

Abstract— Artificial bee colony (ABC) metaheuristic algorithm

introduced by Karaboga was successfully used on many continuous

optimization problems. There is also a corresponding program

written in C. This article describes an object-oriented software system

for improved artificial bee colony algorithm written in C# with

corresponding flexible graphical user interface (GUI). Since this

implementation is object-oriented it is easier for maintenance and it

uses threads which significantly increases execution speed on

multicore processors. The application was successfully tested on

standard benchmark problems.

Keywords—Artificial bee colony, Optimization, Software

system, Swarm intelligence, Nature inspired metaheuristic algorithms

I. INTRODUCTION

HUGE number of practical problems in industry and

business are in the class of intractable combinatorial

(discrete) or numerical (continuous or mixed) optimization

problems. There are many traditional methods for continuous

optimization and many heuristics for discrete problems.

Several modern metaheuristic algorithms (typically high-

level strategies which guide an underlying subordinate

heuristic to efficiently produce high quality solutions and

increase their performance) that apply to both domains have

been developed for solving such problems [1], [2]. They

include population based, iterative based, stochastic,

deterministic and other approaches.

The algorithm that is working with a set of solutions and

trying to improve them is called population based. Population

based algorithms can be classified by the nature of

phenomenon simulated by the algorithm into two groups:

evolutionary algorithms (EA) and swarm intelligence based

algorithms.

Research branch that models the population of interacting

agents is swarm intelligence. Flocking of birds and schooling

of fish, ant colonies, bee’s behavior, immune systems are few

Manuscript received February 10, 2011.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III 44006

M. Tuba is with the Faculty of Computer Science, Megatrend University,

Belgrade, Serbia, e-mail: tuba@ieee.org

N. Bacanin is with the Faculty of Computer Science, Megatrend

University, Belgrade, Serbia, e-mail: nbacanin@megatrend.edu.rs

I. Brajevic is with the Faculty of Mathematics, University of Belgrade,

Serbia, e-mail: ivona.brajevic@googlemail.com

examples of swarm systems. Swarm intelligence systems are

typically made up of a population of self-organized individuals

interacting locally with one another and with their environment

[3]. Even though there is no centralized component that

controls the behavior of individuals, local interactions between

all individuals often lead to the emergence of global behavior.

These characteristics of swarms inspired huge number of

researchers to implement such behavior in computer software

for optimization problems.

A lot of swarm intelligence algorithms have been

developed. For example, Ant Colony Optimization (ACO) is a

technique that is quite successful in solving many

combinatorial optimization problems [4]. The inspiring source

of ACO was the foraging behavior of real ants which enables

them to find shortest paths between food sources and their

nests. Each ant moves along the path until it reaches

intersection, where it decides which path to take. In the

beginning, when ants chose next path, it seems as a random

choice, but after some time, the majority of them are using

optimal path. While walking from their nests to food source,

ants deposit a substance called pheromone. Pheromone is a

collective memory for ants in the colony and because of this,

ant colony has the ability of reconnecting a broken line after a

sudden appearance of an unexpected obstacle that has

interrupted initial path. Paths that contain more pheromone

concentrations are chosen with higher probability by ants than

those that contain lower pheromone concentrations. As time

passes, pheromone trail evaporates. So, a shorter path will

have more pheromone than longer paths, because it will have

less time to evaporate before new pheromone is disposed by

ants. The pheromone trail is maintained using two types of

updates: local and global. Global update is used to assure that

better paths persist. Local update is used to avoid using

suboptimal path by majority of ants, and it emulates

pheromone evaporation.

Particle swarm optimization (PSO) algorithm is another

example of swarm intelligence algorithms [5]. PSO simulates

social behavior of bird flocking or fish schooling. PSO is a

stochastic optimization technique which is well adapted to the

optimization of nonlinear functions in multidimensional space

and it has been applied to several real-world problems.

Improved version of the PSO algorithm is Particle swarm

inspired evolutionary algorithm (PS-EA) which is a hybrid

model of EA and PSO. PS-EA incorporates PSO with

heuristics of EA in the population generator and mutation

Performance of object-oriented software system

for improved artificial bee colony optimization

Nebojsa Bacanin, Milan Tuba, and Ivona Brajevic

A

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 154

operator while retaining the workings of PSO.

Several metaheuristics have been proposed to model the

specific intelligent behavior of honey bee swarms [6], [7], [8].

Bee colony is a dynamical system which gathers information

from the environment and adjusts its behavior in accordance to

it. The bee swarm intelligence was used in the development of

artificial systems aimed at solving complex problems in traffic

and transportation [6]. That algorithm is called Bee Colony

Optimization meta-heuristic (BCO), which is used for solving

deterministic combinatorial problems, as well as combinatorial

problems characterized by uncertainty. Another approach

inspired by the behavior of real bees is Bees Swarm

Optimization (BSO) which is adapted for solving maximum

weighted satisfiability (max-sat) problem. Bee inspired

algorithms were successfully applied to different practical

problems [9], [10], [11], [12].

In this paper, we present a modification of the artificial bee

colony (ABC) algorithm proposed by Karaboga and Basturk

[13]. We developed our ABC software for solving

combinatorial and numeric optimization problems in C#

programming language.

II. BEES BEHAVIOR IN NATURE

For fully apprehension of ABC algorithm it is crucial to

understand real behavior of honey bees, because this algorithm

is inspired by this natural behavior.

A bee colony is a swarm whose individual agents are bees.

Each bee as the low-level component works through a swarm

at the global level to form a system. Thus, the system global

behavior depends on local interactions and coordination

between individuals which leads to an organized teamwork

system. This system is characterized by the interacting

collective behavior through labor division, distributed

simultaneous task performance, specialized individuals, and

self-organization. The exchange of information among bees

results in a system`s collective knowledge.

Bees` energy source is nectar and two kinds of worker bees

are responsible for it: scout and forager bees. Two main

processes in a honey bee colony associated with food are

exploration and exploitation. While scouts carry out the

exploration, foragers control the exploitation. Thus, the

increase in the number of scouts encourages the exploration

process, the increase of foragers encourages the exploitation

processes, and vice versa. Studying the foraging behavior

leads to optimal foraging theory that directs activities towards

achieving goals. This theory states that organisms forage in

such a way as to maximize their intake energy per unit time. In

other words, swarm of bees is trying to find and capture the

food that contains the most energy by expending the least

possible amount of time in real variables.

In foraging process, there are two forms of behavior

patterns. First pattern refers to scout and second refers to

forager bee. Scouts fly around the hive and search for a food

source. When they find source (nectar or pollen), they fly back

to the colony and communicate with other bees by flying on a

particular region in the comb.

Scout bee behavior pattern can be briefly depicted as a set

of the following activities:

 The scout bee flies from its colony, randomly seeking for

food sources.

 When it finishes a full trip, it returns to its colony, and

announces its presence to other bees by wing

vibrations. These vibrations mean that it has a message

to communicate.

 If scout bee performs a circular dance, it means that a bee

has found a nearby source of nectar or pollen. The

nearby bees follow the scout and smell it for the

identity of the flowers. They listen to the intensity of

scout`s wing vibrations to indicate the value of the food

source.

 If food source is close, no directions are given. But, if a

source is far away, precise directions are given.

 The abstract convention that the scout makes is that the

up position on the comb is the position of the sun.

Because bees can see polarized light, they can tell sun

position without actually seeing the sun. The scout

dances in a precise angle from the vertical. This equals

to the horizontal angle of the sun with reference to the

colony exit with the location of the food source.

 Besides all this information, the scout bee must also show

the others how far away the flower source is. This is

done by waggling the abdomen from side to side.

Slower the waggling, the further away is the food

source.

Forager bees react to the scout bees` show, which is

described above. This reaction can be summarized through the

following steps:

 The bees in the colony with great attention follow the

scout to learn food source directions, and also smell the

fragrance of the flower on scout bee, so they can find it

when they arrive at the source location.

 Because the sun is moving in the sky, the bees should use

an accurate clock sense to adjust for the changing sun

position with reference to the food source and the

colony exit.

When an acceptable food source is found, the forager takes

a load of nectar from that source and return to the colony to

unload the nectar and store it. Foraging, as any other activity

requires energy, and, therefore, honey bees must evaluate

where, what, and how long to forage taking into account the

economics of energy consumption and the net gain of food to

the colony. Generally bees fly only as far as necessary to

secure an acceptable food source from which there is a net

gain. Thus, these are the factors that influence foraging

behavior of honey bees. The net rate of energy intake is

defined as the energy gained while foraging minus the energy

spent on foraging, divided by time spent foraging.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 155

III. ABC ALGORITHM

The ABC algorithm is relatively new population based

meta-heuristic approach firstly proposed by Karaboga [13],

and lately developed by the Karaboga and Basturk [14], [15],

[16] and extended to combinatorial problems [17].

 In ABC algorithm, possible solution of the problem is

represented by the food source. Quality of solution is

indicating by the amount of nectar amount of a particular food

source.

In ABC algorithm, there are three types of artificial bees

(agents): employed, onlookers and scouts [14]. Half of the

colony are employed bees. The relation between employed bee

and the food source is one-to-one, that means that there is only

one employed bee per each food source. If a food source

becomes abandoned, mapped employed bee to that food

source becomes a scout, and as soon as it finds a new food

source, it again becomes employed. Main steps of the

algorithm are given below [13]:

Initialize.

Repeat

Place the employed bees on the food

sources in the memory;

Place the onlooker bees on the food

sources in the memory;

Send the scouts to the search area for

discovering new food sources.

Until (requirements are met).

ABC algorithm, as an iterative algorithm, starts by

associating each employed bee with randomly generated food

source (solution). In each iteration, each employed bee

discovers a food source in its neighborhood and evaluates its

nectar amount (fitness). If fitness of new food source is better

than the fitness of the old one, employed bee moves to the new

source, otherwise it retains the old one. After completing this

process, employed bees share food source fitness information

with the onlookers. Onlookers select a food source (i) with a

probability that is proportional to the fitness of the food

source, using the following expression:

m

j

j

i

f

f

1

 (1)

where fi is the fitness of the solution i, and m is the total

number of food sources. From the expression, it is obvious that

good food sources will get more onlookers than the bad ones.

When all onlookers finished food source selection process,

each of them search for the food source in the neighborhood of

his chosen food source and computes its fitness. The best

among all of this food sources will be the new location of the

food source i. In ABC algorithm, at each cycle at most one

scout goes outside for searching a new food source and the

number of employed and onlooker bees were equal.

In this algorithm, there is also a trial parameter. If a solution

(food source) does not improve for a predetermined number of

iterations which is a trial value, then that food source is

abandoned by its associated employed bee, and the bee

becomes a scout.

The scout bee mechanism replaces a solution that has not

been improved in a determined number of cycles for a new

solution randomly calculated, with uniform distribution, within

the search space. This mechanism is described in Equation (2):

 xi,j = rand(LJ ,UJ) (2)

where LJ is the lower limit of variable j, UJ is the upper limit

of variable j and rand(LJ ,UJ) is a random real number (with

uniform distribution) within the range [LJ ,UJ].

Previously described scout mechanism is satisfying for

unconstrained functions optimization, but when performing

optimization of constrained functions, for some of them it does

not generate acceptable results. In such cases, it needs to be

modified.

After the new location of each food source is determined,

another iteration of ABC algorithm begins. The whole process

is repeated until the termination condition is met.

Particularly interesting is the process of determining food

source in the neighborhood of a certain food source.

Neighborhood food source has being generated by altering the

value of one randomly chosen solution parameter and keeping

other parameters unchanged. This can be done by adding to

the chosen parameter the product of a uniform variable in

[-1,1] and the difference in values of this parameter for this

food source and some other randomly chosen food source. Let

us notate the solution xi, and let us suppose that the solution xi

has d parameters with values xi1, xi2 .. .xid, etc. In order to find a

solution x0 in the neighborhood of xi, a solution parameter j,

and another solution xk are selected on random basis. Except

for the value of the chosen parameter j, all other parameter

values of xi’ are the same as in the solution xi, for example,

xi’=(xi1, xi2,.... xi(j-1), xij, xi(j+1)... xid). The value of xij (let us

denote xij as vij to make better distinction between old and new

parameter value) parameter in xi’ solution is computed using

the following expression:

 vij’ = xij + u(xij-xkj) (3)

where u is a uniform variable in [-1,1].

From the Equation (3) we can see that if the difference

between the parameters of the xij and xkf decreases, the

perturbation on the position xij decreases too. Thus, as the

search approaches to the optimum solution in the search space,

the step length is adaptively reduced.

In Fig. 1, we can see a graphical representation of the

Equation (3). Fig. 1 (a) shows that the vector generated by the

difference between xi and xk defines a search direction.

Subsequently the candidate solution is generated by Equation

(3) in Fig. 1 (b). It can be noticed that v and v’ were generated

using the same value of u but with opposite sign. This is

possible because it is allowed by interval [-1, 1] for u.

If a parameter produced by this operation exceeds its

predetermined limit, the parameter can be set to an acceptable

value. In this work, the value of the parameter exceeding its

limit is set to its limit value.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 156

Fig.1 (a): Result vector from xi − xk.

Fig.1 (b): Two possible candidate solutions generated using

Equation (3) and the same value of u with opposite sign

Fig. 2: Graphical representation of the elements of ABC

algorithm

In Fig. 2, we show a visual representation of the ABC

algorithm compared with the elements of foraging behavior of

honey bees (Section 2).

IV. ABCAPP SOFTWARE

We have developed our software for ABC algorithm called

ABCapp. We could use existing Karaboga`s software [13],

[14], [15], but we chose to develop a new version because we

wanted to implement few improvements.

First, in order to make algorithm execute faster, we used

multiple threads. Thread is the smallest unit of processing that

can be scheduled by an operating system. Each algorithm`s run

executes within a different thread, so it runs much faster. Each

thread puts best result in an array with number of elements

equal to number of runs. Then, we calculate mean result

according to the values stored in this array. Threads do not

make conflicts with each other, they execute independently.

We noticed great performance increase when we run our

software on multiple core processors because each thread

execute on different core in parallel way. Speed test will be

presented in Section 5.

Second, our software is object-oriented. With object-

oriented concept, software scalability and maintenance is much

easier. Software consists of different components which can be

easily replaced. So, if we want to implement new logic for

different optimization problems, it will take substantially less

time.

 We chose to develop ABCapp in C# because of its many

advantages over C, C++ and Java. We preferred C# over C

even though C is faster. With C# we could gain more control

over ABC algorithm execution. Some of C# advantages which

made us chose this programming language are:

 Usually it is much more efficient than Java and runs

faster.

 CIL (Common (.NET) Intermediate Language) is a

standard language, while java byte codes are not.

 It has more primitive types (value types), including

unsigned numeric types.

 Indexers let you access objects as if they were arrays.

 Conditional compilation.

 Simplified multithreading.

 Operator overloading. It can make development a bit

trickier but they are optional and sometimes very

useful.

 Bounds checking (for more than just buffer overflow).

 Partial Classes (C# 2.0 and later).

 Anonymous variables (C# 3.0 and later).

 Better memory management.

 Better exceptions handling.

 Limited use of pointers if you really need them, as when

calling unmanaged (native) libraries which does not run

on top of the virtual machine (CLR).

 More clean events management using delegates.

We developed our software using Visual Studio 2008

environment and .NET Framework 3.5. A framework is a

special kind of software library that is similar to an application

program interface (API) in the class of packages that make

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 157

possible faster development of applications. Two main

components of .NET Framework are Common Language

Runtime (CLR) and Class Library. CLR is the .NET runtime

environment responsible for program execution management

and for providing container services—debugging, exception

management, memory management, profiling, and security.

The CLR provides a managed environment for code execution,

which makes code more secure by protecting the code from

doing things such as illegal memory access operations,

manages memory for the program and adds additional runtime

support not available in native programs, like garbage

collection. The .NET class libraries are pre-written classes that

provide a rich assortment of pre-defined code. The

programmer specifies which classes are being used and

furnishes data that instantiate s each class as an object that can

be called when the program is executed. Access to and use of a

class library greatly simplifies the job of the programmer since

standard, pretested code is available that the programmer

doesn't have to write.

 The use of previously described environment makes our

code more robust, errorless and performance is much better.

Implemented ABC algorithm employs four different

selection processes:

1. global selection process used by the onlooker bees for

discovering promising regions

2. local selection process carried out in a region by the

artificial employed bees and the onlookers depending

on local information (in case of real bees,

3. local selection process called greedy selection process

carried out by all bees in that if the nectar amount of the

candidate source is better than that of the present one,

the bee forgets the present one and memorizes the

candidate source. Otherwise, the bee keeps the present

one in the memory.

4. random selection process carried out by scouts.

There are large number of connections between classes in

our program. ABC algorithm cannot be used in its basic form

for all function optimization problems. So, we created abstract

class BeesAbstract which is inherited by problem specific

classes. BeesAbstract has the following methods:

CalculateFitness, MemorizeBestSource, SendEmployedBees,

CalculateProbabilities, SendOnlookerBees, SendScoutBees,

init, initial, run. These methods, which will be briefly

described, form the basis of ABC metaheuristics and they are

similar to those used by Karaboga and Bastruk in their

software [13], [14], [15]. CalculateFitness calculates the

fitness of a solution. MemorizeBestSource memorizes best

solution found so far. Init function initializes variables and

counters of the food sources (solutions). Variables are

initialized within ranged defined by the user. Initial initializes

food sources (solutions) at the beginning of the process.

SendEmployedBees executes employed bee phase.

CalculateProbabilities calculate probabilities which are

important because a food source is chosen with the probability

which is proportional to its quality. SendOnlookerBees and

SendScoutBees executes onlooker and scout bee phase

respectively. Run is specific method used for implementing

multiple thread functionality into our software. In the Run

method, previously described functions are being executed.

Pseudo-code for Run method is:

Initialize

MemorizeBestSource

Repeat

 SendEmployedBees

 CalculateProbabilities

 SendOnlookerBees

 MemorizeBestSource

 SendScoutBees

Until max iterations are met

Screenshot of basic graphical user interface (GUI) of

ABCapp can be seen in Fig. 3. As we can see from the Fig. 3,

user can adjust multiple parameters for ABC algorithm.

Parameters are divided into two groups: ABC control

parameters and problem specific parameters.

Control parameters are:

 Bee Num NP is number of bees in the colony (employed

bees plus onlooker bees).

 Limit controls the number of trials to improve certain

food source. If a food source could not be improved

within defined number of trial, it is abandoned by its

employed bee.

 Max Cycle defines the number of cycles for foraging.

This is a stopping criterion.

Problem specific parameters are:

 Param Num D is the number of parameters of the

problem to be optimized.

 Runtime defines the number of times to run the algorithm.

 Lower bound is lower bound of problem parameters.

 Upper bound is upper bound of problem parameters.

Fig. 3: Screenshot of ABCapp GUI

In the results text area, we can see results for each

algorithm`s run, and below, mean results of all runs is shown.

Button details give us additional information about the

function to be optimized (Fig.5 and Fig.6).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 158

Fig. 4: Results for Sphere function

Fig. 5: Additional information about selected function

We used six benchmark functions:

 Sphere

 Rosenbrock

 Griewank

 Rastrigin

 Schwefel

 Marshallian demand function

Sphere function`s value is 0 at its global minimum is

(0,0,…,0). Definition:

n

i iXxf
1

2
)(

Rosenbrock function has a value 0 at its global minimum is

(1,1,…,1). Definition:

n

i xxx iii
xf

1

22

]
1

2100[)()1()(

Griewank`s value is 0, and its global minimum is

(0,0,…,0). Definition:

n

i i

n

i

i ixf x
x

11

2

1)cos(
4000

)(

Rastrigin has value 0, and global minimum (0,0,…,0) .

Definition:

n

i ii xxnxf
1

2
))2cos(10(10)(

Fifth function is Schwefel whose value is 0 at its global

minimum (420.9867,420.9867,…, 420.9867). Definition:

n

i ii xxnxf
1

)||sin(9829.418)(

Sixth benchmark function is Marshallian demand function.

This function specifies what the consumer would buy in each

price and wealth situation, assuming it perfectly solves the

utility maximization problem. Function is shown on Figure 7.

Fig 6: Marshallian demand function

The chosen mathematical model of Marshallian demand

function must be the most appropriate approximation of

expressed dependency between price flow and demand for

observed product. Wide range of mathematical functions can

be used for the model, such as: linear, quadratic, exponential,

etc. We used q=ap
b
, where p is price, and q is demand.

Parameters a and b should be designated according to

previously known pairs , where i=1,2,...n. Parameters a,b,c,...

are for the most part calculated by using method of least

squares.

In this example, we are using function:

2

1

)(),(

n

i

b
ii apqbaF ,

where we are trying to calculate parameters a and b using

ABC algorithm in order to minimize the function value. The

best result achieved using method of least squares is

57,046264. The results gained with ABC algorithm are shown

in Table 3.

V. TESTS AND RESULTS

For test purposes, we created test application in C# without

multiple threads, like Karaboga`s and Basturk`s software in C

programming language [13], [14], [15]. We ran two types of

tests. First, we ran speed test, where we compare single thread

application to multiple threaded ABCapp (as described in

Section 3). Second, we ran optimization tests. For all

benchmark functions we set the parameters as shown in Table

1, second column and for the Marshal function the third

column. GUI screenshots of parameter sets in ABCapp for

benchmark and Marshal function are shown in Fig. 7 and 8,

respectively. Tests were done on Intel Core2Duo T8300

mobile processor with 4GB of RAM on Windows 7 Operating

System in Visual Studio 2008 environment.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 159

TABLE I

PARAMETER VALUES FOR BENCHMARK FUNCTIONS

Parameter Bench Marsh.

Bee Num NP 20 20

Limit 100 1000

Max Cycle 2500 1000

Param Num D 100 2

Runtime 30 150

Lower bound -100 [0,-133]

Upper bound 100 [13330,0]

Fig. 7: Parameter set for benchmark functions (ABCapp

GUI screenshot)

Fig. 8: Parameter set for Marshal function (ABCapp GUI

screenshot)

In Table 2, we show results of speed tests (in seconds)

between single thread and multiple threads ABC software.

TABLE II

SPEED TEST RESULTS

Function Single

thread

One run -

one thread

Sphere 18 15,9

Rosenbrock 32,2 16,1

Griewank 31 12,8

Rastrigin 33 11,9

Schwefel 39 13,6

Marshall 28 10,5

From Table 2, we can see that ABCapp is substantially

faster than ordinary C# application. So, when each run

executes within different thread, great performance gain is

achieved.

In Table 3, we show results of optimization tests for single

thread and multiple threaded ABCapp.

TABLE III

RESULTS FOR FUNCTION OPTIMIZATION

Function Single thread One run - one

thread

Sphere 4,66985 E -06 1,84142 E -06

Rosenbrock 0,095 0,088

Griewank 2,36781 E -09 8,044651 E -10

Rastrigin 2,43016 E -08 1,73152 E - 09

Schwefel 764.972 640.949

Marshallian 57,34713 57,10026

Table 3 shows that ABCapp gives noticeable better results

than ordinary ABC software.

We also wanted to see results on both, speed and

optimization tests if we slightly change initial set of parameters

presented in Table 1. We changed ABC control parameters

only, not problem specific parameters (see Section 3). For this

test, we used only benchmark functions, Marshal function was

omitted. Modified parameters are shown in Table 4. GUI

screenshots of modified parameter in ABCapp for benchmark

functions are depicted in Fig. 9.

Fig. 9: New parameter set for benchmark functions

(ABCapp GUI screenshot)

As it can see from Table 4, we changed BeeNumNP from 20

to 30. This means that we increased number of bees (onlooker

plus employee) in the colony. Logical consequence of this

modification should be better results, but slower program

execution. Secondly, we modified MaxCycle parameter from

2500 to 5000. By increasing number of cycles for foraging

again better results should be obtained, but at the cost of

slower execution. Finally, we modified Limit parameter to 150.

This means that certain food source has more space for

improvement before it is abandoned by its bee.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 160

TABLE IV

NEW SET OF PARAMETER VALUES FOR BENCHMARK FUNCTIONS

Parameter Value

Bee Num NP 30

Limit 150

Max Cycle 5000

Param Num D 100

Runtime 30

Lower bound -100

Upper bound 100

Results of speed and optimization tests with new parameter

set are presented in Tables 5 and 6, respectively.

TABLE V

SPEED TEST RESULTS WITH NEW PARAMETER SET

Function Single

thread

One run -

one thread

Sphere 24 17,3

Rosenbrock 50,2 25,6

Griewank 43 15,3

Rastrigin 41 14,6

Schwefel 58 18,1

TABLE VI

RESULTS FOR FUNCTION OPTIMIZATION TEST WITH NEW PARAMETER

SET

Function Single thread One run - one

thread

Sphere 4,25613 E -15 6,03337 E -16

Rosenbrock 0.073 0.069

Griewank 1,11318 E -14 5,99524 E -16

Rastrigin 1,95012 E -11 6,28115 E - 12

Schwefel 466.162 290.953

Table 5 shows again that ABCapp is much faster than

ordinary C# application, just like it was with previous

parameter set (see Table 2). With new parameters, speed

difference between multiple threads and single thread

application is greater and in this case, ABCapp remarkably

outperforms ordinary single thread ABC application.

According to the results presented in Table 6, ABCapp

gains far better results than ordinary ABC application. So, with

changing the ABC control parameters, results gap between

ordinary software and ABCapp is even greater. This gap is the

most pronounced in the case of Griewank function.

Interesting comparison can be made if we compare results

for benchmark functions with initial parameter values to the

results for benchmark functions with new parameter values

(Table 3 vs. Table 6). Both, on single thread and on one run-

one thread application, results on benchmark function

optimization are far better with new parameters than with the

old ones. Let us take for example Griewank function. With

initial parameter values, the result achieved using ABCapp

software was 8,044651 E -10, while with new parameters

result was 5,995243 E -16. As we can see, there is great value

improvement. The most remarkable improvement is produced

on Sphere function. The difference between 1,84142 E -06

(initial parameter set) and 5,13900 E -16 (new parameter set)

is very significant. Even with these parameters results for

Schwefel function are worse than others but compatible with

discussion in [17].

Finally, we ran both tests on the same hardware platform,

but in the different environment. Thus, we used the same Intel

Core2Duo T8300 mobile processor with 4GB of RAM on

Windows 7 Ultimate Operating System, but this time we tested

our software on Visual Studio 2010 and .NET Framework 4.0.

We converted both applications (ABCapp and standard ABC

software) to comply with the new environment. For testing

purposes, we used new set of parameters (see Table 4), just

like in the previous test. Speed test results on Visual Studio

2010 are shown in Table 7, while optimization test results can

be seen in Table 8.

TABLE VII

SPEED TEST RESULTS ON VISUAL STUDIO 2010

Function Single

thread

One run -

one thread

Sphere 21 16,7

Rosenbrock 48,9 23,2

Griewank 41,5 14,1

Rastrigin 39,3 12,1

Schwefel 55,8 17,7

Speed test show that execution speed is slightly better on

Visual Studio 2010 than it was on Visual Studio 2008. This

means that new environment is better optimized.

TABLE VIII

FUNCTION OPTIMIZATION RESULTS ON VISUAL STUDIO 2010

Function Single thread One run - one

thread

Sphere 3,22219 E -15 5,13900 E -16

Rosenbrock 0.071 0.066

Griewank 0,92881 E -14 6,10024 E -16

Rastrigin 0,75221 E -11 2,87902 E -12

Schwefel 409.265 194.403

If we compare results in Table 6 and Table 8 (function

optimization results on Visual Studio 2008 and Visual studio

2010), it can be seen that results in those tables are

approximately the same, differences are due to different

random seeds. So, the conclusion is that a different

environment does not have impact on the optimization results.

VI. CONCLUSION

We implemented and tested a software system in C# for

optimization problems based on a modification of Karaboga’s

ABC algorithm and corresponding software. Object-oriented

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 161

design and appropriate GUI allow for easy modifications and

applications to different optimization problems. Performance

was tested and proved to be superior to existing software since

use of threads better utilizes multicore processors. Benchmark

problems that are used in the literature were tested and system

is ready to be applied to new problems.

REFERENCES

[1] Johann Dréo, Patrick Siarry, Alain Pétrowski and Eric Taillard,

Metaheuristics for Hard Optimization, Springer Berlin Heidelberg, pp.

1-19, 2006.

[2] T. Y. Chen,Y. L. Cheng: Global optimization using hybrid approach,

WSEAS Transactions on Mathematics, Vol.7 ,2008 , pp. 254-262.

[3] Saif Mahmood Saab , Dr. Nidhal Kamel Taha El-Omari, Dr. Hussein H.

Owaied, Developing optimization algorithm using artificial bee colony

system, UbiCC Journal, Volume 4, No 5, pp. 391-396, December 2009.

[4] N. Buniyamin, N. Sariff, W. A. J. Wan Ngah, Z. Mohamad, Robot

Global Path Planning Overview and a Variation of Ant Colony System

Algorithm, International Journal of Mathematics and Computers in

Simulation, Vol. 5, Issue 1, 2011, pp. 9-16.

[5] Milan Rapaic, Zeljko Kanovic, Zoran Jelicic, A theoretical and

empirical analysis of convergence related particle swarm optimization,

WSEAS Transactions on Systems and Control, Vol. 4, Issue 11, Nov

2009, pp. 541-550.

[6] Teodorovic, D., Dell’Orco M., Bee colony optimization—a cooperative

learning approach to complex transportation problems, Advanced OR

and Al. Methods in Transportation, pp. 51-60, 2005.

[7] Drias, H., Sadeg, S., Yahi, S, Cooperative bees swarm for solving the

maximum weighted satisfiability problem, LNCS, Volume 3512/2005,

Springer, Berlin, pp. 318 - 325, 2005.

[8] Benatchba, K., Admane, L., Koudil, M, Using bees to solve a data-

mining problem expressed as a max-sat one, LNCS, Volume 3562/2005,

Springer, Berlin, pp. 212-220, 2005.

[9] L. Jiann-Horng, H. Li-Ren: Chaotic bee swarm optimization algorithm

for path planning of mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary computing, Prague, Czech

Republic, 2009, pp. 84-89.

[10] L. Jiann-Horng, L. Meei-Ru, H. Li-Ren: A novel bee swarm

optimization algorithm with chaotic sequence and psychology model of

emotion, Proceedings of the 9th WSEAS International Conference on

Systems Theory and Scientific Computation table of contents, Moscow,

Russia, 2009, pp. 87-92.

[11] Tricia Rambharose and Alexander Nikov, Computational intelligence-

based personalization of interactive web systems, WSEAS Transactions

on Information Science and Applications, Vol. 7, Issue 4, Apr 2010, pp.

484-497.

[12] R. Mohamad Idris, A. Khairuddin and M.W. Mustafa, Optimal

Allocation of FACTS Devices in Deregulated Electricity Market Using

Bees Algorithm, WSEAS Transactions on Power Systems, Vol. 5, Issue

2, Apr 2010, pp. 108-119.

[13] D. Karaboga, An idea based on honey bee swarm for numerical

optimization, Technical Report TR06, Computer Engineering,

Department, Erciyes University, Turkey, 2005.

[14] Dervis Karaboga, Bahriye Basturk, A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm, Springer Science and Business Media, pp. 459-471, 2007.

[15] D. Karaboga, B. Basturk, On the performance of artificial bee colony

(ABC) algorithm, Applied Soft Computing 8, pp. 687-697, 2008.

[16] Dervis Karaboga, Bahriye Basturk: A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm, Journal of Global Optimization (2007) 39, pp. 459-471

[17] Alok Singh, An artificial bee colony algorithm for the leaf-constrained

minimum spanning tree problem, Applied Soft Computing, Vol. 9, Issue

2, 2009, pp. 625-631.

Milan Tuba received B.S. in mathematics, M.S. in

mathematics, M.S. in computer Science, M.Ph. in

computer science, Ph.D. in computer science from

University of Belgrade and New York University.

 From 1983 to 1994 he was in the U.S.A. first as a

graduate student and teaching and research assistant

at Vanderbilt University in Nashville and Courant

Institute of Mathematical Sciences, New York

University and later as an assistant professor of

electrical engineering at Cooper Union Graduate

School of Engineering, New York. During that time he was the founder and

director of Microprocessor Lab and VLSI Lab, leader of scientific projects

and supervisor of many theses. From 1994 he was associate professor of

computer science and Director of Computer Center at University of Belgrade,

Faculty of Mathematics, and from 2004 also a Professor of Computer Science

and Dean of the College of Computer Science, Megatrend University

Belgrade. He was teaching more than 20 graduate and undergraduate courses,

from VLSI design and Computer architecture to Computer networks,

Operating systems, Image processing, Calculus and Queuing theory. His

research interest includes mathematical, queuing theory and heuristic

optimizations applied to computer networks, image processing and

combinatorial problems. He is the author of more than 100 scientific papers

and a monograph. He is coeditor or member of the editorial board or scientific

committee of number of scientific journals and conferences.

 Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York

Academy of Sciences 1987, AMS 1995, SIAM 2009. He participated in many

WSEAS Conferences with plenary lectures and articles in Proceedings and

Transactions.

Nebojsa Bacanin received B.S. and M.S. in

economics and computer science in 2006 and 2008

from Megatrend University of Belgrade and also

M.S. in computer science in 2008 from University of

Belgrade

 He is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at Faculty of Computer Science, Megatrend

University of Belgrade. He is the coauthor of two

papers. His current research interest includes nature inspired metaheuristics.

 Mr. Bacanin participated in WSEAS conferences.

Ivona Brajevic received B.S. in mathematics in

2006 and M.S. in mathematics in 2008 from

University of Belgrade, Faculty of Mathematics.

 She is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at College of Business, Economy and

Entrepreneurship in Belgrade. She is the coauthor of

two papers. Her current research interest includes

nature inspired metaheuristics.

 Ms. Brajevic participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 162

