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Abstract— In this paper, a mathematical model is developed to
simulate three-dimensional femur bone and femur bone with implant
in the femoral canal, taking into account stress distribution and total
displacement during horizontal walking. The equilibrium equations
are used in the model. Realistic domain are created by using CT scan
data. Different cases of static loads and different boundary conditions
are used in the simulation. The finite element method is utilized to
determine total displacement and Von Mises Stress. The influences of
human weight during horizontal walking are investigated. This model
will give the useful for surgeon in femur surgeries. The results show
that higher weight provides higher total displacement. And it is found
that the Von Mises stress affects the lateral femur.

Keywords— Femur bone, Finite element method, Three dimen-
sional simulation, Mathematical modeling, Implant in the femoral
canal.

I. I NTRODUCTION

I N several centuries, human has tried to understand all
parts of human body. Biologist and medical staff did a

lot of experiments for this topics. The cost, operation time
and lead time were used to carry out the knowledge. Since
the computer era come to the world. Mathematicians have
applied mathematical models to explain human organism such
as brain, heart, blood, lung and bone. These studied are very
useful for orthopedic surgeon.

Femur is a leg bone which is the most important organism in
human body. In vitro experiments were conducts to analyse the
distribution of stress across the neck of the femur; however,
the shear stress distribution was not satisfy [1], [2]. Finite
element models were developed foe normal and osteoarthritic
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Fig. 1. Three-dimensional geometry of fumer bone and its finite element
mesh.

femur [3]. Some researches developed three dimensional math-
ematical models to investigate the geometry of femur and
stress [4], [5]. Krauze [6] also studied a numerical simulation
for stresses and displacement in femur in a living and a dead
phase. The influence of mechanical properties of bone tissues
were also investigated in their studies. The femur fractures
in case of frontal car accidents are determined [7]. It is also
found that the boundary conditions and load conditions are af-
fected to the numerical simulations significantly [8]. Moreover,
modular adaptive implants for fractured bone and X-ray based
technique for bone fracture problem are developed [9], [10].
It is founded that CT scan realistic bone models are important
for the simulation. That means the realistic geometry of femur
bone with implant is still a subject for active research.

This paper aims to construct a completed three-dimensional
femur bone and implant in femoral canal based on CT scan
data. The mimics commercial software and FEMLEB commer-
cial software are used. The finite element method is applied
to carried out stress distribution and total displacement. The
rest of the paper is organized as follow. Section 2 describes
the governing equations of the mathematical models. Two
domains, boundary conditions and five different cases of static
load are shown in section 3. The results and discussion are also
shown in Section 4. Finally, Section 5 presents conclusions and
future works.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 4, Volume 4, 2010 171



Fig. 2. The artificial femur bone geometry consists femural canal bone and
implant. Forces on the head implant.

Fig. 3. Mesh of the artificial femur bone geometry consists of 36,007
tetrahedral elements and 148,140 degrees of freedom. Forces on the head
implant.

Fig. 4. Mesh statistic of the artificial femur bone geometry.

TABLE I

THE EXPERIMENT PARAMETERS USED IN THE NUMERICAL SIMULATION

OF ARTIFICIAL FEMUR BONE [11].

Parameters Femur Units

Density (ρ) 2000 kg/m3

Young’s modulus (E) 2.130 GPA
Poisson’s ratio (ν ) 0.3 −
Yield strength 1.48× 108 Pa

I I. M ATHEMATICAL MODEL

Three-dimensional model of the right femur was constructed
using CT scan data of a human femur. Fig. 1 shows the
complete geometry of the right femur bone of length 50cm
with forces acting on the head and the end of femur. Mesh
of the femur bone geometry consists of 17,495 tetrahedral
elements and 87,288 degrees of freedom. Implant and femoral
canal in artificial femur bone was constructed as shown in
Fig. 2 base on real domain. Fig. 3 shows the complete
geometry of the femur bone with forces acting on the head
of bone implant. Mesh of the artificial femur bone geometry
consists of 36,007 tetrahedral elements and 148,140 degrees
of freedom as shown in Fig. 4.

The bone is assumed to be a Von Mises elasto-plastic
material. From the principles of continuum mechanics, the
field equations governing the displacement and stress fields
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TABLE II

THE EXPERIMENT PARAMETERS USED IN THE NUMERICAL SIMULATION

OF FEMORAL CANAL [11].

Parameters Femoral canal Units

Density (ρ) 1100[65] kg/m3

Young’s modulus (E) 2.28 GPA
Poisson’s ratio (ν ) 0.3 −
Yield strength 4.38× 104 Pa

TABLE III

THE EXPERIMENT PARAMETERS USED IN THE NUMERICAL SIMULATION

OF IMPLANT [11].

Parameters Implant Units

Density (ρ) 4420[25] kg/m3

Young’s modulus (E) 210 GPA
Poisson’s ratio (ν ) 0.3 −
Yield strength 7.20× 105 Pa

in the femur bone include the stress equilibrium equations as
follows:

σij,j + fi = 0 (i = 1, 2, 3) (1)

εij(~u) =
1
2
(ui,j + uj,i), (2)

σi,j = (Cep)ijrsεrs, (3)

where σ and ε denote respectively the stress tensor and
the strain tensor,~u is displacement,fi is body force and
(Cep)ijrs is a tensor of elastic constants, or a modulus which
are independent of stress or strain.

The parameters which is shown by Table 1,2 and 3 used in
the numerical simulation. For the domain as shown in Fig. 1,
we impose three boundary conditions based on the human’s
weight as follows [12]:

(I). Fdynamic : Fx= 234N , Fy = 385N,
Fz = -1652N

Fabdductor : Fx = 0 N, Fy= 0.8N,
Fz = -1.937N

Flliotibial−tract : Fx = 0 N, Fy = 0N,
Fz = 350N

(II). Fdynamic : Fx= 334.8N , Fy = 550N,
Fz = -2360N

Fabdductor : Fx = 0 N, Fy= 1.142N,
Fz = -2.8N

Flliotibial−tract : Fx = 0 N, Fy = 0N,
Fz = 500N

(III). Fdynamic : Fx= 669.6N , Fy = 1100N,
Fz = -4720N

Fabdductor : Fx = 0 N, Fy= 2.285N,
Fz = -5.6N

Flliotibial−tract : Fx = 0 N, Fy = 0N,
Fz = 1000N

The loads (I), (II) and (III) represent terminal stance during
horizontal walking in which each person has the weight of 70,
100 and 200kg, respectively.

In order to simulate the stress field corresponding to the
patient activities for the fumer with implant as shown in fig. 2
, we impose two types of boundary conditions. On the distal
epiphysis (the base) displacement is restrained. On the implant
head external point load is imposed to simulate the force
acting on the object corresponding to patient’s activity. In this
domain, we impose two different cases of static loads as shown
in table IV

TABLE IV

THE EXPERIMENT PARAMETERS USED IN THE NUMERICAL SIMULATION

OF IMPLANT

Force Implant Load (I) Implant Load (II) Unit

Fx 0 1.4×103 N/m3

Fy 0 1×103 N/m3

Fz -3×103 -4.8×103 N/m3

The implant load (I) approximate the peak gait load for
a 70 kg person during normal walk [13] and the implant
load (II) approximate the terminal stance during horizontal
walking [14].
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I II. F INITE ELEMENT FORMULATION

To solve the boundary value problem numerically by
the finite element method, we multiply equation (1) by a
weighting functionv(x). Setting the total weighted residual
error to zero, that is,

∫

Ω

σij,jvidΩ = −
∫

Ω

fividΩ (4)

From the symmetry ofσij,j , we have

σij,jvi = (σijvi),j − σijvi,j (5)

Substituting equation (5) into (4) and using the divergence
theorem, we obtain

∫

Ω

σijvi,jdΩ =
∫

Ω

fividΩ +
∫

∂Ω

σijnjvids (6)

Using the boundary condition, we get

∫

Ω

σijvi,jdΩ =
∫

Ω

fividΩ +
∫

∂Ω

Fδ(r − r0)vids (7)

Let

u =




ux

uy

uz


 , v =




vx

vy

vz


 ,

ε =




εx

εy

εz

2εxy

2εyz

2εzx




,

σ =




σxx

σyy

σzz

σxy

σyz

σzx




,

f =




f1

f2

f3


 ,

D =




∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂x

∂
∂z 0 ∂

∂x




.

we then have

σijvi,j =
1
2
σij (vi,j + vj,i) = σijεij(v) (8)

and hence (8) becomes

∫

Ω

DvT CDudΩ =
∫

Ω

vT fdΩ +
∫

∂Ω2

vT gds. (9)

Therefore, the variational statement for the BVP can be stated
as follows:

Find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V (10)

where

a(u, v) =
∫

Ω

(Dv)T
C(Du)dΩ

L(v) =
∫

Ω

vT fdΩ + vT (ro)F

V = {v ∈ [H1(Ω)]3]|v = 0 on ∂Ω1}.

To find the numerical solution of the variational boundary
value problem, we pose the problem in an N-dimensional
subspace with basis function{φi}N

i=1, and approximateu and
v by

u =
n∑

j=1

Φjuj , v =
n∑

j=1

Φjvj , (11)

where

Φj =




φj 0 0
0 φj 0
0 0 φj


 , uj =




uxj

uyj

uzj


 .

Substituting into and noting thatvi is arbitrary, we have

a(Φj , Φi)uj = L(Φi) (i, j = 1, 2, . . . , N), (12)

which represents a system of 3N equations in terms of 3N
unknowns

{(uxj , uuj , uzj)}N
j=1.

The system is a nonlinear system and can be solved by the
quasi-Newton method.

IV. RESULTS AND DISCUSSION

In the first domain as shown in Fig. 1, the effect of the
human’s weight on the total displacement and von Mises
stress during horizontal walking have been investigated. In
Fig. 5– 7, the total displacement of the loading approximates
the peak gait load for a 70kg, 100 kg and 200kg person
during horizontal walking, respectively. The results show that
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Fig. 5. Total displacement of the loading approximates the peak gait load
for a 70kg person during horizontal walking.

Fig. 6. Total displacement of the loading approximates the peak gait load
for a 100kg person during horizontal walking.

Fig. 7. Total displacement of the loading approximates the peak gait load
for a 200kg person during horizontal walking.

Fig. 8. Profile of total displacement along the axial of femur bone where
the solid-circled line corresponds to the load of 70kg, the solid-squared line
corresponds to the load of 100kg, and the solid-starred line corresponds to
the load of 200kg.

Fig. 9. Von Mises stress of the loading approximates the peak gait load for
a 70kg person during horizontal walking.

high displacement appears at the head of the femur bone
and the lower displacement occurs at the end of the femur
bone. The total displacement for different human weights are
compared in Fig. 8. It is found that higher weight provides
higher total displacement and lower weight provides lower
total displacement.

Front view and back view of Von Mises stress are shown in
Fig. 9– 11. The results indicate that higher Von Mises Stress
is located at the front view of the end of femur. Additionally,
the Von Mises stress indirectly affects the lateral femur bone.

The computational domain as shown in Fig. 3 is separable
in space into 36,007 tetrahedral elements and 148,140 degrees
of freedom. The material properties for the implant are :
densityρ = 4420kg/m3, Young’s modulusE = 210 GPA,
Poisson’s ratioν = 0.3 and yield strength 7.20×105 Pa; the
material properties for the femoral canal are : densityρ =
1100 kg/m3, Young’s modulusE = 2.28 GPA, Poisson’s
ratio ν = 0.3 and yield strength 4.38×104 Pa; while the
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Fig. 10. Von Mises stress of the loading approximates the peak gait load
for a 100kg person during horizontal walking.

Fig. 11. Von Mises stress of the loading approximates the peak gait load
for a 200kg person during horizontal walking.

material properties for the femur are : densityρ = 2000
kg/m3, Young’s modulusE = 2.13 GPA, Poisson’s ratioν
= 0.3 and yield strength 1.48×108 Pa as shown in Table I– III.

In this part of study, we investigate the total displacement
and von Mises stress for a 70kg person during normal
walk (I) and terminal stance horizontal walking (II). For the
implant load (I) and implant load (II), the force acting on the
object corresponding to patient’s activity imposed at the head
implant external point is simulated. On the distal epiphysis
(the base) displacement is restrained.

For the implant load (I), we obtain that the total displace-
ment of implant and femoral canal in artificial femur bone
based on real domain for a 70kg person during normal walk
is 4.087e−4 × 10−4 m.

Fig. 12 presents the total displacement of implant and
femoral canal in artificial femur bone based on real domain
for a 70 kg person during normal walking (I). The results
show that high displacement appears at the head of implant
and lower displacement occurs at the end of the femur.
The surface plot of the total displacement for the different
regions including artificial femur bone, femoral canal and

Fig. 12. Total displacement at a 70kg person during normal walking.

Fig. 13. Surface plot of the total displacement of artificial femur bone at
load (I) and load (II).

implant are compared in Fig. 13– 15. It is found that the total
displacement of the implant is the largest. Fig. 16 shows the
total displacement along the axial of artificial femur bone
and femoral canal for a 70kg person during normal walking.
It indicates that the total displacement along the axial of
artificial femur bone is larger than the along the axial of
femoral canal. Von Mises stress as shown in Fig. 17– 19,
indicates that high Von Mises Stress presents at the neck of
the implant and femoral stem.

For the implant load (II), we obtain that the total displace-
ment of implant and femoral canal in artificial femur bone
based on real domain for a 70kg person terminal stance during
horizontal walking is4.165e−4 × 10−4 m. From the loading
conditions, It can be seen the total displacement of second
loading condition leads to much higher the total displacement
of first loading condition.

V. CONCLUSION
The forces acting on the head and the end of the femur bone

and implant in femoral canal have been studied numerically us-
ing a three-dimensional mathematical model and a numerical
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Fig. 14. Surface plot of the total displacement of femural canal at load (I)
and load (II).

Fig. 15. Surface plot of the total displacement of implant at load (I) and
load (II).

Fig. 16. Profile of the total displacement along the axial of artificial femur
bone where the solid-circled line, and the dashed line corresponds to the
femoral canal for a 70kg person during normal walking.

Fig. 17. Von Mises stress for a 70kg person during normal walking.

Fig. 18. Von Mises stress for a 70kg person during normal walking.

Fig. 19. Von Mises stress for a 70kg person during normal walking.
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techniquebased on the finite element method. The numerical
investigation shows that high displacement occurs at the head
of the femur whereas the lower displacement occurs at the
end of the femur. The results also show that higher weight
provides higher total displacement. Moreover, it is found that
the Von Mises stress affects the lateral femur. It should be
noted that this paper focuses only on the static loads femur
with implant. In the future, we will apply real geometry to
simulate the cemented hip replacement with time dependent
in order to obtain useful information and better understanding
which could be of great help to orthopaedic surgeons.
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