
 

 

  
Abstract— A large number of articles have been written about 

methods designed to assess easily interpretable value reflecting risk 
taken from a (not exclusively financial) process. In the financial 
environment, prevailing concepts include Value at Risk (VaR) and its 
derivatives, such as Conditional Value at Risk. The purpose of this 
paper is to describe appropriateness of the VaR metrics under Basel 
II legislative framework and to stress VaR estimation techniques. A 
relatively new approach titled Extreme Value Theory and methods 
allowed by Basel II are compared on illustrative example of a skewed 
distribution with presence of outliers. Our findings suggest 
alternative methods assess higher VaR than the classical ones 
(historical simulation, mean-variance model and Monte Carlo 
simulation) and are more precise in terms of variance. 
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I. INTRODUCTION 

anks and insurance institutions hold decisive position in 
financial system as well as in overall macroeconomic 

environment.  The industry faces both internal (operational) 
and external (market and credit) risks. To make the systems 
stable and safe, banks have to respect strict regulations.  

Almost 24-year development of banking legislative under 
the Bank for International Settlement (starting with Basel I) 
has evolved into general framework grounded in a three-pillar 
system – capital framework; risk management and supervision 
pillar and market discipline pillar. Because of the nature of 
such highly stochastic environment, contemporary regulation 
philosophy is closely tied to advanced mathematical and 
statistical procedures. One of the most widely used (and 
criticized) approach used in required capital determination 
within Basel II [1] legislative is a family of Value at Risk 
(VaR) methods.  

Critique of the VaR methodology is twofold. The first 
argues the methodological properties itself and following 
misleading interpretation. The second highlights technical 
problems such as parameter estimation and distribution 
approximation. This paper focuses mainly on the VaR 
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methodology from the latter perspective and extends author’s 
previous work [2] for other risk metrics and their EVT 
counterparts. We suggest Extreme Value Theory concept to be 
more appropriate method for modelling skewed and non-
normal tailed distribution of losses in a sense of safety 
(overestimating risk rather than underestimating) than methods 
allowed under Basel II.  

First section introduces VaR methodology and its 
connection to regulatory framework and economic capital. A 
description of historical simulation, Monte Carlo simulation 
and EVT approach follows. Finally, comparable results are 
presented. 

II.  METHODS 

A. Value at Risk 

Let the X be a random variable  (e.g. returns or losses) with 
the distribution function XF . The VaR( )α  at probability level 

α  in 10 << α  is its α  quantile. Formally, this can be 
written as 

 

( ) ( ){ }αα ≥∈=− xFxF XX  :Rinf:1  (1) 

 
VaR represents overall portfolio’s absolute risk measure, 

generally defined as (when the losses are with positive sign) 
 

( ) ( )VaRFd(x)VaR
VaR

==≤= ∫
∞

f(x)xPα  (2) 

 

where f(x)  is (usually the empirical) probability density 

function of a variable (i.e., losses over some time period from 
portfolio’s value changes) and F(x)  its corresponding 

cumulative distributive function, thus loss value higher or 
equal than x will occur only with probabilityα . The key issue 
is how the distribution function should be assessed with 
respect to a fitting accuracy and allowance for computation.  

VaR suffers from some conceptual deficiencies; one of them 
is subadditivity problem (detailed discussion in [3]). 
Subadditivity arises when the risk of the portfolio (of X and Y) 
is estimated by overall VaR. It can be shown 
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that ( ) ( ) ( )YVaRXVaRYXVaR +≤+ . This implies that VaR 

is not coherent risk metric. Although numerous articles were 
written on VaR (for a historical review see [4]), some topics 
remain uncovered. In probability theory, two fundamental 
approaches coexist each of which tackles the problem in a 
different way.  

While the majority prefers the classical frequentist 
approach, the Bayesian one is more promising in incorporating 
genuine expert information [5] and handling non-linear 
systems [6].  

The scope of this article is concerned about the general 
techniques which differ from the Bayesian in that sense they 
do not allow impingement of expert’s own experiences thus 
this kind of analysis is omitted here. 

Crucial point in the VaR estimation process lies in 
identifying appropriate distribution which generates the data. 
To create it, several approaches were designed. Starting from 
the simplest historical simulation form through mean-variance 
to simulation models, all of them suffer from the main idea of 
VaR – estimating overall distribution which may 
underestimate the real risk hidden in the tail(s). Several 
metrics stem from standard VaR, such a limited VaR [7] 

B. Conditional VaR 

The problem VaR deals with is the unexpressed uncertainty 
about the losses beyond the cut-off VaR value. The remedy to 
this situation can be found in conditional VaR, in literature 
also named Expected Shortfall (ES). This risk indicator is 
defined as: 

 

( ) ( ) ε
ε

ε
εε dVaR

1

1
CVaR

1

XX ∫−
=  (3) 

 
whereε stands for the tail probability of VaR which satisfies 

the εα ≤  thus VaR is always smaller than CVaR. [8] 
Moreover, CVaR is a coherent risk metrics, as is proved in 
McNail [3]. 

C. Classical approaches to determining VaR 

Under Basel II three approaches to VaR estimation for 
regulatory capital purposes are allowed: 

 
Variance–Covariance methods 
Based on the portfolio volatility, descriptive statistics (such 

a central moments) are derived to be used as parameters in 
parametric probability model. The simplest model refers to 
normal distribution but more proficient methods were 
introduced to handle non-normal distributions as well 
(variance is not even needed to be computed). Although many 
computationally extensive methods (kernel estimators) were 
introduced and are available in statistical packages such R, 
SPSS, Matlab, we restrict our paper to mathematical estimator 
using Cornish-Fisher Expansion (CF). This expansion starts 
with assumption about underlying distribution ( )1,0Nz ≈  but 

ends with transformed non-normalcz distribution 

 

( ) ( ) ( )
36

S52

24

K3

6

S1 2332 zzzzz
zzc

−−−+−+=  (4) 

 
S represents skewness and K kurtosis of variablez . The 
assumption about the underlying distribution of VaR is crucial 
for interval estimate. If we assume VaR follows normal or 

student distribution with known parameters µ and 2σ , the 

confidence interval (CI) is derived as 
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Where b is quantile of normal or student distribution, N is a 

sample size and 2s  is  sample variance. If the parameters of 
location and variance are not known, it is reasonable to use 
simulated results from random sampling of the parameters 

µ and 2σ domains. The previous formulae can be rearranged 

to the form of new variable S, where r is sample mean value. 
 

( )












 −−−=
2

2

2

1
,rN

1

υυ χχ n

sNN
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After random sampling from S, the appropriate quantiles are 
computed.  

 
Historical simulation 
This approach presumes existence of some underlying 

repeating structure such as time-invariant probabilistic model. 
Only the corresponding quantile of loss distribution is 
computed. This procedure can be used under Basel II only if 
data sample is sufficiently large and proved over specified 
time horizon.  

According to work of Pérignon [9] (sample size of 50 large 
international commercial banks in 2005) historical simulation 
is the most frequently used method with the share at least of 
47.4%. Monte Carlo methods follow with 14% and only 3.5% 
banks use “other” methods which combines the latter 
approaches; 35,1% of asked financial institutes didn’t provide 
an answer.  

 
Monte Carlo simulation 
Monte Carlo procedures (including bootstrap) are sampling 

procedures which draw random samples from the initial 
sample to estimate value of predefined quantity. We propose 
bootstrap method to be suitable for deriving VaR because of 
its properties (sampling with replacement, computationally 
efficient, no strict assumptions). After bootstrapped values are 
known, graphical analysis providing useful information about 
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quantity variation and sensitivity with respect to initial settings 
follows. 

D. Extreme Value Theory 

Observed data and their approximation by any classical 
distribution may underestimate the risk. Although the largest 
part of a distribution can fit perfectly, tail values may cause 
real damage. Financial data tend to have “fat” tails and thus 
need to be treated carefully. Extreme Value Theory deals with 
this extreme part of distribution as with another property of the 
phenomena being investigated. 

If any observation in a dataset would be considered as a iid1 
sample taken from its random variable, than the overall 
distribution can be divided into two parts – predictable 
behaving part with high density and tail part described by tail 
quantile function. Similarly to central limit theorem when 
some distribution converges to normal distribution, we focus 
on convergence of distribution { }nnn XXXX ,...,,max 21, =  to 

some distribution G. 

( ) ( )XGx
a

bX
P

n

nnn
n →













≤







 −
∞→

,lim  (7) 

 
Variables a and b (sequence of n numbers, n represents 

number of samples) standardize the initial distribution. Based 
on these numbers we estimate the distribution of X. This is 
only one part of the problem which is in literature named 
domain of attraction. The second step involves finding 
the ( )XG  distribution. Fisher-Tippet theorem [1] shows that 

( )XG  underlying distribution converge to one of three 

distributions of the family extreme value distribution. 
 

( ) ( ) ( )[ ]γ
γ γ /11exp −+−= xXG  (8) 

 
In the expression ( ) 0>1 xγ+ and the Extreme Value Index 

(EVI) R∈γ . If the 0<γ we are talking about Frechet-Pareto 

distribution, whose domain distributions include Burro 
distribution, log-gamma and Generalized Pareto distribution. 
In case of 0>γ the extreme distribution is Weibull with its 

domain distributions Reversed Burro or Beta. The last one 
Gumball distribution 0=γ comprises exponential, logistic or 

log-normal distribution. Only possible distributions which 
satisfy the limiting assumptions are the extreme distributions. 
According to Beirlant [10] a general limit distribution 
combining the previously mentioned exists.  

 

 
1 According to Leadbetter [11] the assumption about 

independence can be relaxed if it occurs temporarily; 
assumption about distribution identity might be justified by 
portfolio heterogeneity. 
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(9) 

 
The EVI index value in (8) can be estimated from general 

limit distribution, which is named GEV – Generalized Value 
distribution (GEV) where γ  is a tail index, µ location and 

σ scale parameter. Larger γ  produces fatter distribution. 
Parameters γµσ ,, can be estimated by maximum likelihood 

(ML) method, method of probability weighted means, and as 
described in Lye [12] by Bayes estimator too. Two essential 
models are recognized from the point of determining extreme 
values. So far, we were interested in maximal values ofnX . 

This approach, considered as the simpler one, Block maxima, 
estimates the extremes in fixed time period or within n 
logically justified blocks of variables. For more detailed 
discussion see [13,14] 

Computationally-intensive peak over threshold (POT) 
method is the second approach. Extreme values are those 
exceeding a (sufficiently high) threshold value u, which is 
constant over the sample.Limit distribution used in POT 
method is Generalised Pareto Distribution (GPD).  

 

( ) ( )
( )





=−
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−
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(10) 

 
When 0>ξ , GPD becomes ordinary Pareto distribution, 

also known as distribution of large losses in actuarial statistics. 
In case of 0=ξ , GPD is identical to exponential distribution 

while with 0<ξ , GPD is known as Pareto type II distribution 

with short tails [13,14] and the parameters usually estimated 
by ML methods. 

According to Coles [15] standard approach is to set the 
threshold level as lower as the model provides reasonable 
approximation. Threshold value can be estimated by informed 
guess, but several mathematical approaches were developed. 
First one is based on semiparametric statistics and is known as 
Hill estimator [16]. Hill estimator estimates parameter ζ  as a 

slope of an exponential Q-Q plot, which should properly 
rescaled tail values follow. When the points form a convex 
shape compared to the line of expected exponentional 
distribution quantities, the distribution is thin tailed, if 
concave, heavy tailed. When ζ is zero, than the distribution is 

exponential, otherwiseζ is parameter of GPD. Hill estimate 

suffers from tendency to provide biased results when small 
sample is analysed. Remedy to this can be found in application 
wavelet analysis and kernel estimate of the tail distribution 
[17]. The second one is Mean Excess Function )(tM  which 

computes mean value of values exceeding threshold.  
 

( )uXtXEtM >|)( &−=  (11) 
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Within the “normal” part of distribution and moving to 

extremes (to the larger numbers) mean value should rise 
steadily because extreme values does not play such an 
important part. Fluctuating of M function suggest change in 
data structure thus extreme part break. 

 
EVT and metrics 
When the assumption of EVT are met (the threshold u is 

sufficiently high and the data belongs to the maximum domain 
of attraction), the ratio between number of values larger than u 

to the sample size 
N

Nu  is directly computed and distribution 

parameters β and ξ̂ are estimated. Those values allows for 

direct VaR computation using the equation [18]: 
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In case of CVaR we rearrange the previous as follows: 
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When using Block maxima approach (underlying GEV) 

explicit form of VaR is [18]: 
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(14) 

The ES for block maxima is derived by re-parameterizing of 
the GPD estimation [19]. 

E. Field of application 

It can be distinguished between two kinds of capital. 
Regulatory capital (RC) is the minimal amount of risk capital 
to be hold to meet regulatory rules and application guidance. 
In 1999, Basel Committee for Banking Supervision released 
the New Basel Capital accord. According to this legislature 
(also known as Basel II, [1]) VaR value can be used (after 
certain requirements are met) to determine capital adequacy 
matching to unexpected losses. Figure 1 shows the application 
of VaR as a complementary part of (i.e credit) losses to 
Expected Loss (EL), which is an amount of regular losses and 
in the long term period readily predictable, and to Unexpected 
Loss (UL). UL summarizes the irregular and highly 
improbable losses. UL can be estimated implicitly as a product 
of stress probability of default, stress loss given default and 
stress exposure at default for each transaction [20]. If the bank 

is allowed to use Internal ratings-based (IRB) approach for 
credit risk and to create stochastic  credit risk portfolio model, 
some quantity of losses with small and fixed probability α  
can be estimated in order to derive RC (for discussion about 
benefits resulting from IRB see [21]). RC is then set as a 
difference between VaR( )α  and UL.  

 
Fig 1 – Value at Risk and regulatory capital [22]. 
The previous part described UL only. In the process of 

estimating EL, VaR is involved as well. Exposures to credit 

risk2 ( *E ) are calculated as 
 

( )[ ]{ }VaR,0max* +−= ∑∑ ii CEE  (15) 

 
where iE  is current value of exposure i andiC  the received 

collateral value. The VaR is also promoted as a market risk 
metric since the Market Risk Amendment was released in 
1996, where the banks are encouraged to measure risk by 
internal models rather than using external agencies services. 

Value at Risk serves as a metric for underestimating of risk 
which bank faced to in predefined time period. The process of 
stressing actually needed capital with the predicted is called 
backtesting. Backtesting under Basel II is focused on number 
of exceedances over predicted VaR not on total volume of 
these exceedances, which results in lower statistical power 
[23,24]. The observed number of exceedances then affects the 
regulatory capital for market risk by adding number from 0 to 
1(in case of 10 exceedances) to multiplicative factor, which is 
set for the three months period as follows: 

 
( )αtVaRmf ⋅= ttCR  (16) 

 
where tmf is multiplicative factor for time t, which is set to 

250 days. The ground level of multiplicative (scaling) factor is 
three. [25] 

Economic capital is a result of shareholder’s trade-off 
between solvency and profitability. The capital size 
optimization process must reflect not only maximization of 
performance indicators, but also all foreseeable risks accruing 
from specific portfolio structure, long term planning objectives 
and capital’s signal function of stability.   

Although both of them measure very similar-meaning 

 
2 Credit risk is considered for demonstration purposes only, although Basel 

(2006) allows using VaR for market and operational risks, as well. 
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variable, final figures very often differs.  
 
According to Saita [26], performance indicators such a 

RAROC are usually based on economic capital while the 
amount of regulatory is omitted in the performance indicators. 

Several approaches for economic capital stipulation were 
introduced (i.e., CreditMetrics or Moody's KMV). Basel II 
motivates bank’s management to measure different sources of 
risks by implementing these internal models to be more 
accurate in the risk-evaluation processes. If banks use internal-
rating-based approach these metrics are tightened with 
regulatory capital. Own risk measures are transformed into risk 
weights specified by the Basel Committee. [27]  

III.  RESULTS 

Assume a portfolio consisting of X entities. Histogram on 
the Fig.1 provides information about distribution of losses 
(with positive sign) in the last 200 days and estimated 
probability density function.  

A. Historical simulation and variance-covariance estimate 

To set Value at Risk according to the standard methods, we 
proceed with estimating density function of the gathered data 
through rescaled histogram. This allows computing historical 
VaR (HS). After the shape of distribution is estimated using 
Cornish-Fisher, kernel estimation component risk contribution 
with no weighting preferences (authors Epperlein and Smillie, 
implementation in [28]) is provided as well.  

Table 1 – Classic methods (Own processing, [28]) 
Historical 
simulation 

Cornish-Fisher 
approximation 

Normal 
distribution 
approximation 

Kernel 
estimator 

41.59 41.27 39.14 41.59 
 
Using normal distribution for estimating VaR at 5% level 

showed the lowest value. Difference between HS, kernel and 
CF estimates is only 0.3 in favour of HS (from the point of 
conservativeness). 

 
Fig. 2 – Density estimate (Own processing, [28]) 

B. Bootstrapped estimate 

If the previous approach fails, sampling methods known as 
Monte Carlo may be used instead. In the paper, original data 
were replicated using bootstrapped sampling procedure of 
1000 replicates. To make data replicable, appropriate 
distribution and parameterisation have to be set. Gamma 
distribution was used and parameters were estimated using 
maximum likelihood estimator (MLE). After the distribution is 
estimated, data can be generated randomly from it.  

 
Fig 3 – Bootstrapped VaR growth and corresponding 0.95 

confidence intervals [2,13]. 

Fig. 3 shows estimated VaR for ( )99,801 ∈− α  at x axis 

and corresponding 95% bootstrapped confidence interval. This 
interval adds information about the volatility. With growing 
accent on precision (loweringα ), VaR risk growths but the 
interval width has the same tendency as can be seen at Fig. 4.  

 
Fig. 4 – Volatility vs. precision [2] 
 
Values constituting the confidence intervals and mean 

values are presented at Table 2.  
 
Table 2 – Bootstrap confidence intervals [2] 
VaR(α ) 0.9 0.95 0.99 
Lower CI 31.835 35.271 41.700 
Mean 35.052 40.825 46.025 
Upper CI 39.392 42.687 56.957 
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C. EVT estimate 

If our data is periodical variable, we would choose as 
extreme values those which are the highest on every sub-
period. Our data do not follow any similar pattern, thus we will 
not be concerned about Block maxima approach. 

Using the statistically naïve POT method and selecting the 
90% largest value as a threshold, our cut-off value would be 
35.39. Graphical analysis for appropriate threshold selection 
can be provided through mean-excess plot. When the data’s 
trend remains stable, no extreme values are present. After data 
become more jittered, they should be considered as 
inconsistent with the preceding data. Fig. 5 shows more 
dispersion when x exceeds 40. [2] 

 
Fig 5 – Mean-excess plot [2, 30] 
 
After the threshold is set, the remaining data can be 

approximated using a distribution described in equation 4. 
Estimate was provided using Maximum Likelihood function. 

Table 3 Parameter estimates [32] 

Parameter ξ  β  

Estimate -0.1012 6.6263 

Standard error 0.3069 2.6516 

Estimated value for the shape parameter ξ  is small relative 

to its standard error. Because the parameter determines type of 
definition used for approximation, the information should be 
treated carefully. QQplot below supports our choice of 
distribution and parameterization. 

 

 
 
Fig 6 – QQ plot for GPD [30,2] 

In Fig. 7 the estimate is denoted as a solid line. Vertical 
dashed line shows .95 quantile considered at VaR at 05.0=α . 
Horizontal line defines confidence interval on a level scaled on 
the second y axis.  

 
Fig 7 –VaR(0.95) Confidence interval [2,31] 
At the predefined level the confidence interval is 

asymmetric which is to be expected due to underlying 
distribution’s skewness.  

 
Table 4 EVT estimates [13] 

 
Results of ES comparison show the same pattern, EVT 

returns more conservative results. Figure 8 provides 
comparison of both estimates; chain-dotted line at 47.46 
represents ES calculated by historical simulation (Cornish-
Fisher Expansion results in 46.60) and EVT estimate 47.67. 
The point estimates are almost the same, but the confidence 
interval in case of EVT estimate is highly biased to large 
losses. 

 
Table 5 ES estimates (Own processing) 

 Lower CI Estimate Upper CI  
EVT 44.75 47.67 65.25 
His. simul. 38.55 47.46  54.07   
 

 
Fig 8 Conditional VaR comparison (Own processing) 

 

Lower CI Estimate Upper CI 
40.593 41.898 44.607 
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IV.  CONCLUSION 

In 1996, Basel Committee released an amendment to the 
Capital Accord which allowed banks to use VaR variance-
covariance method, historical and Monte Carlo simulations. 
EVT was neither allowed nor mentioned. [1] This paper 
compared VaR quantified by all previously mentioned 
methods with following results. 

The lowest VaR estimate was provided by approximation 
using normal distribution (39.14). Direct quantile estimate 
within historical simulation and kernel procedures follows 
(41.58). Other estimates were accompanied by confidence 
intervals in which the worst case scenario (upper CI value) was 
considered as VaR value. Using Monte Carlo (bootstrapped) 
method VaR is smaller (42.687, overall interval width = 
7.416) than the EVT’s (44.607, width = 4.01).  

These findings suggest that officially approved methods are 
inappropriate (when the loss distribution has similar positive 
skew shape as ours) in terms of identifying potential risk value. 
The size of VaR consequently influences the capital 
requirement which allows banks to hold less capital reserves 
when standard methods are used. [2] 

In May 2012 consultative document [32], fundamental 
review of the trading book were published by the Bank for 
International Settlement. This document extends impact of 
Basel 2.5 rules. This European legislative primarily aims at 
banks’ trading books and suggests to complete rejection of 
simple VaR in favour of ES and other robust risk metrics. This 
step can be interpreted as conceptual framework abandonment 
which might be partly caused by inappropriate computing 
methods used. 
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