
1

Distributed models in P-Systems architectures to
reduce computation time

Miguel Ángel Peña, Ginés Bravo, Luis Fernando de Mingo

Abstract—Membrane systems are computational equivalent to
Turing machines. However, their distributed and massively par-
allel nature obtains polynomial solutions opposite to traditional
non-polynomial ones. At this point, it is very important to develop
dedicated hardware and software implementations exploiting
those two membrane systems features. Dealing with distributed
implementations of P systems, the bottleneck communication
problem has arisen. When the number of membranes grows up,
the network get congested. The purpose of distributed architec-
tures is to reach a compromise between the massively parallel
character of the system and the needed evolution step time to
transit from one configuration of the system to the next one,
solving the bottleneck communication problem. The goal of this
paper is twofold. Firstly, to survey in a systematic and uniform
way the main results regarding the way membranes can be placed
on processors in order to get a software/hardware simulation of
P-Systems in a distributed environment. Secondly, we improve
some results about the membrane dissolution problem, prove
that it is connected, and discuss the possibility of simulating this
property in the distributed model. All this yields an improvement
in the system parallelism implementation since it gets an incre-
ment of the parallelism of the external communication among
processors. Proposed ideas improve previous architectures to
tackle the communication bottleneck problem, such as reduction
of the total time of an evolution step, increase of the number of
membranes that could run on a processor and reduction of the
number of processors.

Index Terms—Distributed Communication, Membrane Com-
puting, Membrame Dissolution, P-Systems Architectures, Com-
putational Models

I. PRELIMINARIES

NATURAL sciences, and especially biology, represented a
rich source of modelling paradigms. Well-defined areas

of artificial intelligence (genetic algorithms, neural networks),
mathematics, and theoretical computer science (L systems,
DNA computing [1]) are massively influenced by the be-
haviour of various biological entities and phenomena. In the
last decades or so, new emerging fields of so-called natu-
ral computing identify new (unconventional) computational
paradigms in different forms. There are attempts to define and
investigate new mathematical or theoretical models inspired

M.A. Peña is with Dpto. Inteligencia Artificial, Facultad de Informática,
Universitad Politécnica de Madrid, Campus de Montegancedo, 28660 Madrid,
Spain, m.pena@upm.es

G. Bravo is with Dpto. Organizacón y Estructura de la Información, Escuela
Universitaria de Informática, Universitad Politécnica de Madrid, Crta. De
Valencia km. 7, 28031 Madrid, Spain, gines@eui.upm.es

L.F. de Mingo is with Dpto. Organizacón y Estructura de la Información,
Escuela Universitaria de Informática, Universitad Politécnica de Madrid, Crta.
De Valencia km. 7, 28031 Madrid, Spain, lfmingo@eui.upm.es

by nature, as well as investigations into defining program-
ming paradigms that implement computational approaches
suggested by biochemical phenomena.

Membrane computing, inspired in “basic features of bio-
logical membranes”, was introduced by Gheorge Paŭn [2] to
solve NP-Complete problems in polynomial time. As original
model –Transition P System– as remaining models emerging
from its; they are an abstract representation of hierarchical
structure and non-deterministic behavior of biological mem-
branes. A membrane is a region compounds by other mem-
branes and chemicals (objects) that uses chemical reactions
(evolution rules) generated another chemicals. Each membrane
has a permeability capacity that enable chemicals (objects)
to move between membranes (communication). Chemicals
reactions produced in membranes can dissolve it. This process
implies that contained object and membranes to become part
of parent membrane.

Universality results have been obtained [3], [4], [5] for a
number of variants of population P-systems. The following
different rules are considered: transformation rules for modify-
ing the objects that are present inside the cells, communication
rules for moving objects from a cell to another one, cell
division rules for introducing new cells in the system, cell
differentiation rules for changing the types of the cells, and
cell death rules for removing cells from the system. As well
as this, bond-making rules are considered that are used to
modify the links between the existing cells (i.e., the set of
edges in the graph) at the end of each step of evolution
performed by means of the aforementioned rules. In other
words, a population P-system in [6], [7] is basically defined as
an evolution- communication P-system but with the important
difference that the structure of the system is not rigid and it is
represented as an arbitrary graph. In particular, bond making
rules are able to influence cell capability of moving objects
from a place to another one by varying the set of edges in the
underlying graph.

In base to this behaviour, P-System are systems that can be
executed on-line that is, in vitro or simulated, using hardware
implementations (Petreska [8], Fernandez [9] or Martinez
[10]), using software simulations(Suzuki [11] o Arroyo [12])
or even in a real cluster of processors (Ciobanu [13] o Sy-
ropoulos [14]). Currently, researchers focused on simulations
by distributed software, to alleviate the sequential nature of
processors, to obtain lower running time.

II. P SYSTEM DEFINITION

The first definition of a P System was published by Păun
[2], who defined a Transition P System as:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 258



Definition 1: A Transition P System is Π =
(V, µ, ω1, . . . , ωn, (R1, ρ1), . . . , (Rn, ρn), i0), where:

• V is an alphabet (composed of objects),
• µ is the membrane structure with n membranes
• ωi are the multiset of symbols for the membrane i.
• Ri are the evolution rules for the membrane i. A rule is a

sorted pair (u, v) where u is a string over V , and v = v′

or v = v′δ and v′ is a string over VTAR = V x TAR with
TAR = here, out U {inj |1 ≤ j ≤ n}. δ is a special
symbol not included in V , and represents the dissolution
of the membrane

• Pi are the priority of rules for the membrane i.
• i0 indicates a membrane, which is the system output

membrane or skin membrane.

Dynamics of P-System is made through configurations. The
following phases are performed on each configuration of a
membrane in parallel and no deterministic way:

1) To determine the set of useful rules: On this micro-step
all evolution rules of the membrane are evaluated in
order to determine which are useful. A rule is useful
when all membranes in its consequent exists in the P-
System.

2) To identify the set of applicable rules: It will be neces-
sary to evaluate all the evolution rules of the membrane
to identify those that meet the following constraint: its
predecessor is contained in the multiset of objects of the
region.

3) To build the set of actives rules: Intersection of two
previous sets are the input group to this micro-step. Each
one of the rules belonging to the set must be processed,
to determine which meets the condition of active rule
[15], [16]. To determine if a rule meets such condition,
it is necessary check if there is not another rule with
higher priority that belongs to the useful and applicable
rules set.

4) Non deterministic distribution of objects of the region
between its active rules and application: In this micro-
step, copies of present objects in the multiset of the
region are distributed between active evolution rules.
Copies of objects that are assigned to each rule, match
with those of the multiset that results from scalar product
of a number between minimum and maximum bound
of applicability of those rule and its predecessor. This
distribution process is made on a non-deterministic way.
Moreover, at the end of it, objects no assigned to any rule
forms a multiset and they will be characterized because
they do not contained to any predecessor of rules. The
result of the distribution is a multiset of actives rules,
where multiplicity of each rule defines the times that
would be applied, and therefore, indirectly through its
predecessors, objects are assigned to the multiset of the
region. Objects used are eliminated and generate new
objects that are destined for a membrane.

5) Output of multiset generated objects or communication
phase: In this micro-step, the new objects generated on
the previous micro-step whose target membranes was
in or out, must be transferred to its corresponding

membranes. Each membrane, will have unused objects
in its application, together with those that result for the
applying of rules and that have this membrane as destiny.

6) Membranes dissolution: This action means that mem-
branes who have applied some rule with dissolution
capacity, they must send containing objects at this time
to their nearest antecessor.

7) Composition of new objects multiset: At finish this last
micro-step, on each membrane it should generate a new
multiset of objects that will be used in the next step of
evolution. In this way, multiset of objects of delimitated
region by a membrane identified as j will be formed by:
• Objects do not assigned to any rule at the non-

deterministic distribution.
• Objects created in the membrane whose target iden-

tifier, is the membrane itself.
• Objects created in daughter membranes whose tar-

get identifier was out.
• Objects coming from mother membrane, whose

target identifier was inj .
• Objects coming from dissolution of daughter mem-

branes of membrane j and all objects whose their
destiny was dissolved j daughter membrane.

About those steps, many researchers have developed algo-
rithms to reduce time it takes to evolve P-System. In some
cases, many steps were grouped to reach a reduction of time.
In particular, Frutos [17] proposed to create decision trees
to determine possible rules to apply according to membrane
context (micro-steps 1-3). Tejedor [18] proposed an algorithm
to distribute objects among rules and its application (micro-
step 4). Objects communication between membranes depends
on used distributed architecture. Since Ciobanu [13] detected
that network congestion produce higher response time, future
studies have focused on searching architectures to eliminate
network collision. Then, we can group micro-steps on base to
membranes permeability: steps executed inside membrane (1
to 4 steps) called applying rules, and inter-membrane steps (5
to 7 steps) called object communication between membranes,
and depend on the used architecture.

III. P-SYSTEMS ARCHITECTURES

The implementation of P system in digital hardware device
is being carried out from the point of view of Hardware
as well as Software. Most of the solutions have been fo-
cused, mainly, in the first phase of the P system evolution
describing digital circuits or software architectures/designs that
have allowed the application of the defined evolution rules
inside the membranes. The phase of multisets membranes
communication has not been contemplated or it has simply
been performed by shared memory, except Syropoulos [14]
and Ciobanu [13] that in their distributed implementations of
P systems use Java Remote Method Invocation (RMI) and the
Message Passing Interface (MPI) respectively, on a cluster of
PC connected by Ethernet. These last authors do not carry out
a detailed analysis of the importance of the time used during
communication phase in the total time of P system evolution,
although Ciobanu states that ”the response time of the program

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 259



(a) Peer to Peer architecture (b) Hierarchical Peer to Peer architecture

(c) Master-Slave architecture (d) Hierarchical Master-Slave architecture

Fig. 1. Different distributed P-System architectures including the object communication order.

has been acceptable. There are however executions that could
take a rather long time due to unexpected network congestion
[13].

The first distributed architecture to implement P-Systems
that eliminate collisions is proposed like ”partially parallel
evolution with partially parallel communication” [19]; namely
Peer-to-Peer (P2P ) as opposed to other architectures. In this
architecture (Figure 1(a)), processors are connected with a tree
topology following the inner scheme in P-System structure: k
membranes are placed in every processor P and sequentially
executed applying rules. On communication step, following a
post order way of processor tree (Figure 1(a), proxies situated
on each processor send generated objects in its membranes,
using only one message, to proxies of processors that are target
membranes. Total time used in each evolution of P-System is:

T = KTapl + 2(P − 1)Tcom (1)

Based on the same idea and same tree topology, Bravo
in [20] adds parallelism to transmission of objects, so si-
multaneously multiple processors can be communicating with
others processors with no collision at all (Figure 1(b)). This
architecture cited like Hierarchical Peer-to- Peer (HP2P )
reduces, in a notorious way, time used in evolution steps:

T =
M(A− 1)Tapl

AL − 1
+ 2TcomA(L− 1) (2)

Where A is amplitude or processor number of children and
L is number of processors tree levels, taking root like L=1.

Third architecture reduces time and eliminates complicated
restrictions of tree topology of previous models, it is Master-
Slave architecture (MS) [21]. With this architecture, also
based on unique simultaneously communication between prox-
ies (Figure 1(c)), can make the communication step while
other processors are in their communication step. Time used
by every evolution phase is:

T = kTapl + Tcom(Ps + 1) (3)

Communications on Master-Slave architecture are sequen-
tials and it produces that time of this step is linear. To ad-
dress these issues arises Hierarchical Master-Slave architecture
(HMS) [22] groups advantages of HP2P architecture with
MS architecture (Figure 1(d)), obtaining a time of:

T =
MTapl

AL−1
+ Tcom(2L+A+AL−2 − 4) (4)

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 260



IV. BEHAVIOR OF DISTRIBUTED ARCHITECTURES

All this architectures are designed to reduce P-System
running time, considering two execution steps of it. In addition
to this stages, in different types of P-System may exists mem-
brane dissolution or membrane division. There are to make
changes to include these new steps in these architectures. P2P
and MS architectures may work with only the addition of a
improvement proxy that permit dissolution. HP2P and HMS
architectures have to modify message flow to permit, through
intermediate processors, communications among nodes even
though it is not connected directly. This new communication
sequence are shown in figures 3(a) (to HP2P ) and 3(b) (to
HMS).
HP2P architecture starts its communication on root pro-

cessor, which communicates with its children sequentially.
Each one of these can starts communication with its children,
when received father communication (root). In the same way,
children communicate with it corresponding children. Reverse
process, from leaves to root, is similar considering the restric-
tions that one processor only can have one communication to
avoid collisions. When root received the last communication
from it child, starts next evolution on application phase.
HMS architecture starts with communication with all

slaves processors. Communications of all slaves are made in
sequential, because there are many slaves processor connected
to same master. But, two slaves of different master can starts to
communicate in parallel, because there are not collisions. With
the same idea, master can communicate with its masters-father,
and so, to reach master-root. When it have received from
whole its masters-children, made its process and sequentially
communicate to whole masters-children. Each one of them,
after receive the communication, it can communicate with its
children (similarly to make to HP2P architecture). When a
master has terminated to communicate with its slaves, these
can execute the application step of its next evolution phase,
and it starts communication step when finished application
step, avoiding collisions.

Except for the first evolution of P System, HMS and
HP2P architectures require the same time to communicate (as
shown in figures 3(a) and 3(b)). Knowing that communication
time between two processors (only one way) is Tcom, total
communication time for each evolution of the P System is:

T = Tcom(AL+ L− 2) (5)

In both architectures, communications number behaves
same, but its application time is different, because in HP2P
architecture exists membranes in every processor; and in
HMS only exists in processors slaves. Existing k membranes
on each processor, to take Tapl to apply, application time
would be:

T = kTapl (6)

On HP2P architecture there will be P processors:

P =
AL − 1
A− 1

(7)

On HMS architecture there will be the same number of total
processors, of whom, processors slaves and masters, will be:

Ps = AL−1 (8)

Pm =
AL−1 − 1
A− 1

(9)

Knowing total number of membranes M is results of mul-
tiply membranes of each processor by the processors number
that contain membranes, total times of each execution step to
HP2P and HMS respectively are:

THP2P =
TaplM(A− 1)

AL − 1
+ (LA+ L− 2)Tcom (10)

THMS =
MTapl

AL−1
+ (LA+ L− 2)Tcom (11)

Knowing the time lasting each evolution step, it would be
determined what is the optimum value of A and L to obtain
minimum time. Also knowing that A and L must be integers.
Figures 4(a) and 4(b) shown the better combination of A and
L to be the minimum time, according relationship between
Tapl and Tcom, and number of membranes.

V. BEHAVIOR OF DISTRIBUTED ARCHITECTURES WITH
OVERLAPPING STAGES

On initial proposal of Paun [2] about membrane perfor-
mance, each showed micro-step are sequentially executed,
although it exists parallelism inside each micro-step. Those
micro-steps are executed in-parallel on all processors. How-
ever, in software and hardware implementations, recent studies
have demonstrated some micro-steps can be grouped and
executing in-parallel with new algorithms- so the total time
is reduced. Figure 3(b), shows how while some processors
are communicating, another are doing their application phase.
Specifically, this figure shows how a processor when determine
that has finished to communicate, it starts to applied rules.
But even if finished the communication on subnet where it is
connected, the communication phase is not finished, because
it exists communication in other subnet. For example, the pro-
cessors 3 to 6 (P3−P6) subnet finished their communication
on time 15 (t = 15). In this moment, processors 4, 5 and 6
can start their rules application phase, because their thought
that communication phase is finished. But, in other subnets,
there are processors still not finish their communication, like
processor 7.

This idea, reducing communication time, overlap commu-
nication step and application step. If a processor does not wait
to finish the communication on belonging subnet, and start its
rules applying step on the moment it finished execution step,
it could reduced more the evolution total time. In the same
example, processor 4 could start its selection phase and rules
application phase on t = 13. Figure 5 shows how the execution
schedule is implemented with this overlapping steps

Simultaneously, between t = 13 and t = 19, it is producing
communication over some processors and rules application
over other ones. When a processor finished its communication
phase and net is available for a new communication phase
passed:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 261



Fig. 2. Distribution of processors in a tree with 4 depth levels and amplitude equal to 3.

(a) Hierarchical Peer to Peer Architecture (b) Hierarchical Master-Slave Architecture

Fig. 3. Chronogram of different P-System architectures with 4 depth levels and amplitude equal to 3 (Figure 2).

T = (A− 1)Tcom (12)

It is to say, the time lasting to communicate the other
slave-proccesors of subnet. On the example, the processor
4 can communicate again on t = 15 if finished its rules
application step. This causes two types of possible distri-
butions on Hierarchical Master-Slave: those have a totally
overlapping communication and rules application and those
have a partial overlapping. In the first group, the network
utilization is maximized, it is not idle waiting that a processor
finish its rules application step. Also, using fixed time intervals
to communication, each processor can start the communication
on its assigned time without considering the net state and
with the certainty there is not collisions. If instead the rules
application takes much longer and the overlapping is partially,
it is necessary that the processor monitoring the net state to
dont start its communication before the assigned time. Since

there are two overlapping steps types, the time spent on each
evolution step is determined by:

THMS =

{
(AL+ L− 2)Tcom if MTapl

AL−1 ≤ (A− 1)Tcom
MTapl

AL−1 + (LA+ L−A− 1)Tcom otherwise
(13)

About these two options, and for every case, it must be
analyzed what of these reduce the total time of evolution. Fig-
ure 6 shows the better combination of processors to minimize
the evolution time, in function of number of membranes and
Tapl Tcom ratio. In particular, it shows values of amplitude
and depth. Comparing with evolution without overlapping,
significantly increases the amplitude because at the time other
processor communicate, makes rules application.

This advance made on Hierarchical Master-Slave cannot be
doing on Hierarchical Peer-to-Peer architecture, due to root
processor also have membranes and it is the first and the last

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 262



(a) HP2P Architecture

(b) HMS Architecture

Fig. 4. Amplitude and depth for the minimum time in P-Systems Architectures.

Fig. 6. Amplitude and depth for the minimum time in Hierarchical Master-Slave Architecture with overlapping stages

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 263



Fig. 5. Chronogram of Hierarchical Master-Slave Architecture with overlap-
ping stages with 4 depth levels and amplitude equal to 3 (Figure 2).

that communicate. Although it cannot exist overlapping on this
processor, but in other ones can. If only root membrane on this
processor, it can be other membranes distribution, that reach a
overlapping on the others processors and reducing total time.

VI. RESULTS AND FUTURE WORK

Concerning membrane dissolution and membrane division
steps, they modify the existing architectures behavior. The
communications of this architecture must take into account
such changes. Hierarchical Peer to Peer Architecture and Hier-
archical Master-Slave must consider this behaviour. However,
the total time and the spatial distribution change because in
HP2P there are membranes on all processors and in HMS
only on slaves. Moreover, this change reduces the execution
time.

To achieve a minimum time, it should consider other
distributions different than when they took into account in
the dissolution of membranes. With this new configuration the
number of children of a processor increases to 3 with less than
1000 membranes. The optimal configuration of the number of
children and the depth tree of processors, depending on the
number of membranes and the ratio of the time it takes to
apply membranes and that take in communicating processors.

With the overlapping steps, while ones processor making
communication steps, other ones can make rules applying step.
With this overlapping, the needed time to rules application is
eliminated, taking the P-System evolution only the time used
to communicate the processors where it is hosted.

A. Networks of Evolutionary Processors

Previous ideas can be taken into account in new distributed
symbolic models such as Networks of Evolutionary Proces-
sors.

A network of evolutionary processors [23], [24] of size n
is Γ = (V,N1, N2, · · · , Nn, G), where V is an alphabet and
for each 1 ≤ i ≤ n, Ni = (Mi, Ai, P Ii, POi) is the i-th
evolutionary node processor of the network. The parameters
of every processor are:

• Mi is a finite set of evolution rules of one of the following
forms only

– a→ b, a, b ∈ V (substitution rules)
– a→ ε, a ∈ V (deletion rules)
– ε→ a, a ∈ V (insertion rules)

More clearly, the set of evolution rules of any processor
contains either substitution or deletion or insertion rules.

• Ai is a finite set of strings over V . The set Ai is the set of
initial strings in the i-th node. Actually, in what follows,
we consider that each string appearing in any node at
any step has an arbitrarily large number of copies in that
node, so that we shall identify multisets by their supports.

• PIi and POi are subsets of V ∗ representing the input and
the output filter, respectively. These filters are defined by
the membership condition, namely a string w ∈ V ∗ can
pass the input filter (the output filter) if w ∈ PIi(w ∈
POi).

the network. The edges of G, that is the elements of E, are
given in the form of sets of two nodes. The complete graph
with n vertices is denoted by Kn. By a configuration (state) of
an NEP as above we mean an n-tuple C = (L1, L2, · · · ., Ln),
with Li ⊆ V ∗ for all 1 ≤ i ≤ n. A configuration represents
the sets of strings (remember that each string appears in an
arbitrarily large number of copies) which are present in any
node at a given moment; clearly the initial configuration of
the network is C0 = (A1, A2, · · · , An).

A configuration can change either by an evolutionary step
or by a communicating step [23]. When changing by an
evolutionary step, each component Li of the configuration is
changed in accordance with the evolutionary rules associated
with the node i. When changing by a communication step,
each node processor Ni sends all copies of the strings it has
which are able to pass its output filter to all the node processors
connected to Ni and receives all copies of the strings sent by
any node processor connected with Ni providing that they can
pass its input filter.

More important results are:

• Each recursively enumerable language can be generated
by a complete NEP of size 5. [23]

• Each recursively enumerable language can be generated
by a star NEP of size 5. [23]

• The bounded PCP can be solved by an NEP in size and
time linearly bounded by the product of K and the length
of the longest string of the two Post lists. [24]

In fact, NEPs are P-System with a graph topology, but
they have a different behaviour. In this case, distribution of
processors instead of membranes must be accomplished in
order to reduce computation time when simulating in a cluster
environment. Proposed architectures could be use to optimise
such processors distribution.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 264



ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Research Projects: TRA2010-15645. COMUNICACIONES
EN MALLA PARA VEHICULOS E INFRAESTRUCTURAS
INTELIGENTES (Mesh communication with intelligent vehi-
cles). (2010) and TEC2010-21303-C04-02. ESTRUCTURAS
RESONANTES PARA APLICACIONES DE SEAL FOTON-
ICA DE BANDA ANCHA. (2010).

REFERENCES

[1] R. Freund, “An integrating view on dna computing and membrane
computing,” in Proceedings of the 9th WSEAS International Conference
on EVOLUTIONARY COMPUTING(EC08). World Scientific and
Engineering Acad and Soc, 2008, pp. 15–20.

[2] G. Paun, “Computing with membranes,” Journal of Computer and
System Sciences, vol. 61, no. 1, pp. 108–143, Aug. 2000.

[3] M. Madhu and K. Krithivasan, “Improved results about universality of
P systems,” Bulletin of the EATCS, no. 76, pp. 162–168, February 2002.

[4] A. Rodriguez-Patón, “On the universality of P systems with membrane
creation,” Bulletin of the EATCS, no. 74, pp. 229–234, June 2001.

[5] R. Freund, L. Kari, M. Oswald, and P. Sosı́k, “Computationally universal
P systems without priorities: two catalysts are sufficient,” Theoretical
Computer Science, 2004, in press.

[6] F. Bernardini, M. Gheorghe, and N. Krasnogor, “Population P systems
and quorum sensing in bacteria,” Theoretical Computer Science, 2006,
?

[7] F. Bernardini and M. Gheorghe, “Population P systems,” Journal of
Universal Computer Science, vol. 10, no. 5, pp. 509–539, May 2004.

[8] B. Petreska and C. Teuscher, “A reconfigurable hardware membrane
system,” Membrane Computing, vol. 2933, pp. 269–285, 2004.

[9] L. Fernandez, V. J. Martinez, F. Arroyo, and L. F. Mingo, “A hardware
circuit for selecting active rules in transition p systems,” Seventh Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Proceedings, vol. 1, pp. 415–418, 2005.

[10] V. Martinez, F. Arroyo, A. Gutierrez, and L. Fernandez, “Hardware
implementation of a bounded algorithm for application of rules in a
transition p-system,” SYNASC 2006: Eighth International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, Pro-
ceedings, vol. 1, pp. 343–349, 2007.

[11] Y. Suzuki and H. Tanaka, “On a lisp implementation of a class of p
systems,” in Romanian Journal of Information Science and Technology,
vol. 3, no. 2, 2000, pp. 173–186.

[12] F. Arroyo, C. Luengo, A. V. Baranda, and L. de Mingo, “A software
simulation of transition p systems in haskell,” Membrane Computing,
vol. 2597, pp. 19–32, 2003.

[13] G. Ciobanu and W. Y. Guo, “P systems running on a cluster of
computers,” Membrane Computing, vol. 2933, pp. 123–139, 2004.

[14] A. Syropoulos, E. G. Mamatas, P. C. Allilomes, and K. T. Sotiriades, “A
distributed simulation of transition p systems,” Membrane Computing,
vol. 2933, pp. 357–368, 2004.

[15] R. Freund and M. Oswald, “P systems with antiport rules for evolution
rules,” WSEAS TRANSACTIONS on SYSTEMS, vol. 2, no. 3, pp. 866–
873, Apr 2004.

[16] M. Oswald, “Computations with 1-deterministic p systems using an-
tiport/symport rules for evolution rules,” WSEAS TRANSACTIONS on
BIOLOGY and BIOMEDICINE, vol. 2, no. 1, pp. 280–286, Apr 2004.

[17] J. d. Frutos, L. Fernández, and F. Arroyo, “Decision trees for obtaining
active rules in transition p systems,” in Tenth Workshop on Membrane
Computing (WMC10), A. R.-N. n. Gheorghe Paun, Mario J. Pérez-
Jiménez, Ed., 2009, pp. 210–217.

[18] J. A. Tejedor, L. Fernández, F. Arroyo, and A. Gutiérrez, “Algorithm
of active rules elimination for application of evolution rules,” in
Proceedings of the 8th Conference on 8th WSEAS International
Conference on Evolutionary Computing - Volume 8. Stevens
Point, Wisconsin, USA: World Scientific and Engineering Academy
and Society (WSEAS), 2007, pp. 259–267. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1347992.1347998

[19] J. Tejedor, L. Fernndez, F. Arroyo, and G. Bravo, “An architecture
for attacking the communication bottleneck in p systems,” Artificial
Life and Robotics, vol. 12, pp. 236–240, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10015-007-0474-4

[20] G. Bravo, L. Fernández, F. Arroyo, and J. A. Frutos, “A hierarchical ar-
chitecture with parallel communication for implementing p systems,” in
Proceedings of the Fifth International Conference Information Research
and Applications i.TECH 2007, K. I. E. Kr. Markov, Ed., vol. 1, June
2007, pp. 168–174.

[21] G. Bravo, L. Fernández, F. Arroyo, and J. Tejedor, “Master-slave
distributed architecture for membrane systems implementation,” in
Proceedings of the 8th Conference on 8th WSEAS International
Conference on Evolutionary Computing - Volume 8, A. Aggarwal,
Ed. Stevens Point, Wisconsin, USA: World Scientific and Engineering
Academy and Society (WSEAS), 2007, pp. 326–332. [Online].
Available: http://portal.acm.org/citation.cfm?id=1347992.1348009

[22] G. Bravo, L. Fernández, F. Arroyo, and M. A. Peña, “Hierarchical
master-slave architecture for membrane systems implementation,” in
Proceedings of the 13th International Symposium on Artificial Life and
Robotics (AROB 2008), M. Sugisaka and H. Tanaka, Eds., Beppu, Japan,
January 31 - February 2 2008, pp. 485–490.

[23] J. Castellanos, C. Martı́n-Vide, V. Mitrana, and J. Sempere, “Networks of
evolutionary processors,” Acta Informática, vol. 39, pp. 517–529, 2003.

[24] ——, “Solving np-complete problems with networks of evolutionary
processors,” Lecture Notes in Computer Science, vol. 2084, pp. 621–
628, 2001.

Miguel Angel Peña Ph.D. student on Artificial Intel-
ligence. He has participated in several funded project
with different companies in the field of Software
Development.

Gines Bravo Professor at the Universidad
Politécnica de Madrid and a Ph.D. student on
Artificial Intelligence. His research interests lie
in the area of bio-computing, in particular in the
theoretical parts of DNA computing and membrane
systems, but also in the area of neural networks. He
has published some papers concerning P-Systems.

Luis Fernando de Mingo Full professor at the
Universidad Politécnica de Madrid since 1998 and
Ph.D. on Artificial Intelligence. His research inter-
ests lie in the area of learning models, in particular
in the theoretical parts of Neural Networks and
Pattern Recognition, but also in the area of Networks
of Evolutionary Processors. He has participated in
several INTAS projects and some local projects.
Member of the editorial board of IJITA, and inter-
national reviewer of KDS, ITECH conferences.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 5, 2011 265




