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Simulation of Two-Dimensional Random
Structure Through Inversely Generated

Delaunay Subgraphs
R. J. Matthews, J. D. Richardson and C. D. Wilson

Abstract— Subgraphs taken from Delaunay triangulations
are used as a basis for the representation of spacing in two-
dimensional random structure. Stochastic simulations are pre-
sented in which Delaunay triangulations are used to determine
sets of points rather than vice versa. Reversal of the usual tri-
angulation problem allows the simulations to be based on side-
length probability distribution functions. A convenient finding
is that, for triangulations with a standard deviation of less than
or equal to approximately one-half of the minimum spacing,
simulations tend to reproduce the original distributions without
using conditional probabilities on the generated side lengths.
It is also shown that, for distributions of much larger variance,
simulations may be readily tuned based on the introduction
of an assumed, possibly fictitious, conditional probability for
the third side in each triangle. Two distributions are used as
numerical examples, one which shows that the scatter in fiber
density in carbon-fiber composites can be readily simulated
from the data obtained by image-processing of micrographs of
ply cross-sections and a second which shows that an arbitrary
distribution may be simulated through introduction of the
aforementioned assumed conditional probability on the third
side in each triangle.

I. INTRODUCTION

The statistical description of spatially random structure plays
a key role in simulating many physical phenomena. Often,
simulations seek to target rare-event phenomena using Monte
Carlo methods so that a large sample population may be
required in order to observe a significant number of events. At
some level, the required population size of the random structure
may exceed that which may be observed experimentally. In
such cases, it is attractive if statistically representative random
structure may be generated computationally.

In terms of representations of random structure, much litera-
ture has been devoted to the problem of close packing of disks,
spheres, and even arbitrarily shaped three-dimensional bodies
since close packings are observed in many physical instances
where particles tend toward potential energy minimization
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either subject to mutual attraction or under the influence of
gravity. While close packings have been studied experimentally
[1], [2], for obvious convenience, computer simulation has also
been widely used in various investigations [3]–[9]. A general
overview for the broad class of random close packings has been
given by Stoyan [10]. Various possibilities exist for choosing
a suitable statistical measure to characterize spatial variation
in close packings and, often, the pair correlation or radial
distribution function [1] is used.

Though problems involving close packing will have sim-
ilarities with developments herein, the focus of the current
effort extends to the more general problem of random point
location and comparatively larger variations in density. For less
densely populated random structure, the overall patterns of the
spatial distributions may appear to be homogeneous only at
scales which are very large in comparison to a characteristic
dimension of the smaller structure. For physical phenomena in
which the system response will depend on structural density
over a range of scales, the ability to describe and model the
heterogeneous nature of density over these scales is important.
An example of a system with such a dependence would be
carbon fiber composites where elastic constants at a component
level depend on effective carbon fiber density at component
length scales, whereas failure from micro-cracking could show
crack initiation dependence on fiber packing at a much smaller
scale.

Statistical measures used to describe random structures of
densities too low to be considered as close packings also
include the aforementioned use of the pair correlation function
which has been used in characterization of cloud droplets
[11] and for the distribution of plants in an arid environment
[12]. Additionally, Ripley’s K-function is often applied as
a statistical measure and has been used, for example, to
characterize clustering of archaeological sites [13] as well as
to investigate particular clustering of bald cypress trees among
other species of trees growing in a swamp environment [14].

The method to be presented here will involve stochastic
tessellations based on target statistical measures taken from
subgraphs of Delaunay triangulations. Delaunay triangulations
and their dual, Voronoi tessellations, are often used in simula-
tions of random structure. However, their historic use and their
use in the current work differ considerably. The computational
problem most widely considered in Delaunay triangulations is
the standard problem of construction [15]–[22], namely, given
a set of points, determine its Delaunay triangulation. For refer-
ence, a second common problem is the point (vertex) location
problem within an existing triangulation [23], [24] which seeks
to locate a given point in terms of a path along triangle edges
and should not be confused with directly placing points into a
Euclidean space of the given problem dimensionality.
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The point location method described here differs from previ-
ous usage of Delaunay triangulations in that simulation of point
locations in space is through the triangulation itself using a
statistical description of the individual triangles taken to match
Delaunay subgraphs of some target random structure. The
method is particularly attractive when image processing soft-
ware can be used to compute Delaunay triangulations of sample
populations along with a record of the individual triangles
in the sets. Once the geometric statistics of the triangulation
are known, the standard Delaunay triangulation problem is
reversed in the sense that the triangulation may be simulated
under the appropriate rules for Delaunay triangulations in order
to locate the individual points in the sets. In so doing, the
statistics of the triangle side lengths are readily incorporated
into the simulations. Since the Delaunay triangulation is unique
for a given set of points, aside for some very specific exceptions
involving collinearity, it is suggested that representative point
fields can be compared for statistical similarity based on the
distributions in the triangle side lengths.

The method outlined has been developed primarily for the
specific case of carbon fiber dispersions in a phenolic matrix
and should add to previous work on modeling the stochastic
nature of elastic constants in carbon fiber composites [25]–[27].
However, it is suggested and shown that the approach may be
used more generally. Of particular interest in the aforemen-
tioned case of carbon fiber dispersion is the suggestion that
the triangulation rules seem to act as conditional probability
‘filters’ so that statistically representative sets may be generated
without the use of conditional probabilities which may be quite
difficult to determine, so long as the variance in the triangle
side length distributions is not too great. A second example
based on a fictitiously assumed lognormal distribution suggests
that, while the consideration of conditional probabilities is
necessary for triangulation subgraphs with sufficiently large
side length variance, the introduction of fictitious conditional
probabilities, perhaps on a single side, may be introduced in
order to tune the statistics of the simulated side length data.
While very strong statistical similarity was demonstrated herein
through informal numerical experimentation with statistical
parameters, it is suggested that the approach could be used
in conjunction with an optimization scheme based on seeking
a quantile-quantile plot of unit slope. It is further suggested
that the conditional probabilities could be expressed in terms
of numerical cumulative distribution function tables where the
table data is obtained from the optimization scheme, though
such formalism is not presented here.

The next section gives a brief overview of the Delaunay
triangulation and includes some background on the statistics
of the carbon fiber dispersions and the methods used to obtain
them. Following that, Section III will present the results from
Monte Carlo simulations of the given carbon fiber samples
along with the second aforementioned fictitious target example.

II. DELAUNAY TRIANGULATION: DEFINITION AND
SIMULATION

The Delaunay triangulation of a set of points is the triangular
covering taken from the placement of triangle vertices on the
points subject to the constraint that none of the triangles have
vertices which are interior to any of the circles circumscribed
by any of the other triangles. An example of a portion of
a sample triangulation which was taken from simulations
based on the first of two numerical examples to be presented
later is shown in Figure 1 and includes, in addition to the
triangles, their circumscribed circles. Since the triangulation

rule prohibits interior triangle vertices, the vertices are located
at the intersection of circumscribing circles as may be seen. A
commonly-used coverage related to the Delaunay triangulation
is the Voronoi tessellation in which the Voronoi polygons are
formed from the intersections of the perpendicular bisectors of
the triangle sides in the Delaunay triangulation.

Fig. 1. Portion of a Delaunay triangulation of a set of points.

Aside from some specific instances such as the case when
three points are collinear, the Delaunay triangulation is unique
for a given set of points. Though unlikely, the case of collinear
points may arise in image-processing when only discrete
length measures are available; the likelihood of collinear points
in double precision simulations is negligible. Based on the
uniqueness of the Delaunay triangulation for most point sets
taken from real data then, the present approach targets statis-
tical similarity in the spatial distributions of point sets on the
basis of statistical similarity in their Delaunay triangulations.

Following considerable numerical experimentation, the ran-
dom variables chosen for the three degrees of freedom of a
triangle in the present investigation were the individual side
lengths. One attractive feature regarding the use of lengths
is that the tendency toward clustering and rarefaction is at
least qualitatively observed from the variance in the side length
data. However, the choice to use side lengths, as opposed to
angles, was based on superior numerical results observed in
initial testing of the approach. In general, the use of angles
more naturally introduces conditional probabilities which were
more difficult to accurately estimate. For example, for the
case of the observed physical data to be described later, an
attempt was made to develop the conditional probability of
an included angle given two sides in which the parameters
of the conditional probability were taken as functions of the
two sides. Even though the sample size was on the order
of 104, it was found that the data was too sparse in many
areas and no form was found for the conditional probability
which reasonably described the angle over any appreciable
range. Fortunately, it was found that the method can work well
without the requirement for conditional probabilities estimated
from data. For relatively low variance in the side length data,
as seen in the physical example, simulations seem to do well
without the use of any conditional probabilities, noting that
the various constraints imposed in building the triangulation
serve as filters on admissibility of side length combinations.
For cases involving larger variance in the side length data,
it was also found that the simulations are very sensitive to
assumed, or fictitious, conditional probabilities introduced for
one of the sides, making the simulations readily ‘tunable’ and
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thus obviating the difficult task of estimation of conditional
probabilities from data.

A general outline of the simulation used in the present case
is given as the following series of steps.

1) A statistical model for triangle side length data of
Delaunay triangulations is developed, perhaps either
from image analysis data or as a design target. In
many instances, the distributions will involve a minimum
separation, such as one fiber diameter in the case of
carbon fiber composite simulations.

2) A seed random triangle is generated with each side based
on three independent observations of a uniform random
variable which is mapped onto the triangle side length
cumulative distribution function (CDF). If the triangle
fails to satisfy the triangle inequality, the sides are all
discarded and three new random sides are generated.

3) The triangulation is then extended outward, building
on each triangle which has an unshared side while
tracking the ‘availability’ of each side of all triangles
in the simulation. For each unshared side, two random
instances of side lengths are generated in an attempt to
build a new triangle. The CDFs of the two sides, may in
general, be taken to depend upon the original unshared
side as well as upon one another. The combination
of sides and the attendant new vertex location is then
evaluated based upon the following ordered criteria:

a) the triangle inequality,
b) proximity of the new vertex to previously existing

vertices,
c) and the Delaunay constraint that no vertex falls in-

side the circumscribing circle of any other triangle.

4) Based on the previous criteria, the following action is
taken:

a) If the two newly generated sides along with the
original unshared side fail to satisfy the triangle
inequality 3a, the two new sides are discarded and
two new independent side lengths are generated.

b) Following admissibility based on 3a, condition 3b
is then considered. One of three actions is taken:
i) If the minimum distance between the new

vertex and the nearest previously existing ver-
tex is less than some small arbitrary factor,
taken as 0.1 of the minimum spacing in the
present case, a merger of the new vertex onto
its closest neighbor is attempted. The merger
is conditional in that the previously existing
triangle which includes the merger vertex and
a shared common vertex is currently available
to share the relevant side with a new triangle.

ii) If a vertex merger is not possible and the
minimum distance from the previous item is
less than some natural minimum, e.g., one fiber
diameter in the case of carbon fiber composites,
the sides are rejected and two new sides are
generated.

iii) Otherwise, if no merger could occur and if
the new vertex is sufficiently far from all pre-
viously existing vertices, vertex placement is
accepted subject to the last and final constraint.

c) The center and radius of the circumscribed circle
for each new triangle is determined from the inter-
section of perpendicular bisectors. Based on 3c, if

the new vertex lies inside of any previously exist-
ing circumscribed circles or if the circumscribing
circle from the new triangle has any previously ex-
isting vertices in its interior, the vertex placement
is rejected and two new sides are generated.

5) The triangulation is halted after either a preset number
of triangles are formed or the simulation is self-arrested
as, after a large number of attempts, perhaps 107, no
new vertex location may be determined for the lowest
ordered unshared side in the triangulation.

Obviously, the approach outlined here is only one of many
variations which could be developed for successful Monte
Carlo simulations of Delaunay triangulation and others could
be explored. Perhaps most notably, the present approach makes
no attempt to restart a self-arrested pattern, either by clearing
or by attempting a flip of two triangles. Such attempts would
likely be necessary if triangulation patterns were required
which contained O(103) triangles or more; the allowance for
self-arrest will be shown to work well for patterns of O(102)
triangles. Numerical results are presented in the following
section which show that the simulated triangulations are sta-
tistically similar either to the physical data sets which were
targeted for simulation or, following some experimentation, to
an arbitrary distribution taken as a target for simulated patterns.

III. NUMERICAL EXAMPLES

Two numerical examples are presented which demonstrate
the ability of the approach to model randomness in two-
dimensional structure. The first example is based on a series
of micrographs of cross-sections of carbon fiber compos-
ite samples. Since significant commonality is expected for
simulations of many types of two-dimensional problems, a
general overview of the entire modeling process, including
some background on the image analysis which was used, is
given in the next section. A second example will show how
the method may be extended to structure with more highly
irregular spacing.

A. Random Arrays of Carbon Fibers
It is expected that the scatter in fatigue life data in carbon

fiber composites may be attributed in part to the general scatter
in fiber distributions as shown in Figure 2 which shows rather
extreme cases of packing density variation among cross-section
samples of panels which were manufactured under relatively
similar conditions.

Fig. 2. Variation in fiber distributions within a set of composite panels.

The particular case of cylindrical carbon fibers of uniform
size is quite convenient for image processing since the fibers
all appear as circles in a cross-sectional view. It is suggested
that the general method used here for image processing could
be extended either to uniform objects of arbitrary shape which
share a common orientation or to arbitrarily oriented objects
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which might be well-approximated by an axisymmetric repre-
sentation.

For the current effort, the software package MATLAB R© was
used for the physical specimens, both for image-processing and
triangulation of the observed samples. A number of samples
were prepared and stored as digital images which were then
cast into binary intensity fields of black and white pixels,
giving images such as the one shown on the left of Figure 3.
A single fiber template as shown on the right of Figure 3

(a) (b)

Fig. 3. (a) Binary image of fibers. (b) Single fiber template (not to
scale).

was isolated and used to locate fiber centroids through cross-
correlation [28]. An example of the digital image following
cross-correlation is shown on the left of Figure 4 where the
centroids appear within the brightest areas. After erosion of the
image shown on the left, the fiber centroid locations remain as
bright spots as shown on the right of Figure 4.

Following the location of the fiber centroids, the images
were tessellated with their Delaunay triangulations as shown
in Figure 5 using the centroids as the point fields. As can
be seen in the figure, the image boundaries create some
triangles which are not representative of the interior portion
of the triangulation. These outer triangles were excluded from
consideration and the remaining triangle side length data was
recorded for the samples.

Close examination of Figure 5 shows that the method is
generally quite accurate in locating fiber centroids, though
fibers may be occasionally missed. Undetected fibers often
involve cases where the fibers have surface damage which was
not removed through polishing as can be seen in two instances
near the upper right corner of the figure. Occasionally, fibers
may be missed either when their edges appear to be blurry
or when either their size or shape differ sufficiently from the
template, as can be observed, for example in the upper right
quadrant of the figure, in one instance near the corner and, in
another, closer to the center of the image. One may also refer
back to the black and white representation of this image shown
previously on the left of Figure 3 to see how a few of the fibers
were likely to have been missed prior to cross-correlation and
erosion.

The logarithm of the amount by which the triangulation side
length data in the sample set exceeds its minimum of one fiber
diameter was plotted on normal probability axes as shown in
Figure 6. The probability plot shows two linear regions which
suggests the presence of two sub-populations, each of which
could be approximated as lognormal. Attempts to fit the data
with a random blend of two different lognormal populations
was reasonably successful in terms of matching the data on a
quantile-quantile basis. The means from the two distributions

(a)

(b)

Fig. 4. (a) Binary image following cross-correlation. (b) Final
determination of centroids by high-threshold erosion.

Fig. 5. Cross-section of fibers overlaid with Delaunay triangulation.

which represented the best fit attained for the data were notably
separated; an interpretation would be that one population was
associated with fibers which were from a closely-packed region
while the second was associated with fibers from a region
which was comparatively richer in the phenolic resin. For
reference, when the data is normalized to a fiber diameter of
unity, the measured population has a mean of approximately
1.47 and a standard deviation of 0.412.
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Fig. 6. Logarithm of triangle side length data plotted on normal
probability axes.

The present approach is based on Monte Carlo simulations
for which there is no clear advantage to the use of closed
form expressions for the distribution. The cumulative density
function (CDF) of the data was discretized into 200 bins
between one fiber diameter and the maximum observed in the
data which was approximately 5.02 fiber diameters. A plot of
the discretized CDF of the data is shown in Figure 7. In the
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Fig. 7. Discretized CDF for measured triangle side lengths (200
uniform bins).

present study, the public-domain package Grace was used to
output the CDF data. The data was set as two Fortran data
structures using formatted write statements to produce a CDF
table routine using linear interpolation. Due to the sparseness
near the tail of the distribution, exactly 50 of the bins were
collapsed as the value of the CDF did not increment over them.

A sample population for the simulated data was generated
from two hundred tessellation patterns. Each simulation was
halted either after 300 triangles were generated or after self-
arrest of the triangulation. The side-length counting scheme
which was used was chosen to be consistent with the most
straightforward counting scheme used to sort the observed data
from the micrographs, namely that three sides were counted
for each triangle. As such, it should be noted that, both for the
simulations and the observed data, shared interior sides were
counted twice in the counting scheme while boundary sides

were counted once. For consistency, each of the simulations
was targeted to have a comparable number of fibers as seen in
a typical micrograph.

Sixty of the 200 simulations were halted by the 300 trian-
gle maximum criterion and the average simulation size was
approximately 189 triangles. The number of triangle sides
counted in the simulations was 113,475 while the observed
data had 64779 sides. The generation of possible sides for
the construction of new triangles in the Monte Carlo method
was based on an unconditional probability for each side with
each side based on the CDF shown in Figure 7. Specific
consideration was given to ensure that the quasi-random se-
quence of uniformly random numbers would appear to be non-
Markovian to ensure that there was no statistical bias toward,
for example, long side–short side combinations, short side–
short side combinations, etc. The random number generator
used for this project was a decimal implementation of a two-
stream, 100 card nonlinear generator as described in [29].

The numerical results from the first example simulation just
described are now presented. A comparison of the probability
densities for the observed and simulated data is shown on
the left of Figure 8. The probability density functions show
very strong general agreement, though the PDF from the
simulated data is slightly under-valued at the first peak and
slightly over-valued at the second, less pronounced, peak.
While an overlay of the PDF plots provides a qualitative
statistical assessment, a plot of quantiles generally gives a
better indication of statistical similarity in two data sets. The
quantile-quantile plot on the right of Figure 8 shows that the
method produced reasonable statistical similarity in the side-
length data from the Delaunay triangulations. Since, for this
simulation, all possible side lengths were based on the common
CDF shown previously in Figure 7, this example suggests
that, for triangulations with relatively low side-length variation,
the Delaunay triangulation constraints along with the triangle
inequality, serve as an effective conditional probability filters.
The attractive feature is that, again for cases in which the
random structure shows sufficiently small density variations
within the region of interest, the use of conditional probabilities
for each triangle to be generated, based on either previously
existing sides or angles, may be avoided.

Finally, for this example, a representative pattern from the
simulations is shown on the left side of Figure 9. The pattern
may be informally compared with the micrographs previously
shown in Figure 2 and may also be used to provide a sense
of the level of density variations which might conceivably be
simulated without the use of conditional probabilities. The right
side of Figure 9 shows the Delaunay subgraph used to locate
the fibers shown on the left side of the figure.

B. Tuned Simulation of Fictitious Data
In the previous example, it was found that the simulated

triangulations produced side-length statistics which were sim-
ilar to the distribution from which each of the input sides was
drawn in the Monte Carlo simulations without the consider-
ation of any conditional probabilities on either one or two
of the previously existing sides. However, through numerical
experimentation based on other distributions, it was found that,
for higher variance in the side-length statistics, the simulations
would not reproduce the input statistics when using triangle
side lengths which were uncorrelated. Motivation for the
second example, then, lies in the assessment of the approach
for simulating more general random point sets including those
with larger sample variance. In this second example, a fictitious

5

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 340

who
Rectangle



1 2 3 4
 Triangle side lengths 
 (No. of fiber diameters)

0.5

1

1.5

2

P
ro

b
ab

il
it

y
 d

en
si

ty

 Observed
 Simulated

(a)

1 2 3 4 5
 Quantiles of simulations 
 (No. of fiber diameters)

1

2

3

4

5

 Q
u
an

ti
le

s 
fr

o
m

 m
ea

su
re

m
en

ts
 

 (
N

o
. 
o
f 

fi
b
er

 d
ia

m
et

er
s)

Triangulations

Identical distributions

(b)
Fig. 8. (a) Side length histogram comparison. Simulation: 1.13 ×
105 samples. Data: 6.5 × 104 samples. (b) Quantile-quantile plot of
observed and simulated triangulation side lengths.

distribution is sought based on a lognormal population which,
when normalized to unit minimum spacing, has a mean and
standard deviation approximately given by 2.45 and 2.06,
respectively. While the choice of this particular distribution
was somewhat arbitrary, the targeted distribution shows a
fivefold increase in the standard deviation of the side lengths
of the triangulations in comparison to the previous example
population.

For this problem, the quantile-quantile plots are shown in
Figure 10 for three different side generation schemes including,

1) The generation of two uncorrelated sides for the second
and third sides of each new triangle, each taken from
the lognormal population.

2) The generation of an uncorrelated second side from the
lognormal population followed by a third side which was

(a) (b)

Fig. 9. (a) Representative plot of random fiber distribution from
simulation of carbon fibers. (b) Plot of Delaunay triangulation subgraph
for fibers shown on left.

taken as uniformly random over the range of lengths
specified by the triangle inequality based on the first
two sides.

3) The generation of an uncorrelated second side from the
lognormal population followed by a third side taken as
normally distributed with a mean given as the geometric
mean of the first two sides and a standard deviation taken
as 0.6 times the allowable range of third sides based on
the triangle inequality.

The first scheme above is obviously similar to the previous
numerical example while the second two schemes represent at-
tempts to effectively tune the side length statistics to the target
distribution. Since the larger side length variation increased the
likelihood of early self-arrest, the number of simulations was
doubled to 400 and triangulations were rejected if they had less
than 125 triangles. It was informally observed, however, that
the inclusion of all triangulations regardless of size made only
slight differences in the appearances of the various quantile-
quantile plots.

While further attention will be given to the successful third
scheme, it is most notable from the plot on the left of Figure 10
that the triangle side lengths distributions are highly sensitive
to the input statistics of either of the two new sides. As such, it
is suggested that a formal optimization of the quantile-quantile
plots could easily be developed using a conditional numerical
table for the third side CDF.

In spite of the fact that only limited trial and error testing was
used, the quantile-quantile plot on the right of Figure 10 shows
that an excellent fit of the target distribution was obtained.
The highest quantile shown in the plot is the 0.995 quantile.
The 100th percentile for the simulated data is not shown due
to scaling in the plot since it is at approximately 82 fiber
diameters, but, from the connecting line, one can see that the
slope, even at the extreme tail, is not too far from unity. For
reference, the 100th percentile in the target simulation was
taken as the maximum value seen in 105 random lengths drawn
numerically from the target lognormal distribution. Also for
reference, the data set shown for the tuned scheme contains
82,818 triangles.

The probability density functions for the lognormal popula-
tion of side lengths serving as the target of the simulations
and the side lengths from the actual simulations from the
tuned scheme 3 are shown in Figure 11. As in the previous
example, the simulated data slightly underestimates the target
PDF near its peak, but otherwise generally shows very strong
agreement with the target PDF. The PDF plot was not even
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Fig. 10. (a) Quantile-quantile plot of target lognormal population
and simulations with both uncorrelated and uniformly random third
side probabilities, (b) Quantile-quantile plot of lognormal population
and tuned third side probability.

viewed until after a suitable third side conditional probability
was determined; the informal trial and error tuning of the third
side probability was solely on the basis of the quantile-quantile
line.

Finally, a representative set of points from the tuned simula-
tion is shown on the left of Figure 12 along with its Delaunay
subgraph shown on the right. The circles in the figure indicate
the minimum spacing. The pattern shown provides visual
indication of the types of spacing irregularities associated with
the target distribution in this example and may suggest other
types of random structure which might be well simulated with
this approach.

IV. CONCLUSIONS

The side length statistics from subgraphs taken from De-
launay triangulations were used to represent the spatial ran-
domness in a two-dimensional field. Random Delaunay sub-
graphs were built using a Monte Carlo method and, on the
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Fig. 11. Comparison of target and tuned simulated triangulation PDFs
(approximately 8.28× 104 samples in simulated set).
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Fig. 12. (a) Representative point set shown with circles indicating
minimum spacing distance, (b) Delaunay triangulation subgraph of the
same point set.

basis of statistical similarity in the side length probability
density functions, were shown to be similar to one target
taken from physical data as well as another target based
on arbitrarily assumed fictitious data. Though not addressed
herein, the present approach could be easily modified to model
its companion tessellation based on Voronoi polygons, often
used in polycrystalline simulations as in the case of random
grain orientations in metallurgical simulations. Though also not
considered, it is further suggested that the method could be
extended to three-dimensional fields.

A first example was based on the Delaunay statistics from a
series of micrographs taken of carbon fiber composite cross
sections which were used to form a numerical cumulative
distribution function (CDF). The field of fibers had a mean of
1.47 times the fiber radius and a standard deviation of 0.412
fiber diameters. An interesting and convenient finding is that,
for this level of scatter, all triangle side lengths can appar-
ently be taken as uncorrelated based on the same measured
distribution. In so doing, the fields generated from the Monte
Carlo method tended to reproduce the observed input statistics
in terms of side length data. While somewhat surprising, it
is noted that, to some extent, the triangle inequality and the
Delaunay criteria act as conditional probability filters as certain
possible combinations drawn from the random pool were culled
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on these bases.
A second example considered an arbitrary target lognormal

distribution with mean and standard deviation of 2.45 and 2.06
times the minimum separation distance, respectively. It is noted
that the target in the second example had a standard deviation
which presented a fivefold increase over the first example.
Perhaps the most important finding from the second example
is that, while conditional probabilities cannot be avoided for
fields showing greater variance in spacing, simulations based
on the proposed method exhibit a high level of ‘tunability’
based on an assumed conditional probability on the third side
in each triangle. This tunability is based on seeking a slope
of unity for the quantile-quantile lines between simulations
and target. For the given problem, the third side was taken
as normally distributed about the geometric mean of the other
two sides. Excellent agreement between the simulations and
their target, both in terms of the quantile-quantile line and the
appearance of their probability density functions, was obtained
by informal experimentation with the standard deviation in the
assumed form for the third side distribution in terms of its
range specified by the triangle inequality. The sensitivity of
the shape of the quantile-quantile curve to the input statistics
of just one of the sides in the triangulation suggests that the
proposed approach could be readily modified to include a
formal optimization procedure, conceivably using a discretized
numerical CDF for the third side.
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