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Abstract—In this paper, the development of an implicit block 

method with variable stepsize variable order technique is described. 

The grid-point formulae for different number of blocks are derived. 

The block method produces two new approximations in a single 

integration step by using the same back values. In order to vary the 

stepsize and order as efficiently as possible, the coefficients of the 

method at grid points are calculated and stored in the program. Delay 

solutions are approximated by using Lagrange and Hermite 

interpolations. These interpolation techniques prove to be both 

efficient and reliable with the two-point implicit block method in 

solving a wide range of delay differential equations.  

 

Keywords— Block method, delay differential equations, 

interpolation technique, variable order, variable stepsize.  

I. INTRODUCTION 

ELAY differential equations (DDEs) have been used in 

modeling many real life phenomena, see for examples 

[1]-[4]. Among the phenomena described in these literatures 

are mixing problems, population models, economics models 

and biological models.  At times when analytical solutions for 

functional differential equations are hard and almost 

impossible to find, scientists and engineers resort to numerical 

solutions that can be made as accurately as possible, [5]-[7]. 

Conventionally, numerical solutions for DDEs are adapted 

from the existing numerical solutions for ordinary differential 

equations (ODEs). In [8]-[10], among the popular methods are 

Runge-Kutta type of methods and multistep methods. All of 

these methods produce only one approximate solution in an 

integration step. Another approach that has gained interest 

recently is block methods. Block methods produce more than 

one approximate solution in a step, [11] and [12]. Greater 

efficiency is obtained since total number of steps taken can be 

reduced. The main differences between ODEs and DDEs are 

the existence of initial functions and the presence of delay 

terms. Initial function provides history of prior time for the 
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solution of the derivative. Since the derivative of the unknown 

function also depends on the solution at prior time, numerical 

methods that provide discrete solutions at the grid points are 

not suitable for solving DDEs. Approximations at non-grid 

points are computed using appropriate interpolation techniques 

so that the accuracy and efficiency of numerical methods for 

DDEs are not compromised. Some interpolation techniques 

can be referred to [13] and [14]. 

In this paper we consider a two-point block method as a 

numerical solution for systems of first order DDEs of the form: 
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where   is the initial function and 0,,, 21 n  are either 

constant, time dependent or state dependent lag functions. The 

function f  is continuous and satisfies a Lipschitz condition 

which guarantees the existence of a unique solution. The two-

point block method is implemented in variable stepsize 

variable order scheme. We develop an efficient technique by 

calculating the coefficients beforehand and storing them at the 

start of the code. This technique eliminates the computational 

cost of recalculating the integration coefficients whenever a 

stepsize changes. The delay terms are computed by using 

Lagrange and Hermite interpolations. We compare the results 

of these two interpolation techniques.  

The organization of this paper is as follows. In section II, 

we describe the formulae derivation for two-point block 

method using different back values. The interpolation 

approaches and the method development together with the 

stepsize and order changing strategies are also discussed. 

Numerical results from some test examples are presented in 

section III and section IV is the conclusion. 

II. FORMULAE DERIVATION AND METHOD DEVELOPMENT 

A. Grid-point Formulae 

 For simplicity, we consider a single delay scalar equation 

of the form:  

].,[                          ),()(
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Extension to systems of DDEs with multiple delays is obvious. 

The interval ],[ ba is divided into series of blocks with non-
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uniform grids .,,,,,,, 1110 bxxxxxxa Nnnn     Each 

block contains two grids of equal size, but the length of earlier 

blocks may not be of the same length as the current block. The 

points 1nx  and 2nx  are contained in the current block. We 

evaluate   )( 1nh xy  and ),( 2nh xy  together with their 

corresponding delay solutions. The notation )( 1nh xy  refers to 

the approximation of )( 1nxy  where y  is the solution of (1). 

The formulae for )( 1nh xy  and )( 2nh xy use the same number 

of back values. We refer to the number of back values in terms 

of blocks. In this paper, the block method approximates two 

new values at  1nx  and 2nx  by using the previous one, two, 

or three blocks. Fig. 1 shows a two-point one-block method 

where the back values at ,2nx  1nx  and nx  are used to 

evaluate )( 1nh xy  and ).( 2nh xy  The length of the current 

block is h2  while the length of the  previous block is .2rh  

Since we will consider either keeping the same stepsize, 

halving or doubling at each integration step, r takes the value 

of either 1, 2 or .
2
1   

 

               hhrhrh                                                      

   

      2nx          1nx                nx        1nx      2nx  

Fig. 1:  Two-point one-block method 

 

The grid-point formulae for two-point one-block method are 

derived by integrating equation (1) and replacing the function 

f by the polynomial )(5 xP  that interpolates f  at the points 

.4,3,2,1,0),,( 22  ifx inin  The notation 2nf  means 

)).(),(,( 222  nhnhn xyxyxf  Thus, 
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The polynomial )(5 xP  are written in Lagrange form, such as, 
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By letting ,2 shxx n   we have 
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and 
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2 52   dssPhxyxy nhnh                         (3) 

Solving the integrals in (2) and (3) gives the coefficients of the 

methods in terms of .r  The results are as follows, 
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The coefficients are stored at the beginning of the code for 

. and ,2,1
2
1r  The formulae for the first and second points 

can be written as  
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and 
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i
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respectively. For 
2
1 and ,2,1r , the coefficients for the first 

and second points are given in Table I and Table II 

respectively. 

 

TABLE I: THE FIRST POINT COEFFICIENTS FOR TWO-POINT 

ONE-BLOCK METHOD 

r  20  21  22  23  24  

1  
720
74  

720
11  720

456  
720
346  

720
19  

2  
14400

37  
14400

335  14400
7455  

14400
7808  

14400
565  

2
1  1800

145  
1800
704  1800

1635  
1800
755  

1800
31  
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TABLE II: THE SECOND POINT COEFFICIENTS FOR TWO-POINT 

ONE-BLOCK METHOD 

r  20  21  22  23  24  

1  
90
1  

90
4  

90
24  

90
124  90

29  

2  
900
1  

900
5  900

285  
900

1216  
900
295  

2
1  225

20  
225
64  

225
15  

225
320  

225
71  

 

The derivation for two-point two-block method and two-

point three-block method are done similarly. In two-point two-

block method, two new values are obtained in the current 

block by using the back values of two previous blocks. Fig. 2 

shows the two-point two-block method.  Referring to Fig. 2, 

the length of the current block is ,2h while the length of each 

of the previous two blocks is rh2  and .2qh
 

 

                                                            hhrhrhqhqh    

       

 4nx   3nx      2nx      1nx           nx     1nx    2nx  

Fig. 2:  Two-point two-block method 

 

The function f
 

will be replaced by the interpolating 

polynomial )(7 xP , such that 
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Integrating (1) from nx  to 1nx  and changing the limit of 

integration yields the formula for the first point, such as 
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The integral in (4) is solved using MAPLE software where the 

resulting coefficients are in terms of q
 

and .r  For 

predetermined values of q
 
and ,r  the following coefficients 

for the first point formula, 


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are stored in the code. The coefficients for ),1,1(  qr  

),2,1(  qr   ,,1
2
1 qr  )2,2(  qr  and  

2
1

2
1 ,  qr  

are given in Table IIIa and Table IIIb. 

 

TABLE IIIa: THE FIRST POINT COEFFICIENTS FOR TWO-POINT 

TWO-BLOCK METHOD 

),( qr  *
10  

*
11  

*
12  

*
13  

)1,1(  
60480

271  
60480

2088  
60480
7299  

60480
16256  

)2,1(  
846720

261  
846720

3514  
846720
47376  

846720
169120  

 
2
1,1  

635040
29295  

635040
138572  

635040
204687 

635040
227598  

)2,2(  
10160640

5285  
10160640

5285  
10160640

5285  
10160640

5285  

 
2
1

2
1 ,  

105840
4417  

105840
30144  

105840
87402  

105840
139328  

 

TABLE IIIb: THE FIRST POINT COEFFICIENTS FOR TWO-POINT 

TWO-BLOCK METHOD, CONTINUE 

),( qr  *
14  

*
15  

*
16  

)1,1(  
60480
46989  

60480
25128 

60480
863  

)2,1(  
846720

1621306 
846720
364320 

846720
13909  

 
2
1,1  

635040
518994 

635040
256527 

635040
8113  

)2,2(  
10160640

5285  
10160640

5285  
10160640

5285  

 
2
1

2
1 ,  

105840
148512 

105840
35686  

105840
705  

 

For the second point, we integrate (1) from  nx  to 2nx . The 

function f is replaced with the interpolating polynomial 

).(7 xP  We solve the resulting integral to obtain the formula 

for the second point, that is, 

.)()(
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i
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The integration coefficients for various values of q and r are 

stored in the code. The coefficients for various values of q and 

r  such as ),1,1(  qr  ),2,1(  qr   ,,1
2
1 qr  

)2,2(  qr  and  
2
1

2
1 ,  qr  are given in Table IVa and 

Table IVb. 

 

TABLE IVa: THE SECOND POINT COEFFICIENTS FOR TWO-POINT 

TWO-BLOCK METHOD 

),( qr  *
20  

*
21  

*
22  

*
23  

)1,1(  
3780

37  
3780
264  

3780
807  

3780
1328  

)2,1(  
3780

33  
3780
406  

3780
4368  

3780
11200  

 
2
1,1  

39690
4221  

39690
18944  

39690
25956  

39690
21714  
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)2,2(  
317520

175  
317520
1377  

317520
4914  

317520
10542  

 
2
1

2
1 ,  

13230
2387  

13230
14976  

13230
38052  

13230
47488 

 

TABLE IVb: THE SECOND POINT COEFFICIENTS FOR TWO-POINT 

TWO-BLOCK METHOD, CONTINUE 

),( qr  *
24  

*
25  

*
26  

)1,1(  
3780

33  
3780
5640  

3780
1139  

)2,1(  
3780
5082  

3780
77376 

3780
16177  

 
2
1,1  

39690
3150  

39690
60219 

39690
11830  

)2,2(  
317520
85617  

317520
441856 

317520
100737  

 
2
1

2
1 ,  

13230
21672  

13230
22372  

13230
3735  

 

Similarly, in two-point three-block method, two new values 

are obtained by using the back values of three previous blocks. 

The two-point three-block method is shown in Fig. 3. The 

length of the current block is ,2h while the length of each of 

the previous three blocks is ,2rh qh2  and .2 ph   

 

        hhrhrhqhqhphph                                                 

 

  6nx   5nx     4nx
 3nx     2nx

 1nx
 nx

 1nx 2nx  

Fig. 3:  Two-point three-block method 

 

The derivation for two-point three-block formulae are 

carried out similarly with the earlier methods. We integrate (1) 

and replace f with the interpolating polynomial )(9 xP , where 
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Integrating (1) from nx  to 1nx  and changing the limit of 

integration yields the formula for the first point, such as 

.)()()(
1

2

91 




  dssPhxyxy nhnh  

The integral is solved using MAPLE software where the 

resulting coefficients are in terms of ,p q
 

and .r  For 

predetermined values of ,p q
 

and ,r  the following 

coefficients for the first point formula, 
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i
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are stored in the code. Similarly, integrating (1) from nx  to 

2nx  and changing the limit of integration yields the formula 

for the second point, such as 

.)()()(
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2
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The formula for the second point is given by 



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8

0
6
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22 .)()(

i
ininhnh fhxyxy   

The coefficients are in terms of ,p  q
 
and .r  The values for 

,p q  and r  are predetermined based on the stepsize changing 

strategy. The coefficients for these values are stored in the 

code and used according to the changing stepsize. This 

practice eliminates the cost of recalculating the coefficients 

when the stepsize changes. Based on empirical studies, we 

store the coefficients for different values of ,p q  and r  such 

as ),1,1,1(  pqr   ,,,
2
1

2
1

2
1  pqr  

 ,,,1
2
1

2
1  pqr   ,,1,1

2
1 pqr  ,1,,

2
1

2
1  pqr  

 ,,,
4
1

2
1

2
1  pqr  ,2,2,2  pqr  ,1,2,2  pqr

 2,2,1  pqr
 
and  .2,1,1  pqr   

B. Delay Solution 

In advancing a step, we require the solutions of the delay 

terms  )( 1hy  and   ),( 2hy  where   11 nx
 

and 

.22   nx
 
For ,2,1d  if ad  , then ).()( ddhy    

Otherwise, we interpolate the delay solutions using the 

approximate solutions at grid points. In this algorithm, the 

delay solutions are obtained by using Lagrange and Hermite 

interpolating polynomials. 

For Lagrange polynomial, the number of interpolation 

points depend upon the interval where d  lies. If 

,1 jdj xx   and t  is the number of interpolation points, 

then t is either: 

 six, if )( 1jh xy  is obtained by the two-point 

one-block method, or 

 eight, if )( 1jh xy  is obtained by the two-point 

two-block method, or 

 ten, if )( 1jh xy  is obtained by the two-point 

three-block method. 

Thus the delay solution )( dhy  is given by,  

,)()()(
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2
,1
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
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j

tji
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where 
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The number of interpolation points used in Lagrange 

polynomial is always one point higher than the number of 

interpolation points used for the solution at grid points. This 

practice preserves the order of the method at the particular 

interval. 

For Hermite interpolation, the numbers of interpolation 

points used are at most four. If ,1 jdj xx  and the number 

of interpolation points is three, then )( dhy  that is 

approximated by the Hermite polynomial of degree at most 

five is given by 

,)(ˆ)()()(
2

0
,2,2

2

0







 
i

dijijdij
i
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where  

  ),()()(21)( 2
,2,2,2 dijijijijddij LxLxH     

),()()(ˆ 2
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
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L
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The advantage of using Hermite interpolating polynomial lies 

in the fact that the number of interpolation points required is 

less than the number of interpolation points in Lagrange 

polynomial in order to have the same degree. Moreover, 

Hermite polynomial conveniently uses the derivative of the 

approximated solutions at grid points. 

C. Error Estimation, Stepsize and Order Strategy 

We implement the algorithm in the predictor-corrector 

scheme where the corrector is iterated until convergence. 

Empirical results show that a reliable way to control the error 

at the grid points is to control the local error at the second 

point. The local error kE ,2  at the second point of order k is 

estimated by comparing the formulae of different orders. Thus,  

),()(ˆ
22,2   nhnhk xyxyE  

where )(ˆ
2nh xy

 
is the estimation for )( 2nxy

 
using order 

.1k  In this algorithm k  takes the values of 4, 6 and 8, 

depending upon the number of blocks used. 

At each step, the result is accepted if kE ,2  satisfies the user 

specified tolerance. Otherwise, the step fails and the result is 

rejected. After each successful step, we consider changing the 

stepsize and order of the method. For reason of stability, we 

raise the order only if we have been using a constant stepsize 

and the same order had been repeated at least twice. The order 

is kept the same or reduced depending whether the estimated 

stepsize for the next step using the new order is the maximum.  

As for the new stepsize, we first consider ,kh  the estimated 

stepsize for each possible order as follows, 

,
TOL

1

1

,2


















k

k

k
E

hh  

where h  is the current stepsize and TOL is the user specified 

tolerance. After a successful step, the new stepsize is either 

doubled or kept the same. We double the stepsize if the 

maximum stepsize, k
k

hh
}8,6,4{

max max


  is such that 

.28.0 max hh   The new stepsize is equal to h  if .28.0 max hh   

The value 0.8 is taken as a safety factor to avoid having too 

many rejected steps. For a step failure, we do not consider 

raising the order. The new stepsize is reduced by half. For a 

repeated failure, we consider a restart where the stepsize is 

reduced to a minimum, together with method of order one. In 

this code we store the coefficients of the formulae that are 

varied by constant, half or double the stepsize only. This 

practice proves to be efficient since the choice for the most 

optimal stepsize is either kept constant, halved or doubled. 

III. NUMERICAL RESULTS 

In this section, we describe the numerical results for the 

block method derived earlier. Two interpolation types, which 

are Lagrange and Hermite interpolations, are used to 

approximate the delay solutions. A wide range of DDEs with 

exact solutions are used in order to test the efficiency and the 

accuracy of the block method using these two types of 

interpolating polynomials. Six test equations from existing 

literatures are taken as examples here.  Example 1 is taken 

from [15] while Example 2 – Example 6 are taken from [16]. 

Numerical results are tabulated and the accuracy of the method 

is justified by evaluating the maximum and average errors. 

 

Example 1:  

.0                                ,1)(

,500    ),2)(()cos()(





xxy

xxyyxxy
 

The exact solution is .1)sin()(  xxy  

 

Example 2:  

.1)0(
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)21(
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











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x
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x

 

The exact solution is .)( xexy   
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Example 3:  
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1

1exp1)(
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



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
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
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
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The exact solution is .0  ),ln()(  xxxy  

 

Example 4:  
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with the initial condition 
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The exact solution is 
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Example 5: 
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with the initial condition 
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The exact solution is 
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When ,1m the system is solved for .50  x  

 

Example 6: 

   
,50                                         )),cos(exp(2              

)sin()cos())exp(sin(2)(

,50                                                            ),()(

2

212

21







xx

xxxxyxy

xxyxy

  

with the initial condition 

.0     )),exp(sin()cos()(

,0              )),exp(sin()(1





xxxxy

xxxy
 

The exact solution is  
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The error at the grid point for each component, ierr  is 

defined as  

ti

tihtih
ti

xyBA

xyxy
err

))((

))(())((
)(




 , 

where ty)(  is the t-th component of y and )( ixy  is the exact 

solution at .ix  A and B may take the values of either 1 or 0 

depending upon the type of error test chosen. In this case, we 

use mix error test where 1A  and 1B as opposed to 

absolute error test and relative error test. For absolute error 

test, 1A  and 0B , while for relative error test, 0A and 

.1B  The maximum error, MAXE and the average error, 

AVERR are defined as follows, 

,)(maxmaxMAXE
N1SSTEP1









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ti
ti

err  

,
)SSTEP)(N(

)(

AVERR

SSTEP

1

N

1

 
  i t

tierr

 

where N is the number of equations in the system and SSTEP 

is the total number of successful steps. 

Numerical results for Example 1 – Example 6 are given in 

Table V – Table X respectively. The following abbreviations 

are used in the tables: TOL – the user specified tolerance, INT 

– interpolation types, LGR – Lagrange, HMT – Hermite,  

STEP – the total number of steps, FS – the number of failed 

steps, AVERR – the average error and MAXE – the maximum 

error. The notation 3.60652E-01 means .1090952.3 1  
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TABLE V: NUMERICAL RESULTS FOR EXAMPLE 1 

TOL INT STEP FS AVERR MAXE 

210  
LGR 67 6 5.82248E-02 2.66059E-01 

HMT 67 6 5.82432E-02 2.66135E-01 

410  
LGR 94 3 8.71758E-06 4.84840E-05 

HMT 94 3 8.71758E-06 4.84840E-05 

610  
LGR 109 0 3.67883E-08 1.46129E-07 

HMT 109 0 3.67883E-08 1.46129E-07 

810  
LGR 226 1 1.53328E-09 3.25542E-09 

HMT 226 1 1.53328E-09 3.25542E-09 

1010  
LGR 281 0 2.38966E-12 7.36582E-12 

HMT 281 0 2.38985E-12 7.36644E-12 

 

TABLE VI: NUMERICAL RESULTS FOR EXAMPLE 2 

TOL INT STEP FS AVERR MAXE 

210  
LGR 22 0 5.82936E-03 5.82897E-02 

HMT 24 0 2.18544E-04 1.20016E-03 

410  
LGR 35 0 7.57052E-05 3.96581E-04 

HMT 35 0 7.86277E-05 4.30244E-04 

610  
LGR 43 0 5.45077E-07 1.01137E-05 

HMT 61 2 1.24757E-06 1.01137E-05 

810  
LGR 53 0 3.42637E-08 2.30481E-07 

HMT 50 0 2.83289E-08 2.25246E-07 

1010  
LGR 69 0 7.62940E-11 4.58373E-10 

HMT 65 0 6.39557E-11 3.65983E-10 

 

TABLE VII: NUMERICAL RESULTS FOR EXAMPLE 3 

TOL INT STEP FS AVERR MAXE 

210  
LGR 36 0 2.36935E-05 1.22157E-04 

HMT 36 0 2.35219E-05 1.19211E-04 

410  
LGR 51 0 3.15039E-06 1.07738E-05 

HMT 51 0 3.10917E-06 1.06626E-05 

610  
LGR 70 0 7.79491E-09 2.73688E-08 

HMT 70 0 7.63518E-09 2.42246E-08 

810  
LGR 97 0 3.08642E-10 8.59520E-10 

HMT 97 0 2.27569E-10 5.00718E-10 

1010  
LGR 138 0 1.93015E-12 5.39480E-12 

HMT 138 0 1.58373E-12 7.51754E-12 

 

TABLE VIII: NUMERICAL RESULTS FOR EXAMPLE 4 

TOL INT STEP FS AVERR MAXE 

210  
LGR 21 0 8.34773E-06 6.50548E-04 

HMT 21 0 8.34873E-06 6.50548E-04 

410  
LGR 31 1 1.28298E-05 5.36563E-04 

HMT 31 1 1.28298E-05 5.36563E-04 

610  
LGR 57 2 1.29884E-07 3.46274E-06 

HMT 57 2 1.30167E-07 3.46274E-06 

810  
LGR 89 8 4.84291E-09 5.51480E-07 

HMT 85 6 6.14893E-10 1.03694E-08 

1010  
LGR 113 6 6.31359E-11 1.66644E-09 

HMT 113 6 6.31375E-11 1.66644E-09 

 

TABLE IX: NUMERICAL RESULTS FOR EXAMPLE 5 

TOL INT STEP FS AVERR MAXE 

210  
LGR 28 0 6.36851E-05 5.84259E-04 

HMT 28 0 6.31184E-05 5.84259E-04 

410  
LGR 37 0 5.60661E-07 5.07276E-06 

HMT 37 0 5.81504E-07 5.06844E-06 

610  
LGR 46 0 3.59609E-08 4.77830E-07 

HMT 46 0 3.75275E-08 4.78263E-07 

810  
LGR 73 0 1.13111E-10 5.34061E-10 

HMT 73 0 1.13328E-10 5.36978E-10 

1010  
LGR 88 0 3.38100E-12 2.55492E-11 

HMT 88 0 3.36892E-12 2.54521E-11 

 

TABLE X: NUMERICAL RESULTS FOR EXAMPLE 6 

TOL INT STEP FS AVERR MAXE 

210  
LGR 26 0 2.07283E-04 5.43466E-03 

HMT 26 0 2.26111E-04 5.10223E-03 

410  
LGR 37 0 5.37637E-06 6.43235E-05 

HMT 37 0 4.95181E-06 5.78668E-05 

610  
LGR 59 0 7.60003E-09 6.17010E-08 

HMT 58 0 5.39406E-09 4.69602E-08 

810  
LGR 73 0 4.87166E-10 3.74785E-09 

HMT 73 0 4.88089E-10 3.75407E-09 

1010  
LGR 114 1 1.31627E-10 1.15901E-09 

HMT 114 1 1.29950E-10 1.14370E-09 

 

The plots of TOL vs. MAXE for the two-point block 

method with both Lagrange and Hermite interpolations for 

Example 1 – Example 6 are shown in Fig. 4 – Fig. 9. The plots 

for each example provide a crude measure of the tolerance 

proportionality that is achieved by the block method using 

both interpolation types. 

 

 

Fig. 4: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations  for Example 1 
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Fig. 5: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations  for Example 2 

 

Fig. 6: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations for Example 3 

 

 

Fig. 7: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations for Example 4 

 

 

Fig. 8: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations for Example 5 

 

 

Fig. 9: TOL vs. MAXE graphs using Lagrange and Hermite 

interpolations for Example 6 

 

It is clearly seen from the tables that for a given tolerance, 

the average and the maximum errors for all examples using 

Lagrange and Hermite interpolations are within acceptable 

range. As the tolerance gets smaller, it is expected that the total 

number of steps increases. In order to achieve the desired 

accuracy and to avoid failed steps, smaller stepsizes are taken. 

The implicit block method varies the stepsize and/or order of 

the method while obtaining two new values in a single 

integration step. The method is efficient because the most 

optimal stepsize and the correct order are chosen to obtain the 

desired accuracy. Local error control at the second point also 

proves to be reliable in obtaining the desired accuracy as well 

as keeping the number of rejected steps at a minimum.  

The block method with Lagrange and Hermite interpolations 

for approximating the delay solution achieves the desired 

accuracy. The performance of the method in terms of the 

proportionality of the maximum error to tolerance shows that 

the method achieves the desired accuracy as indicated by the 
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graphs of TOL vs. MAXE where the slope of these graphs are 

almost equal to one. 

Hermite interpolation is simpler in terms of number of 

interpolation points. With fewer points than that of Lagrange 

interpolation, Hermite interpolation approximates the delay 

solutions to the desired order of accuracy. 

It can be concluded that from the numerical results, the 

implicit two-point block method in variable stepsize and 

variable order is efficient in solving DDEs to the desired 

accuracy. Both interpolation types can be used to solve the 

delay solutions, although it is recommended that Hermite 

interpolation is superior in terms of using less number of 

interpolation points. 

IV. CONCLUSION 

In this paper, we have presented the development of a two-

point implicit block method using variable stepsize variable 

order technique. The order of the method is varied by taking 

the back values consisting of one, two or three previous 

blocks. The coefficients of the method are calculated 

beforehand, thus avoiding the recalculation of the coefficients 

when the stepsize changes. The delay solutions are solved by 

using Lagrange and Hermite interpolating polynomials. 

The numerical results indicate that the block method with 

both interpolation types achieves the desired accuracy as 

efficiently as possible. The two-point implicit block method 

can be used to solve a wide range of DDEs. 
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