



Abstract—In this paper, the development of an implicit block

method with variable stepsize variable order technique is described.

The grid-point formulae for different number of blocks are derived.

The block method produces two new approximations in a single

integration step by using the same back values. In order to vary the

stepsize and order as efficiently as possible, the coefficients of the

method at grid points are calculated and stored in the program. Delay

solutions are approximated by using Lagrange and Hermite

interpolations. These interpolation techniques prove to be both

efficient and reliable with the two-point implicit block method in

solving a wide range of delay differential equations.

Keywords— Block method, delay differential equations,

interpolation technique, variable order, variable stepsize.

I. INTRODUCTION

ELAY differential equations (DDEs) have been used in

modeling many real life phenomena, see for examples

[1]-[4]. Among the phenomena described in these literatures

are mixing problems, population models, economics models

and biological models. At times when analytical solutions for

functional differential equations are hard and almost

impossible to find, scientists and engineers resort to numerical

solutions that can be made as accurately as possible, [5]-[7].

Conventionally, numerical solutions for DDEs are adapted

from the existing numerical solutions for ordinary differential

equations (ODEs). In [8]-[10], among the popular methods are

Runge-Kutta type of methods and multistep methods. All of

these methods produce only one approximate solution in an

integration step. Another approach that has gained interest

recently is block methods. Block methods produce more than

one approximate solution in a step, [11] and [12]. Greater

efficiency is obtained since total number of steps taken can be

reduced. The main differences between ODEs and DDEs are

the existence of initial functions and the presence of delay

terms. Initial function provides history of prior time for the

F. Ishak is with the Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, MALAYSIA

(phone: +603-5543-5348; fax: +603-5543-5501; e-mail:

fuziyah@tmsk.uitm.edu.my).

Z. A. Majid is with the Department of Mathematics, Universiti Putra

Malaysia, 43400 Serdang, Selangor, MALAYSIA (e-mail:

zanariah@math.upm.edu.my).

M. B. Suleiman is with the Department of Mathematics, Universiti Putra

Malaysia, 43400 Serdang, Selangor, MALAYSIA (e-mail:

mohamed@math.upm.edu.my).

solution of the derivative. Since the derivative of the unknown

function also depends on the solution at prior time, numerical

methods that provide discrete solutions at the grid points are

not suitable for solving DDEs. Approximations at non-grid

points are computed using appropriate interpolation techniques

so that the accuracy and efficiency of numerical methods for

DDEs are not compromised. Some interpolation techniques

can be referred to [13] and [14].

In this paper we consider a two-point block method as a

numerical solution for systems of first order DDEs of the form:

),(min],,[),()(

],,[)),(,),(),(,()(

],[

1

i
bax

n

xaaaxxxy

baxxyxyxyxfxy













where  is the initial function and 0,,, 21 n  are either

constant, time dependent or state dependent lag functions. The

function f is continuous and satisfies a Lipschitz condition

which guarantees the existence of a unique solution. The two-

point block method is implemented in variable stepsize

variable order scheme. We develop an efficient technique by

calculating the coefficients beforehand and storing them at the

start of the code. This technique eliminates the computational

cost of recalculating the integration coefficients whenever a

stepsize changes. The delay terms are computed by using

Lagrange and Hermite interpolations. We compare the results

of these two interpolation techniques.

The organization of this paper is as follows. In section II,

we describe the formulae derivation for two-point block

method using different back values. The interpolation

approaches and the method development together with the

stepsize and order changing strategies are also discussed.

Numerical results from some test examples are presented in

section III and section IV is the conclusion.

II. FORMULAE DERIVATION AND METHOD DEVELOPMENT

A. Grid-point Formulae

 For simplicity, we consider a single delay scalar equation

of the form:

].,[),()(

],,[)),(),(,()(

aaxxxy

baxxyxyxfxy








 (1)

Extension to systems of DDEs with multiple delays is obvious.

The interval],[ba is divided into series of blocks with non-

Efficient interpolators in implicit block method

for solving delay differential equations

Fuziyah Ishak, Zanariah A. Majid, and Mohamed B. Suleiman

D

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 116

uniform grids .,,,,,,, 1110 bxxxxxxa Nnnn    Each

block contains two grids of equal size, but the length of earlier

blocks may not be of the same length as the current block. The

points 1nx and 2nx are contained in the current block. We

evaluate)(1nh xy and),(2nh xy together with their

corresponding delay solutions. The notation)(1nh xy refers to

the approximation of)(1nxy where y is the solution of (1).

The formulae for)(1nh xy and)(2nh xy use the same number

of back values. We refer to the number of back values in terms

of blocks. In this paper, the block method approximates two

new values at 1nx and 2nx by using the previous one, two,

or three blocks. Fig. 1 shows a two-point one-block method

where the back values at ,2nx 1nx and nx are used to

evaluate)(1nh xy and).(2nh xy The length of the current

block is h2 while the length of the previous block is .2rh

Since we will consider either keeping the same stepsize,

halving or doubling at each integration step, r takes the value

of either 1, 2 or .
2
1

 hhrhrh

 2nx 1nx nx 1nx 2nx

Fig. 1: Two-point one-block method

The grid-point formulae for two-point one-block method are

derived by integrating equation (1) and replacing the function

f by the polynomial)(5 xP that interpolates f at the points

.4,3,2,1,0),,(22  ifx inin The notation 2nf means

)).(),(,(222  nhnhn xyxyxf Thus,




 
1

51)()()(
nx

nxnhnh dxxPxyxy

and




 
2

52 .)()()(
nx

nxnhnh dxxPxyxy

The polynomial)(5 xP are written in Lagrange form, such as,

jn
j

j fxLxP 


 2

4

0
,45)()(

where

.,,1,0for ,
)(

)(
)(

0 22

2
, 









 


 j

xx

xx
xL

ji
i injn

in
j

By letting ,2 shxx n   we have

,)()()(
1

2 51 


  dssPhxyxy nhnh (2)

and

.)()()(
0

2 52   dssPhxyxy nhnh (3)

Solving the integrals in (2) and (3) gives the coefficients of the

methods in terms of .r The results are as follows,

],)31520)(12(

)187580)(2)(4(

)745100)(1)(2)(12(

)730)(12(4)715)(2(

[
)1)(2)(12(240

)()(

2
22

1
22

2

12

21




















n

n

n

nn

nhnh

frrrr

frrrr

frrrrr

frrfrr

rrrr

h
xyxy

and

],)9155)(12(

)61510)(2)(4(

)15)(1)(2)(12(

)12(4)2(

[
)1)(2)(12(15

)()(

2
22

1
22

2

12

22




















n

n

n

nn

nhnh

frrrr

frrrr

frrrr

frfr

rrrr

h
xyxy

The coefficients are stored at the beginning of the code for

. and ,2,1
2
1r The formulae for the first and second points

can be written as

,)()(
4

0
211 


 

i
ininhnh fhxyxy 

and

,)()(
4

0
222 


 

i
ininhnh fhxyxy 

respectively. For
2
1 and ,2,1r , the coefficients for the first

and second points are given in Table I and Table II

respectively.

TABLE I: THE FIRST POINT COEFFICIENTS FOR TWO-POINT

ONE-BLOCK METHOD

r 20 21 22 23 24

1
720
74

720
11 720

456
720
346

720
19

2
14400

37
14400

335 14400
7455

14400
7808

14400
565

2
1 1800

145
1800
704 1800

1635
1800
755

1800
31

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 117

TABLE II: THE SECOND POINT COEFFICIENTS FOR TWO-POINT

ONE-BLOCK METHOD

r 20 21 22 23 24

1
90
1

90
4

90
24

90
124 90

29

2
900
1

900
5 900

285
900

1216
900
295

2
1 225

20
225
64

225
15

225
320

225
71

The derivation for two-point two-block method and two-

point three-block method are done similarly. In two-point two-

block method, two new values are obtained in the current

block by using the back values of two previous blocks. Fig. 2

shows the two-point two-block method. Referring to Fig. 2,

the length of the current block is ,2h while the length of each

of the previous two blocks is rh2 and .2qh

 hhrhrhqhqh

 4nx 3nx 2nx 1nx nx 1nx 2nx

Fig. 2: Two-point two-block method

The function f

will be replaced by the interpolating

polynomial)(7 xP , such that





6

0
2,67 .)()(

j
jnj fxLxP

Integrating (1) from nx to 1nx and changing the limit of

integration yields the formula for the first point, such as

.)()()(
1

2

71 




  dssPhxyxy nhnh (4)

The integral in (4) is solved using MAPLE software where the

resulting coefficients are in terms of q

and .r For

predetermined values of q

and ,r the following coefficients

for the first point formula,




 
6

0
4

*
11)()(

i
ininhnh fhxyxy 

are stored in the code. The coefficients for),1,1( qr

),2,1( qr  ,,1
2
1 qr)2,2( qr and  

2
1

2
1 ,  qr

are given in Table IIIa and Table IIIb.

TABLE IIIa: THE FIRST POINT COEFFICIENTS FOR TWO-POINT

TWO-BLOCK METHOD

),(qr *
10

*
11

*
12

*
13

)1,1(
60480

271
60480

2088
60480
7299

60480
16256

)2,1(
846720

261
846720

3514
846720
47376

846720
169120

 
2
1,1

635040
29295

635040
138572

635040
204687

635040
227598

)2,2(
10160640

5285
10160640

5285
10160640

5285
10160640

5285

 
2
1

2
1 ,

105840
4417

105840
30144

105840
87402

105840
139328

TABLE IIIb: THE FIRST POINT COEFFICIENTS FOR TWO-POINT

TWO-BLOCK METHOD, CONTINUE

),(qr *
14

*
15

*
16

)1,1(
60480
46989

60480
25128

60480
863

)2,1(
846720

1621306
846720
364320

846720
13909

 
2
1,1

635040
518994

635040
256527

635040
8113

)2,2(
10160640

5285
10160640

5285
10160640

5285

 
2
1

2
1 ,

105840
148512

105840
35686

105840
705

For the second point, we integrate (1) from nx to 2nx . The

function f is replaced with the interpolating polynomial

).(7 xP We solve the resulting integral to obtain the formula

for the second point, that is,

.)()(
6

0
4

*
22 


 

i
ininhnh fhxyxy 

The integration coefficients for various values of q and r are

stored in the code. The coefficients for various values of q and

r such as),1,1( qr),2,1( qr  ,,1
2
1 qr

)2,2( qr and  
2
1

2
1 ,  qr are given in Table IVa and

Table IVb.

TABLE IVa: THE SECOND POINT COEFFICIENTS FOR TWO-POINT

TWO-BLOCK METHOD

),(qr *
20

*
21

*
22

*
23

)1,1(
3780

37
3780
264

3780
807

3780
1328

)2,1(
3780

33
3780
406

3780
4368

3780
11200

 
2
1,1

39690
4221

39690
18944

39690
25956

39690
21714

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 118

)2,2(
317520

175
317520
1377

317520
4914

317520
10542

 
2
1

2
1 ,

13230
2387

13230
14976

13230
38052

13230
47488

TABLE IVb: THE SECOND POINT COEFFICIENTS FOR TWO-POINT

TWO-BLOCK METHOD, CONTINUE

),(qr *
24

*
25

*
26

)1,1(
3780

33
3780
5640

3780
1139

)2,1(
3780
5082

3780
77376

3780
16177

 
2
1,1

39690
3150

39690
60219

39690
11830

)2,2(
317520
85617

317520
441856

317520
100737

 
2
1

2
1 ,

13230
21672

13230
22372

13230
3735

Similarly, in two-point three-block method, two new values

are obtained by using the back values of three previous blocks.

The two-point three-block method is shown in Fig. 3. The

length of the current block is ,2h while the length of each of

the previous three blocks is ,2rh qh2 and .2 ph

 hhrhrhqhqhphph

 6nx 5nx 4nx
 3nx 2nx

 1nx
 nx

 1nx 2nx

Fig. 3: Two-point three-block method

The derivation for two-point three-block formulae are

carried out similarly with the earlier methods. We integrate (1)

and replace f with the interpolating polynomial)(9 xP , where





8

0
2,89 .)()(

j
jnj fxLxP

Integrating (1) from nx to 1nx and changing the limit of

integration yields the formula for the first point, such as

.)()()(
1

2

91 




  dssPhxyxy nhnh

The integral is solved using MAPLE software where the

resulting coefficients are in terms of ,p q

and .r For

predetermined values of ,p q

and ,r the following

coefficients for the first point formula,




 
8

0
6

**
11)()(

i
ininhnh fhxyxy 

are stored in the code. Similarly, integrating (1) from nx to

2nx and changing the limit of integration yields the formula

for the second point, such as

.)()()(
0

2

92 


  dssPhxyxy nhnh

The formula for the second point is given by




 
8

0
6

**
22 .)()(

i
ininhnh fhxyxy 

The coefficients are in terms of ,p q

and .r The values for

,p q and r are predetermined based on the stepsize changing

strategy. The coefficients for these values are stored in the

code and used according to the changing stepsize. This

practice eliminates the cost of recalculating the coefficients

when the stepsize changes. Based on empirical studies, we

store the coefficients for different values of ,p q and r such

as),1,1,1( pqr  ,,,
2
1

2
1

2
1  pqr

 ,,,1
2
1

2
1  pqr  ,,1,1

2
1 pqr  ,1,,

2
1

2
1  pqr

 ,,,
4
1

2
1

2
1  pqr  ,2,2,2  pqr  ,1,2,2  pqr

 2,2,1  pqr

and  .2,1,1  pqr

B. Delay Solution

In advancing a step, we require the solutions of the delay

terms)(1hy and),(2hy where   11 nx

and

.22   nx

For ,2,1d if ad  , then).()(ddhy  

Otherwise, we interpolate the delay solutions using the

approximate solutions at grid points. In this algorithm, the

delay solutions are obtained by using Lagrange and Hermite

interpolating polynomials.

For Lagrange polynomial, the number of interpolation

points depend upon the interval where d lies. If

,1 jdj xx  and t is the number of interpolation points,

then t is either:

 six, if)(1jh xy is obtained by the two-point

one-block method, or

 eight, if)(1jh xy is obtained by the two-point

two-block method, or

 ten, if)(1jh xy is obtained by the two-point

three-block method.

Thus the delay solution)(dhy  is given by,

,)()()(
1

2
,1






j

tji
ditihdh Lxyy 

where

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 119

.
)(

)(
)(

1

2
,1 












j

is
tjs si

sd
dit

xx

x
L




The number of interpolation points used in Lagrange

polynomial is always one point higher than the number of

interpolation points used for the solution at grid points. This

practice preserves the order of the method at the particular

interval.

For Hermite interpolation, the numbers of interpolation

points used are at most four. If ,1 jdj xx  and the number

of interpolation points is three, then)(dhy  that is

approximated by the Hermite polynomial of degree at most

five is given by

,)(ˆ)()()(
2

0
,2,2

2

0







 
i

dijijdij
i

ijhdh HfHxyy 

where

 ),()()(21)(2
,2,2,2 dijijijijddij LxLxH   

),()()(ˆ 2
,2,2 dijijddij LxH   

and

.
)(

)(
)(

2

0
,2 


 









is
s sjij

sjd

dij
xx

x
L




The advantage of using Hermite interpolating polynomial lies

in the fact that the number of interpolation points required is

less than the number of interpolation points in Lagrange

polynomial in order to have the same degree. Moreover,

Hermite polynomial conveniently uses the derivative of the

approximated solutions at grid points.

C. Error Estimation, Stepsize and Order Strategy

We implement the algorithm in the predictor-corrector

scheme where the corrector is iterated until convergence.

Empirical results show that a reliable way to control the error

at the grid points is to control the local error at the second

point. The local error kE ,2 at the second point of order k is

estimated by comparing the formulae of different orders. Thus,

),()(ˆ
22,2   nhnhk xyxyE

where)(ˆ
2nh xy

is the estimation for)(2nxy

using order

.1k In this algorithm k takes the values of 4, 6 and 8,

depending upon the number of blocks used.

At each step, the result is accepted if kE ,2 satisfies the user

specified tolerance. Otherwise, the step fails and the result is

rejected. After each successful step, we consider changing the

stepsize and order of the method. For reason of stability, we

raise the order only if we have been using a constant stepsize

and the same order had been repeated at least twice. The order

is kept the same or reduced depending whether the estimated

stepsize for the next step using the new order is the maximum.

As for the new stepsize, we first consider ,kh the estimated

stepsize for each possible order as follows,

,
TOL

1

1

,2


















k

k

k
E

hh

where h is the current stepsize and TOL is the user specified

tolerance. After a successful step, the new stepsize is either

doubled or kept the same. We double the stepsize if the

maximum stepsize, k
k

hh
}8,6,4{

max max


 is such that

.28.0 max hh  The new stepsize is equal to h if .28.0 max hh 

The value 0.8 is taken as a safety factor to avoid having too

many rejected steps. For a step failure, we do not consider

raising the order. The new stepsize is reduced by half. For a

repeated failure, we consider a restart where the stepsize is

reduced to a minimum, together with method of order one. In

this code we store the coefficients of the formulae that are

varied by constant, half or double the stepsize only. This

practice proves to be efficient since the choice for the most

optimal stepsize is either kept constant, halved or doubled.

III. NUMERICAL RESULTS

In this section, we describe the numerical results for the

block method derived earlier. Two interpolation types, which

are Lagrange and Hermite interpolations, are used to

approximate the delay solutions. A wide range of DDEs with

exact solutions are used in order to test the efficiency and the

accuracy of the block method using these two types of

interpolating polynomials. Six test equations from existing

literatures are taken as examples here. Example 1 is taken

from [15] while Example 2 – Example 6 are taken from [16].

Numerical results are tabulated and the accuracy of the method

is justified by evaluating the maximum and average errors.

Example 1:

.0 ,1)(

,500),2)(()cos()(





xxy

xxyyxxy

The exact solution is .1)sin()( xxy

Example 2:

.1)0(

,10 ,
)21(

)(

2)21(

2























y

x
x

x
yxy

x

The exact solution is .)(xexy 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 120

Example 3:

.20),ln()(

,1002 ,
1

1exp1)(





















xxxy

x
x

yxy

The exact solution is .0),ln()( xxxy

Example 4:

,10),1()(

,10),1()1()(

,10),5.0()1()(

,10),5.0()1()(

,10),1()1()(

15

454

133

212

351











xxyxy

xxyxyxy

xxyxyxy

xxyxyxy

xxyxyxy

with the initial condition

.01),1sin()(

,01),5.0exp()(

,01),1exp()()()(

3

2

541







xxxy

xxxy

xxxyxyxy

The exact solution is

.10 ,1)(

,10 ,5.05.0)(

,15.0 ,1sin)5.0(

)5.0sin(cos

,5.00 ,1sin

1cos

)(

,15.0 ,35.1

22

,5.00 ,22

)(

,10 ,cos)(

5

2
4

5.0

5.0

5.05.0

3

5.0

5.05.0

5.0

2

1




















































xeexy

xeexy

xeex

xex

x

exe

xy

xe

xxeee

xee

xy

xexexy

x

x

x

x

xx

x

x

Example 5:

,0),()1)(1()(2)(

,0),()1)(1()(2)(

,0),()(

,0),()(

2
2

14

1
2

23

42

31









xxymxmyxy

xxymxmyxy

xxyxy

xxyxy

m

m





with the initial condition

.0),sin()sin()cos()cos()(

,0),sin()sin()cos()cos()(

,0),sin()cos()(

,0),cos()sin()(

4

3

2

1









xmxxmxxmxy

xmxxmmxxxy

xmxxxy

xmxxxy

The exact solution is

.0),sin()sin()cos()cos()(

,0),sin()sin()cos()cos()(

,0),sin()cos()(

,0),cos()sin()(

4

3

2

1









xmxxmxxmxy

xmxxmmxxxy

xmxxxy

xmxxxy

When ,1m the system is solved for .50  x

Example 6:

   
,50)),cos(exp(2

)sin()cos())exp(sin(2)(

,50),()(

2

212

21







xx

xxxxyxy

xxyxy



with the initial condition

.0)),exp(sin()cos()(

,0)),exp(sin()(1





xxxxy

xxxy

The exact solution is

.0)),exp(sin()cos()(

,0)),exp(sin()(1





xxxxy

xxxy

The error at the grid point for each component, ierr is

defined as

ti

tihtih
ti

xyBA

xyxy
err

))((

))(())((
)(




 ,

where ty)(is the t-th component of y and)(ixy is the exact

solution at .ix A and B may take the values of either 1 or 0

depending upon the type of error test chosen. In this case, we

use mix error test where 1A and 1B as opposed to

absolute error test and relative error test. For absolute error

test, 1A and 0B , while for relative error test, 0A and

.1B The maximum error, MAXE and the average error,

AVERR are defined as follows,

,)(maxmaxMAXE
N1SSTEP1











ti
ti

err

,
)SSTEP)(N(

)(

AVERR

SSTEP

1

N

1

 
  i t

tierr

where N is the number of equations in the system and SSTEP

is the total number of successful steps.

Numerical results for Example 1 – Example 6 are given in

Table V – Table X respectively. The following abbreviations

are used in the tables: TOL – the user specified tolerance, INT

– interpolation types, LGR – Lagrange, HMT – Hermite,

STEP – the total number of steps, FS – the number of failed

steps, AVERR – the average error and MAXE – the maximum

error. The notation 3.60652E-01 means .1090952.3 1

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 121

TABLE V: NUMERICAL RESULTS FOR EXAMPLE 1

TOL INT STEP FS AVERR MAXE

210
LGR 67 6 5.82248E-02 2.66059E-01

HMT 67 6 5.82432E-02 2.66135E-01

410
LGR 94 3 8.71758E-06 4.84840E-05

HMT 94 3 8.71758E-06 4.84840E-05

610
LGR 109 0 3.67883E-08 1.46129E-07

HMT 109 0 3.67883E-08 1.46129E-07

810
LGR 226 1 1.53328E-09 3.25542E-09

HMT 226 1 1.53328E-09 3.25542E-09

1010
LGR 281 0 2.38966E-12 7.36582E-12

HMT 281 0 2.38985E-12 7.36644E-12

TABLE VI: NUMERICAL RESULTS FOR EXAMPLE 2

TOL INT STEP FS AVERR MAXE

210
LGR 22 0 5.82936E-03 5.82897E-02

HMT 24 0 2.18544E-04 1.20016E-03

410
LGR 35 0 7.57052E-05 3.96581E-04

HMT 35 0 7.86277E-05 4.30244E-04

610
LGR 43 0 5.45077E-07 1.01137E-05

HMT 61 2 1.24757E-06 1.01137E-05

810
LGR 53 0 3.42637E-08 2.30481E-07

HMT 50 0 2.83289E-08 2.25246E-07

1010
LGR 69 0 7.62940E-11 4.58373E-10

HMT 65 0 6.39557E-11 3.65983E-10

TABLE VII: NUMERICAL RESULTS FOR EXAMPLE 3

TOL INT STEP FS AVERR MAXE

210
LGR 36 0 2.36935E-05 1.22157E-04

HMT 36 0 2.35219E-05 1.19211E-04

410
LGR 51 0 3.15039E-06 1.07738E-05

HMT 51 0 3.10917E-06 1.06626E-05

610
LGR 70 0 7.79491E-09 2.73688E-08

HMT 70 0 7.63518E-09 2.42246E-08

810
LGR 97 0 3.08642E-10 8.59520E-10

HMT 97 0 2.27569E-10 5.00718E-10

1010
LGR 138 0 1.93015E-12 5.39480E-12

HMT 138 0 1.58373E-12 7.51754E-12

TABLE VIII: NUMERICAL RESULTS FOR EXAMPLE 4

TOL INT STEP FS AVERR MAXE

210
LGR 21 0 8.34773E-06 6.50548E-04

HMT 21 0 8.34873E-06 6.50548E-04

410
LGR 31 1 1.28298E-05 5.36563E-04

HMT 31 1 1.28298E-05 5.36563E-04

610
LGR 57 2 1.29884E-07 3.46274E-06

HMT 57 2 1.30167E-07 3.46274E-06

810
LGR 89 8 4.84291E-09 5.51480E-07

HMT 85 6 6.14893E-10 1.03694E-08

1010
LGR 113 6 6.31359E-11 1.66644E-09

HMT 113 6 6.31375E-11 1.66644E-09

TABLE IX: NUMERICAL RESULTS FOR EXAMPLE 5

TOL INT STEP FS AVERR MAXE

210
LGR 28 0 6.36851E-05 5.84259E-04

HMT 28 0 6.31184E-05 5.84259E-04

410
LGR 37 0 5.60661E-07 5.07276E-06

HMT 37 0 5.81504E-07 5.06844E-06

610
LGR 46 0 3.59609E-08 4.77830E-07

HMT 46 0 3.75275E-08 4.78263E-07

810
LGR 73 0 1.13111E-10 5.34061E-10

HMT 73 0 1.13328E-10 5.36978E-10

1010
LGR 88 0 3.38100E-12 2.55492E-11

HMT 88 0 3.36892E-12 2.54521E-11

TABLE X: NUMERICAL RESULTS FOR EXAMPLE 6

TOL INT STEP FS AVERR MAXE

210
LGR 26 0 2.07283E-04 5.43466E-03

HMT 26 0 2.26111E-04 5.10223E-03

410
LGR 37 0 5.37637E-06 6.43235E-05

HMT 37 0 4.95181E-06 5.78668E-05

610
LGR 59 0 7.60003E-09 6.17010E-08

HMT 58 0 5.39406E-09 4.69602E-08

810
LGR 73 0 4.87166E-10 3.74785E-09

HMT 73 0 4.88089E-10 3.75407E-09

1010
LGR 114 1 1.31627E-10 1.15901E-09

HMT 114 1 1.29950E-10 1.14370E-09

The plots of TOL vs. MAXE for the two-point block

method with both Lagrange and Hermite interpolations for

Example 1 – Example 6 are shown in Fig. 4 – Fig. 9. The plots

for each example provide a crude measure of the tolerance

proportionality that is achieved by the block method using

both interpolation types.

Fig. 4: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 1

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 122

Fig. 5: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 2

Fig. 6: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 3

Fig. 7: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 4

Fig. 8: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 5

Fig. 9: TOL vs. MAXE graphs using Lagrange and Hermite

interpolations for Example 6

It is clearly seen from the tables that for a given tolerance,

the average and the maximum errors for all examples using

Lagrange and Hermite interpolations are within acceptable

range. As the tolerance gets smaller, it is expected that the total

number of steps increases. In order to achieve the desired

accuracy and to avoid failed steps, smaller stepsizes are taken.

The implicit block method varies the stepsize and/or order of

the method while obtaining two new values in a single

integration step. The method is efficient because the most

optimal stepsize and the correct order are chosen to obtain the

desired accuracy. Local error control at the second point also

proves to be reliable in obtaining the desired accuracy as well

as keeping the number of rejected steps at a minimum.

The block method with Lagrange and Hermite interpolations

for approximating the delay solution achieves the desired

accuracy. The performance of the method in terms of the

proportionality of the maximum error to tolerance shows that

the method achieves the desired accuracy as indicated by the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 123

graphs of TOL vs. MAXE where the slope of these graphs are

almost equal to one.

Hermite interpolation is simpler in terms of number of

interpolation points. With fewer points than that of Lagrange

interpolation, Hermite interpolation approximates the delay

solutions to the desired order of accuracy.

It can be concluded that from the numerical results, the

implicit two-point block method in variable stepsize and

variable order is efficient in solving DDEs to the desired

accuracy. Both interpolation types can be used to solve the

delay solutions, although it is recommended that Hermite

interpolation is superior in terms of using less number of

interpolation points.

IV. CONCLUSION

In this paper, we have presented the development of a two-

point implicit block method using variable stepsize variable

order technique. The order of the method is varied by taking

the back values consisting of one, two or three previous

blocks. The coefficients of the method are calculated

beforehand, thus avoiding the recalculation of the coefficients

when the stepsize changes. The delay solutions are solved by

using Lagrange and Hermite interpolating polynomials.

The numerical results indicate that the block method with

both interpolation types achieves the desired accuracy as

efficiently as possible. The two-point implicit block method

can be used to solve a wide range of DDEs.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support

received from Universiti Teknologi MARA and the Ministry

of Higher Education of Malaysia (MOHE) under the

Fundamental Research Grant Scheme (FRGS) 600-

RMI/ST/FRGS 5/3/Fst (20/2011).

REFERENCES

[1] R. D. Driver, Ordinary and Delay Differential Equations, Springer-

Verlag New York Inc.,New York, 1977, pp. 225–240.

[2] Y. Kuang, Delay Differential Equations: with Applications in

Population Dynamics, Academic Press Inc., San Diego, 1993.

[3] W. Panitsupakamon, and C. Rattanakul, “A delay differential equations

model of bone formation and resorption: effect of calcitonin,” in Proc.

12th WSEAS Int. Conf. on Applied Comp. Science, Singapore, 2012, pp.

58–63.

[4] A. Keller, “Generalized delay differential equations to economic

dynamics and control,” in Proc. Of the American Conference on

Applied Mathematics (AMERICAN_MATH `10), Cambridge, 2010, pp.

278–286.

[5] A. Ochoche, and P. Ndajah, “Almost Runge-Kutta methods of orders up

to five,” WSEAS Transactions on Mathematics, vol. 10, issue 5, pp.

159–168, May 2011.

[6] Y. Zhang, “Spectrum of a class of delay differential equations and its

solution expansion,” WSEAS Transactions on Mathematics, vol. 10,

issue 5, pp. 169–180, May 2011.

[7] N. E. Mastorakis, “Numerical solution of non-linear ordinary

differential equations via collocation method (finite elements) and

genetics algorithms,” in Proc. 6th WSEAS Int. Conf. on Evolutionary

Computing, Lisbon, 2005, pp. 36–42.

[8] M. B. Suleiman, and F. Ishak, “Numerical solution and stability of

multistep method for solving delay differential equations,” Japan J.

Indust. Appl. Math., vol. 27, pp. 395–410, 2010.

[9] W. H. Enright, and H. Hayashi, “A delay differential equation solver

based on a continuous Runge-Kutta method with defect control,”

Numer. Algorithms, vol. 16, pp. 349–364, 1997.

[10] Z. Jackiewicz, and E. Lo, “Numerical solution of neutral functional

differential equations by Adams method in divided difference form,”

Journal of Comp. and Appl. Math., vol. 189, pp. 592–605, 2006.

[11] F. Ishak, M. Suleiman, and Z. Omar, “Two-point predictor-corrector

block method for solving delay differential equations,” Matematika, vol.

24, no. 2, pp. 131–140, 2008.

[12] F. Ishak, Z. A. Majid, and M. Suleiman, “Two-point block method in

variable stepsize technique for solving delay differential equations,”

Journal of Materials Sc. and Eng., vol. 4, no. 12, pp. 86–90, 2010.

[13] C. M. Niculae, and M. Niculae. (2007). “Simple interpolator for delayed

differential equations,” Computational Physics.

http://anale.fizica.unibuc.ro/archiva/2007/An_Fiz_2007_1.pdf

[14] F. Ismail, R.A. Al-Khasawneh, A. S Lwin, and M. Suleiman,

“Numerical treatment of delay differential equations by Runge-Kutta

method using Hermite interpolation,” Matematika, vol. 18, no. 2, pp.

79–90, 2002.

[15] A. N. Al-Mutib, “Numerical methods for solving delay differential

equations,” Ph.D. thesis, University of Manchester, 1997.

[16] C. A. H. Paul, “A test set of functional differential equations,”

University of Manchester, Numerical Analysis Report no. 243, 1994.

.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 7, 2013 124

