,CL, length(RDL)]), 

              pkm:mydiff({TReal, TRand},  

                                  {RealCen, RandCen}). 

% ---- spawn a new process 

%           and start the newly created process 

%           with a function c(Pid) 

 

myspawn(0) -> [] ; 

myspawn(N) -> 

           [spawn(?MODULE, c, [self()]) | myspawn(N-1) ]. 

 

% random sampling without replacement 

% 

myrand(_, 0) -> []; 

myrand(L, Count) -> 

           E = nth((uniform(length(L))), L), 

           L1= L -- [E], 

           [E | myrand(L1, Count-1)].  

 

                               %  for 100 percent sampling 

mrand(L, 100) -> L; 

                               % random in each partition 

mrand([], _) -> []; 

mrand([HL|TL], X ) ->  

          [myrand(HL, trunc(length(HL)/(100/X) )) |  

                          mrand(TL,X)]. 

 

mysend(LoopN, [CidH|CT], Cent, [DataH|DT]) ->   

          CidH ! {LoopN, Cent, DataH}, 

          mysend(LoopN, CT, Cent, DT); 

 

mysend( _, [], _ ,_) -> true. 

 

% Compute difference between centroids 

% 

diffCent( [H1|T1], [H2|T2]) -> 

          [ abs(H1-H2) | diffCent(T1,T2) ]; 

 

diffCent( [], _ )->[]. 

mystop( [CH|CT] ) ->  

                CH ! stop, 

                mystop(CT); 

mystop([]) -> true. 

 

myrec( _, 0) -> []; 

myrec(LoopN, Count) -> 

      receive  

          {LoopN, L} -> [L | myrec(LoopN,Count-1) ]; 

          Another -> self() ! Another   % send to myself 

      end. 

 

% generate 2 dimensional data points 

%  example:  [{2,76},...] 

%   

genData(0, _ ) -> []; 

genData(Count, Max) ->  

           [ {uniform(Max), uniform(Max)} | 

                 genData(Count-1, Max)]. 

 

mysplit(_, _, 0) -> [];    

mysplit(Len, L, Count) -> 

            {H, T} = split(Len, L),  

            [ H | mysplit(Len, T, Count-1) ]. 

 

start( DataL, Cent, NumPar) ->  

           CidL = myspawn(NumPar), 

           LastC = myloop(CidL,Cent,DataL,NumPar,1), 

           format("~nCentroid=~w",[LastC]), 

           LastC. 
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myloop(CidL, Cent, DataL, NumPar, Count) -> 

          mysend(Count, CidL, Cent, DataL),   

          L = flatten(myrec(Count, NumPar)),  

          C_= calNewCent(Cent, L), 

          format("~w.", [Count]), 

          if  Count >100 -> mystop(CidL), 

                                     C_ ;  

              Cent/= C_ -> myloop(CidL, C_, DataL,  

                                            NumPar, Count+1); 

              true -> mystop(CidL), 

                         C_    

         end. 

 

c(Sid) -> 

        receive 

             stop -> true; 

            {LoopN, Cent, Data} -> L = locate(Data,Cent), 

                                               Sid ! {LoopN,L}, 

                                               c(Sid) 

        end. 

 

calNewCent(Cent, RetL) -> 

          LL = group(Cent, RetL), 

          avgL(LL). 

 

%---- supplementary functions------ 

% 

mydiff( {TReal,TRand}, {RealCen,RandCen} ) ->  

          { (TReal-TRand)/1000000, 

             mdiff(RealCen, RandCen) / length(RandCen) }. 

 

mdiff( [ {X,Y}|T1], [ {X1,Y1}|T2] ) ->  

             distance({X,Y}, {X1,Y1}) + mdiff(T1,T2);  

mdiff([], _ ) -> 0. 

 

group([H|T] , RetL) -> 

            [ [X || {X,M} <- RetL , M==H ] | group(T, RetL)]; 

group([],_) -> []. 

 

avgL( [HL|TL] ) ->  

           N = length(HL), 

           [ {sumX(HL) / N, sumY(HL) / N} | avgL(TL)]; 

avgL([]) -> []. 

 

sumX( [ {X, _} | T] ) -> X + sumX(T); 

sumX([]) -> 0. 

 

sumY( [ {_,Y} | T] ) -> Y + sumY(T); 

sumY([]) -> 0. 

 

locate( [H|T], C) -> 

            NearC = near(H,C), 

            [ {H, NearC} |locate(T, C) ]; 

locate( [], _ ) -> []. 

 

near(H, C) -> 

             mynear(H, C, {0,1000000000} ). 

 

mynear(D, [H|T], {MinC, Min}) -> 

             Min_= distance(D, H), 

             if Min>Min_ -> mynear(D, T, {H, Min_} ); 

                        true  -> mynear(D, T, {MinC, Min} )  

             end ; 

mynear(_ , [], {MinC, _ } ) -> MinC.   

 

distance( {X, Y}, {X1, Y1}) ->  

             math:sqrt( (X-X1)*(X-X1) + (Y-Y1)*(Y-Y1) ). 
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