
 

 

 

Abstract— Artificial bee colony (ABC) metaheuristic algorithm 

introduced by Karaboga was successfully used on many continuous 

optimization problems. There is also a corresponding program 

written in C. This article describes an object-oriented software system 

for improved artificial bee colony algorithm written in C# with 

corresponding flexible graphical user interface (GUI). Since this 

implementation is object-oriented it is easier for maintenance and it 

uses threads which significantly increases execution speed on 

multicore processors. The application was successfully tested on 

standard benchmark problems. 

 

Keywords—Artificial bee colony, Optimization, Software 

system, Swarm intelligence, Nature inspired metaheuristic algorithms 

I. INTRODUCTION 

HUGE number of practical problems in industry and 

business are in the class of intractable combinatorial 

(discrete) or numerical (continuous or mixed) optimization 

problems. There are many traditional methods for continuous 

optimization and many heuristics for discrete problems. 

Several modern metaheuristic algorithms (typically high-

level strategies which guide an underlying subordinate 

heuristic to efficiently produce high quality solutions and 

increase their performance) that apply to both domains have 

been developed for solving such problems [1], [2]. They 

include population based, iterative based, stochastic, 

deterministic and other approaches. 

The algorithm that is working with a set of solutions and 

trying to improve them is called population based. Population 

based algorithms can be classified by the nature of 

phenomenon simulated by the algorithm into two groups: 

evolutionary algorithms (EA) and swarm intelligence based 

algorithms. 

Research branch that models the population of interacting 

agents is swarm intelligence. Flocking of birds and schooling 

of fish, ant colonies, bee’s behavior, immune systems are few 
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examples of swarm systems. Swarm intelligence systems are 

typically made up of a population of self-organized individuals 

interacting locally with one another and with their environment 

[3]. Even though there is no centralized component that 

controls the behavior of individuals, local interactions between 

all individuals often lead to the emergence of global behavior. 

These characteristics of swarms inspired huge number of 

researchers to implement such behavior in computer software 

for optimization problems.  

A lot of swarm intelligence algorithms have been 

developed. For example, Ant Colony Optimization (ACO) is a 

technique that is quite successful in solving many 

combinatorial optimization problems [4]. The inspiring source 

of ACO was the foraging behavior of real ants which enables 

them to find shortest paths between food sources and their 

nests. Each ant moves along the path until it reaches 

intersection, where it decides which path to take. In the 

beginning, when ants chose next path, it seems as a random 

choice, but after some time, the majority of them are using 

optimal path. While walking from their nests to food source, 

ants deposit a substance called pheromone. Pheromone is a 

collective memory for ants in the colony and because of this, 

ant colony has the ability of reconnecting a broken line after a 

sudden appearance of an unexpected obstacle that has 

interrupted initial path. Paths that contain more pheromone 

concentrations are chosen with higher probability by ants than 

those that contain lower pheromone concentrations. As time 

passes, pheromone trail evaporates. So, a shorter path will 

have more pheromone than longer paths, because it will have 

less time to evaporate before new pheromone is disposed by 

ants. The pheromone trail is maintained using two types of 

updates: local and global. Global update is used to assure that 

better paths persist. Local update is used to avoid using 

suboptimal path by majority of ants, and it emulates 

pheromone evaporation. 

Particle swarm optimization (PSO) algorithm is another 

example of swarm intelligence algorithms [5]. PSO simulates 

social behavior of bird flocking or fish schooling. PSO is a 

stochastic optimization technique which is well adapted to the 

optimization of nonlinear functions in multidimensional space 

and it has been applied to several real-world problems. 

Improved version of the PSO algorithm is Particle swarm 

inspired evolutionary algorithm (PS-EA) which is a hybrid 

model of EA and PSO. PS-EA incorporates PSO with 

heuristics of EA in the population generator and mutation 
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operator while retaining the workings of PSO.  

Several metaheuristics have been proposed to model the 

specific intelligent behavior of honey bee swarms [6], [7], [8]. 

Bee colony is a dynamical system which gathers information 

from the environment and adjusts its behavior in accordance to 

it. The bee swarm intelligence was used in the development of 

artificial systems aimed at solving complex problems in traffic 

and transportation [6]. That algorithm is called Bee Colony 

Optimization meta-heuristic (BCO), which is used for solving 

deterministic combinatorial problems, as well as combinatorial 

problems characterized by uncertainty. Another approach 

inspired by the behavior of real bees is Bees Swarm 

Optimization (BSO) which is adapted for solving maximum 

weighted satisfiability (max-sat) problem. Bee inspired 

algorithms were successfully applied to different practical 

problems [9], [10], [11], [12]. 

In this paper, we present a modification of the artificial bee 

colony (ABC) algorithm proposed by Karaboga and Basturk 

[13]. We developed our ABC software for solving 

combinatorial and numeric optimization problems in C# 

programming language.  

II. BEES BEHAVIOR IN NATURE 

For fully apprehension of ABC algorithm it is crucial to 

understand real behavior of honey bees, because this algorithm 

is inspired by this natural behavior.  

A bee colony is a swarm whose individual agents are bees. 

Each bee as the low-level component works through a swarm 

at the global level to form a system. Thus, the system global 

behavior depends on local interactions and coordination 

between individuals which leads to an organized teamwork 

system. This system is characterized by the interacting 

collective behavior through labor division, distributed 

simultaneous task performance, specialized individuals, and 

self-organization. The exchange of information among bees 

results in a system`s collective knowledge.   

Bees` energy source is nectar and two kinds of worker bees 

are responsible for it: scout and forager bees. Two main 

processes in a honey bee colony associated with food are 

exploration and exploitation. While scouts carry out the 

exploration, foragers control the exploitation. Thus, the 

increase in the number of scouts encourages the exploration 

process, the increase of foragers encourages the exploitation 

processes, and vice versa. Studying the foraging behavior 

leads to optimal foraging theory that directs activities towards 

achieving goals. This theory states that organisms forage in 

such a way as to maximize their intake energy per unit time. In 

other words, swarm of bees is trying to find and capture the 

food that contains the most energy by expending the least 

possible amount of time in real variables.  

In foraging process, there are two forms of behavior 

patterns. First pattern refers to scout and second refers to 

forager bee. Scouts fly around the hive and search for a food 

source. When they find source (nectar or pollen), they fly back 

to the colony and communicate with other bees by flying on a 

particular region in the comb.  

Scout bee behavior pattern can be briefly depicted as a set 

of the following activities: 
 

 The scout bee flies from its colony, randomly seeking for 

food sources.  

 When it finishes a full trip, it returns to its colony, and 

announces its presence to other bees by wing 

vibrations. These vibrations mean that it has a message 

to communicate. 

 If scout bee performs a circular dance, it means that a bee 

has found a nearby source of nectar or pollen. The 

nearby bees follow the scout and smell it for the 

identity of the flowers. They listen to the intensity of 

scout`s wing vibrations to indicate the value of the food 

source. 

 If food source is close, no directions are given. But, if a 

source is far away, precise directions are given. 

 The abstract convention that the scout makes is that the 

up position on the comb is the position of the sun. 

Because bees can see polarized light, they can tell sun 

position without actually seeing the sun. The scout 

dances in a precise angle from the vertical. This equals 

to the horizontal angle of the sun with reference to the 

colony exit with the location of the food source. 

 Besides all this information, the scout bee must also show 

the others how far away the flower source is. This is 

done by waggling the abdomen from side to side. 

Slower the waggling, the further away is the food 

source. 
 

Forager bees react to the scout bees` show, which is 

described above. This reaction can be summarized through the 

following steps: 
 

 The bees in the colony with great attention follow the 

scout to learn food source directions, and also smell the 

fragrance of the flower on scout bee, so they can find it 

when they arrive at the source location. 

 Because the sun is moving in the sky, the bees should use 

an accurate clock sense to adjust for the changing sun 

position with reference to the food source and the 

colony exit. 
 

When an acceptable food source is found, the forager takes 

a load of nectar from that source and return to the colony to 

unload the nectar and store it. Foraging, as any other activity 

requires energy, and, therefore, honey bees must evaluate 

where, what, and how long to forage taking into account the 

economics of energy consumption and the net gain of food to 

the colony. Generally bees fly only as far as necessary to 

secure an acceptable food source from which there is a net 

gain. Thus, these are the factors that influence foraging 

behavior of honey bees. The net rate of energy intake is 

defined as the energy gained while foraging minus the energy 

spent on foraging, divided by time spent foraging. 
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III. ABC ALGORITHM 

The ABC algorithm is relatively new population based 

meta-heuristic approach firstly proposed by Karaboga [13], 

and lately developed by the Karaboga and Basturk [14], [15], 

[16] and extended to combinatorial problems [17]. 

 In ABC algorithm, possible solution of the problem is 

represented by the food source. Quality of solution is 

indicating by the amount of nectar amount of a particular food 

source.  

In ABC algorithm, there are three types of artificial bees 

(agents): employed, onlookers and scouts [14]. Half of the 

colony are employed bees. The relation between employed bee 

and the food source is one-to-one, that means that there is only 

one employed bee per each food source. If a food source 

becomes abandoned, mapped employed bee to that food 

source becomes a scout, and as soon as it finds a new food 

source, it again becomes employed.  Main steps of the 

algorithm are given below [13]: 

 
Initialize. 

Repeat 

Place the employed bees on the food 

sources in the memory; 

Place the onlooker bees on the food 

sources in the memory; 

Send the scouts to the search area for 

discovering new food sources. 

Until (requirements are met). 

 

ABC algorithm, as an iterative algorithm, starts by 

associating each employed bee with randomly generated food 

source (solution). In each iteration, each employed bee 

discovers a food source in its neighborhood and evaluates its 

nectar amount (fitness). If fitness of new food source is better 

than the fitness of the old one, employed bee moves to the new 

source, otherwise it retains the old one. After completing this 

process, employed bees share food source fitness information 

with the onlookers. Onlookers select a food source (i) with a 

probability that is proportional to the fitness of the food 

source, using the following expression: 

      




m

j

j

i

f

f

1

                         (1) 

 

where fi is the fitness of the solution i, and m is the total 

number of food sources. From the expression, it is obvious that 

good food sources will get more onlookers than the bad ones. 

When all onlookers finished food source selection process, 

each of them search for the food source in the neighborhood of 

his chosen food source and computes its fitness. The best 

among all of this food sources will be the new location of the 

food source i.  In ABC algorithm, at each cycle at most one 

scout goes outside for searching a new food source and the 

number of employed and onlooker bees were equal. 

In this algorithm, there is also a trial parameter. If a solution 

(food source) does not improve for a predetermined number of 

iterations which is a trial value, then that food source is 

abandoned by its associated employed bee, and the bee 

becomes a scout. 

The scout bee mechanism replaces a solution that has not 

been improved in a determined number of cycles for a new 

solution randomly calculated, with uniform distribution, within 

the search space. This mechanism is described in Equation (2): 
 

                             xi,j = rand(LJ ,UJ)                       (2) 
 

where LJ is the lower limit of variable j, UJ is the upper limit 

of variable j and rand(LJ ,UJ) is a random real number (with 

uniform distribution) within the range [LJ ,UJ].  

Previously described scout mechanism is satisfying for 

unconstrained functions optimization, but when performing 

optimization of constrained functions, for some of them it does 

not generate acceptable results. In such cases, it needs to be 

modified. 

After the new location of each food source is determined, 

another iteration of ABC algorithm begins. The whole process 

is repeated until the termination condition is met.  

Particularly interesting is the process of determining food 

source in the neighborhood of a certain food source. 

Neighborhood food source has being generated by altering the 

value of one randomly chosen solution parameter and keeping 

other parameters unchanged.  This can be done by adding to 

the chosen parameter the product of a uniform variable in       

[-1,1] and the difference in values of this parameter for this 

food source and some other randomly chosen food source. Let 

us notate the solution xi, and  let us suppose that the solution xi 

has d parameters with values xi1, xi2 .. .xid, etc. In order to find a 

solution x0 in the neighborhood of xi, a solution parameter j, 

and another solution xk are selected on random basis. Except 

for the value of the chosen parameter j, all other parameter 

values of xi’ are the same as in the solution xi, for example, 

xi’=(xi1, xi2,.... xi(j-1), xij, xi(j+1)... xid). The value of xij (let us 

denote xij as vij  to make better distinction between old and new 

parameter value) parameter in xi’ solution is computed using 

the following expression: 
 

         vij’ = xij + u(xij-xkj)                               (3) 
 

where u is a uniform variable in [-1,1].  

From the Equation (3) we can see that if the difference 

between the parameters of the xij and xkf decreases, the 

perturbation on the position xij decreases too. Thus, as the 

search approaches to the optimum solution in the search space, 

the step length is adaptively reduced. 

In Fig. 1, we can see a graphical representation of the 

Equation (3). Fig. 1 (a) shows that the vector generated by the 

difference between xi and xk defines a search direction. 

Subsequently the candidate solution is generated by Equation 

(3) in Fig. 1 (b). It can be noticed that v and v’ were generated 

using the same value of u but with opposite sign. This is 

possible because it is allowed by interval [-1, 1] for u. 

If a parameter produced by this operation exceeds its 

predetermined limit, the parameter can be set to an acceptable 

value. In this work, the value of the parameter exceeding its 

limit is set to its limit value. 
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Fig.1 (a): Result vector from xi − xk. 

 

 

 
 

Fig.1 (b): Two possible candidate solutions generated using 

Equation (3) and the same value of u with opposite sign 

 

 
 

 
 

Fig. 2: Graphical representation of the elements of ABC 

algorithm 

 

In Fig. 2, we show a visual representation of the ABC 

algorithm compared with the elements of foraging behavior of 

honey bees (Section 2).  

IV. ABCAPP SOFTWARE 

We have developed our software for ABC algorithm called 

ABCapp. We could use existing Karaboga`s software [13], 

[14], [15], but we chose to develop a new version because we 

wanted to implement few improvements. 

First, in order to make algorithm execute faster, we used 

multiple threads. Thread is the smallest unit of processing that 

can be scheduled by an operating system. Each algorithm`s run 

executes within a different thread, so it runs much faster. Each 

thread puts best result in an array with number of elements 

equal to number of runs. Then, we calculate mean result 

according to the values stored in this array. Threads do not 

make conflicts with each other, they execute independently. 

We noticed great performance increase when we run our 

software on multiple core processors because each thread 

execute on different core in parallel way. Speed test will be 

presented in Section 5. 

Second, our software is object-oriented. With object-

oriented concept, software scalability and maintenance is much 

easier. Software consists of different components which can be 

easily replaced. So, if we want to implement new logic for 

different optimization problems, it will take substantially less 

time.  

 We chose to develop ABCapp in C# because of its many 

advantages over C, C++ and Java. We preferred C# over C 

even though C is faster. With C# we could gain more control 

over ABC algorithm execution. Some of C# advantages which 

made us chose this programming language are: 
 

 Usually it is much more efficient than Java and runs 

faster. 

 CIL (Common (.NET) Intermediate Language) is a 

standard language, while java byte codes are not. 

 It has more primitive types (value types), including 

unsigned numeric types. 

 Indexers let you access objects as if they were arrays. 

 Conditional compilation. 

 Simplified multithreading. 

 Operator overloading. It can make development a bit 

trickier but they are optional and sometimes very 

useful. 

 Bounds checking (for more than just buffer overflow). 

 Partial Classes (C# 2.0 and later). 

 Anonymous variables (C# 3.0 and later). 

 Better memory management. 

 Better exceptions handling. 

 Limited use of pointers if you really need them, as when 

calling unmanaged (native) libraries which does not run 

on top of the virtual machine (CLR). 

 More clean events management using delegates. 
 

We developed our software using Visual Studio 2008 

environment and .NET Framework 3.5. A framework is a 

special kind of software library that is similar to an application 

program interface (API) in the class of packages that make 
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possible faster development of applications. Two main 

components of .NET Framework are Common Language 

Runtime (CLR) and Class Library. CLR is the .NET runtime 

environment responsible for program execution management 

and for providing container services—debugging, exception 

management, memory management, profiling, and security. 

The CLR provides a managed environment for code execution, 

which makes code more secure by protecting the code from 

doing things such as illegal memory access operations, 

manages memory for the program and adds additional runtime 

support not available in native programs, like garbage 

collection. The .NET class libraries are pre-written classes that 

provide a rich assortment of pre-defined code. The 

programmer specifies which classes are being used and 

furnishes data that instantiate s each class as an object that can 

be called when the program is executed. Access to and use of a 

class library greatly simplifies the job of the programmer since 

standard, pretested code is available that the programmer 

doesn't have to write. 

 The use of previously described environment makes our 

code more robust, errorless and performance is much better.  

Implemented ABC algorithm employs four different 

selection processes: 
 

1.    global selection process used by the onlooker bees for 

discovering promising regions 

2.    local selection process carried out in a region by the 

artificial employed bees and the onlookers depending 

on local information (in case of real bees, 

3.    local selection process called greedy selection process 

carried out by all bees in that if the nectar amount of the 

candidate source is better than that of the present one, 

the bee forgets the present one and memorizes the 

candidate source. Otherwise, the bee keeps the present 

one in the memory. 

4.    random selection process carried out by scouts.  
 

There are large number of connections between classes in 

our program. ABC algorithm cannot be used in its basic form 

for all function optimization problems. So, we created abstract 

class BeesAbstract which is inherited by problem specific 

classes. BeesAbstract has the following methods: 

CalculateFitness, MemorizeBestSource, SendEmployedBees, 

CalculateProbabilities, SendOnlookerBees, SendScoutBees, 

init, initial, run. These methods, which will be briefly 

described, form the basis of ABC metaheuristics and they are 

similar to those used by Karaboga and Bastruk in their 

software [13], [14], [15]. CalculateFitness calculates the 

fitness of a solution. MemorizeBestSource memorizes best 

solution found so far. Init function initializes variables and 

counters of the food sources (solutions).  Variables are 

initialized within ranged defined by the user. Initial initializes 

food sources (solutions) at the beginning of the process.  

SendEmployedBees executes employed bee phase. 

CalculateProbabilities calculate probabilities which are 

important because a food source is chosen with the probability 

which is proportional to its quality. SendOnlookerBees and 

SendScoutBees executes onlooker and scout bee phase 

respectively.  Run is specific method used for implementing 

multiple thread functionality into our software. In the Run 

method, previously described functions are being executed. 

Pseudo-code for Run method is: 
 

Initialize 

MemorizeBestSource 

Repeat 

   SendEmployedBees 

   CalculateProbabilities 

   SendOnlookerBees 

   MemorizeBestSource 

   SendScoutBees 

Until max iterations are met 
 

Screenshot of basic graphical user interface (GUI) of 

ABCapp can be seen in Fig. 3. As we can see from the Fig. 3, 

user can adjust multiple parameters for ABC algorithm. 

Parameters are divided into two groups: ABC control 

parameters and problem specific parameters.  

Control parameters are: 
 

 Bee Num NP is number of bees in the colony (employed 

bees plus onlooker bees). 

 Limit controls the number of trials to improve certain 

food source. If a food source could not be improved 

within defined number of trial, it is abandoned by its 

employed bee. 

 Max Cycle defines the number of cycles for foraging. 

This is a stopping criterion. 
 

Problem specific parameters are: 
 

 Param Num D is the number of parameters of the 

problem to be optimized. 

 Runtime defines the number of times to run the algorithm. 

 Lower bound is lower bound of problem parameters. 

 Upper bound is upper bound of problem parameters. 
  

 
 

Fig. 3: Screenshot of ABCapp GUI 
 

In the results text area, we can see results for each 

algorithm`s run, and below, mean results of all runs is shown. 

Button details give us additional information about the 

function to be optimized (Fig.5 and Fig.6).  
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Fig. 4: Results for Sphere function 

 

 
 

Fig. 5: Additional information about selected function 

 

We used six benchmark functions: 
 

 Sphere  

 Rosenbrock  

 Griewank  

 Rastrigin  

 Schwefel  

 Marshallian demand function 
 

Sphere function`s value is 0 at its global minimum is 

(0,0,…,0). Definition: 
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Rosenbrock function has a value 0 at its global minimum is 

(1,1,…,1). Definition: 
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Griewank`s value is 0, and  its global minimum  is 

(0,0,…,0). Definition:  
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Rastrigin has value 0, and global minimum (0,0,…,0) . 

Definition:  
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Fifth function is Schwefel whose value is 0 at its global 

minimum (420.9867,420.9867,…, 420.9867).  Definition: 
 

 


n

i ii xxnxf
1

)||sin(9829.418)(  

 

Sixth benchmark function is Marshallian demand function. 

This function specifies what the consumer would buy in each 

price and wealth situation, assuming it perfectly solves the 

utility maximization problem. Function is shown on Figure 7. 

 

 
Fig 6: Marshallian demand function 

 

The chosen mathematical model of Marshallian demand 

function must be the most appropriate approximation of 

expressed dependency between price flow and demand for 

observed product. Wide range of mathematical functions can 

be used for the model, such as: linear, quadratic, exponential, 

etc. We used  q=ap
b
, where p is price, and q is demand. 

Parameters a and b should be designated according to 

previously known pairs  , where i=1,2,...n. Parameters a,b,c,... 

are for the most part calculated by using method of least 

squares. 

In this example, we are using function: 

2

1

)(),( 



n

i

b
ii apqbaF  , 

where we are trying to calculate parameters a and b using 

ABC algorithm in order to minimize the function value. The 

best result achieved using method of least squares is 

57,046264. The results gained with ABC algorithm are shown 

in Table 3.  

V. TESTS AND RESULTS 

For test purposes, we created test application in C# without 

multiple threads, like Karaboga`s and Basturk`s software in C 

programming language [13], [14], [15]. We ran two types of 

tests. First, we ran speed test, where we compare single thread 

application to multiple threaded ABCapp (as described in 

Section 3). Second, we ran optimization tests. For all 

benchmark functions we set the parameters as shown in Table 

1, second column and for the Marshal function the third 

column. GUI screenshots of parameter sets in ABCapp for 

benchmark and Marshal function are shown in Fig. 7 and 8, 

respectively. Tests were done on Intel Core2Duo T8300 

mobile processor with 4GB of RAM on Windows 7 Operating 

System in Visual Studio 2008 environment.  
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TABLE I 

PARAMETER VALUES FOR BENCHMARK FUNCTIONS 
 

Parameter  Bench Marsh. 

Bee Num NP 20 20 

Limit 100 1000 

Max Cycle 2500 1000 

Param Num D 100 2 

Runtime 30 150 

Lower bound -100 [0,-133] 

Upper bound 100 [13330,0] 
 

 

 
Fig. 7: Parameter set for benchmark functions (ABCapp 

GUI screenshot) 

 

  
Fig. 8: Parameter set for Marshal function (ABCapp GUI 

screenshot) 
 

In Table 2, we show results of speed tests (in seconds) 

between single thread and multiple threads ABC software. 
 

TABLE II 

SPEED TEST RESULTS 
 

Function Single 

thread 

One run - 

one thread 

Sphere 18 15,9 

Rosenbrock 32,2 16,1 

Griewank 31 12,8 

Rastrigin 33 11,9 

Schwefel 39 13,6 

Marshall 28 10,5 

 

From Table 2, we can see that ABCapp is substantially 

faster than ordinary C# application. So, when each run 

executes within different thread, great performance gain is 

achieved. 

In Table 3, we show results of optimization tests for single 

thread and multiple threaded ABCapp. 
 

TABLE III 

RESULTS FOR FUNCTION OPTIMIZATION 
 

Function Single thread One run - one 

thread 

Sphere 4,66985 E -06 1,84142 E -06 

Rosenbrock 0,095 0,088 

Griewank 2,36781 E -09 8,044651 E -10 

Rastrigin 2,43016 E -08 1,73152 E - 09 

Schwefel 764.972 640.949 

Marshallian 57,34713 57,10026 

 

Table 3 shows that ABCapp gives noticeable better results 

than ordinary ABC software.  

We also wanted to see results on both, speed and 

optimization tests if we slightly change initial set of parameters 

presented in Table 1. We changed ABC control parameters 

only, not problem specific parameters (see Section 3). For this 

test, we used only benchmark functions, Marshal function was 

omitted. Modified parameters are shown in Table 4. GUI 

screenshots of modified parameter in ABCapp for benchmark 

functions are depicted in Fig. 9. 
 

  
 

Fig. 9:  New parameter set for benchmark functions 

(ABCapp GUI screenshot) 

 

As it can see from Table 4, we changed BeeNumNP from 20 

to 30. This means that we increased number of bees (onlooker 

plus employee) in the colony. Logical consequence of this 

modification should be better results, but slower program 

execution. Secondly, we modified MaxCycle parameter from 

2500 to 5000. By increasing number of cycles for foraging 

again better results should be obtained, but at the cost of 

slower execution. Finally, we modified Limit parameter to 150. 

This means that certain food source has more space for 

improvement before it is abandoned by its bee. 
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TABLE IV 

NEW SET OF PARAMETER VALUES FOR BENCHMARK FUNCTIONS 
 

Parameter  Value 

Bee Num NP 30 

Limit 150 

Max Cycle 5000 

Param Num D 100 

Runtime 30 

Lower bound -100 

Upper bound 100 

 

Results of speed and optimization tests with new parameter 

set are presented in Tables 5 and 6, respectively.  

 

TABLE V 

SPEED TEST RESULTS WITH NEW PARAMETER SET 
 

Function Single 

thread 

One run - 

one thread 

Sphere 24 17,3 

Rosenbrock 50,2  25,6 

Griewank 43 15,3 

Rastrigin 41 14,6 

Schwefel 58 18,1 

 

TABLE VI 

RESULTS FOR FUNCTION OPTIMIZATION TEST WITH NEW PARAMETER 

SET 
 

Function Single thread One run - one 

thread 

Sphere 4,25613 E -15 6,03337 E -16 

Rosenbrock 0.073 0.069 

Griewank 1,11318 E -14 5,99524 E -16 

Rastrigin 1,95012 E -11 6,28115 E - 12 

Schwefel 466.162 290.953 

 

Table 5 shows again that ABCapp is much faster than 

ordinary C# application, just like it was with previous 

parameter set (see Table 2). With new parameters, speed 

difference between multiple threads and single thread 

application is greater and in this case, ABCapp remarkably 

outperforms ordinary single thread ABC application.  

According to the results presented in Table 6, ABCapp 

gains far better results than ordinary ABC application. So, with 

changing the ABC control parameters, results gap between 

ordinary software and ABCapp is even greater. This gap is the 

most pronounced in the case of Griewank function. 

Interesting comparison can be made if we compare results 

for benchmark functions with initial parameter values to the 

results for benchmark functions with new parameter values 

(Table 3 vs. Table 6).  Both, on single thread and on one run-

one thread application, results on benchmark function 

optimization are far better with new parameters than with the 

old ones. Let us take for example Griewank  function. With 

initial parameter values, the result achieved using ABCapp 

software was 8,044651 E -10, while with new parameters 

result was 5,995243 E -16. As we can see, there is great value 

improvement. The most remarkable improvement is produced 

on Sphere function. The difference between 1,84142 E -06 

(initial parameter set) and 5,13900 E -16 (new parameter set) 

is very significant. Even with these parameters results for 

Schwefel function are worse than others but compatible with 

discussion in [17]. 

Finally, we ran both tests on the same hardware platform, 

but in the different environment. Thus, we used the same Intel 

Core2Duo T8300 mobile processor with 4GB of RAM on 

Windows 7 Ultimate Operating System, but this time we tested 

our software on Visual Studio 2010 and .NET Framework 4.0. 

We converted both applications (ABCapp and standard ABC 

software) to comply with the new environment. For testing 

purposes, we used new set of parameters (see Table 4), just 

like in the previous test. Speed test results on Visual Studio 

2010 are shown in Table 7, while optimization test results can 

be seen in Table 8.  
  

TABLE VII 

SPEED TEST RESULTS ON VISUAL STUDIO 2010 
 

Function Single 

thread 

One run - 

one thread 

Sphere 21 16,7 

Rosenbrock 48,9  23,2 

Griewank 41,5 14,1 

Rastrigin 39,3 12,1 

Schwefel 55,8 17,7 

 

Speed test show that execution speed is slightly better on 

Visual Studio 2010 than it was on Visual Studio 2008. This 

means that new environment is better optimized. 

 

TABLE VIII 

FUNCTION OPTIMIZATION RESULTS ON VISUAL STUDIO 2010 
 

Function Single thread One run - one 

thread 

Sphere 3,22219 E -15 5,13900 E -16 

Rosenbrock 0.071 0.066 

Griewank 0,92881 E -14 6,10024 E -16 

Rastrigin 0,75221 E -11 2,87902 E -12 

Schwefel 409.265 194.403 

 

If we compare results in Table 6 and Table 8 (function 

optimization results on Visual Studio 2008 and Visual studio 

2010), it can be seen that results in those tables are 

approximately the same, differences are due to different 

random seeds. So, the conclusion is that a different 

environment does not have impact on the optimization results.  

VI. CONCLUSION 

We implemented and tested a software system in C# for 

optimization problems based on a modification of Karaboga’s 

ABC algorithm and corresponding software. Object-oriented 
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design and appropriate GUI allow for easy modifications and 

applications to different optimization problems. Performance 

was tested and proved to be superior to existing software since 

use of threads better utilizes multicore processors. Benchmark 

problems that are used in the literature were tested and system 

is ready to be applied to new problems. 
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