



Abstract—Artificial fish swarm (AFS) algorithm is one of the

latest additions to the swarm intelligence family of metaheuristics for

hard optimization problems. This paper presents multithreaded,

object-oriented implementation of the modified artificial fish swarm

algorithm for unconstrained optimization. Our proposed algorithm’s

modifications consist of reinforced exploration and different local

search i.e. way to generate new candidate solution. Our software

system implementation for unconstrained optimization problems was

done in the .NET production environment using C# programming

language with flexible GUI (Graphical User Interface) and it was

successfully tested on five standard unconstrained benchmark

problems using different sets of parameters.

Keywords—Artificial fish swarm, Swarm intelligence,

Optimization metaheuristics, Nature inspired algorithms,

Unconstrained optimization.

I. INTRODUCTION

PTIMIZATION is a process of finding the extreme value

of a function in the domain of its definition

(unconstrained optimization), possibly subject to various

constraints on the variable values (constrained optimization).

Numerous deterministic mathematical techniques are available

to solve different types of optimization problems, continuous

or combinatorial, both unconstrained and constrained, but

these methods do not always produce satisfactory results. The

development of methods for solving wide range of

optimization problems has been conditioned by the size and

complexity of the problems. The efficiency of such methods is

measured by their ability to find acceptable results within a

reasonable amount of time [1].

Fortunately, for solving complex problems (for example the

Travelling salesman problem – TSP), usually we do not need

to find the optimal solution, good quality suboptimal solution

within reasonable computational time is satisfactory. Heuristic

Manuscript received October 22, 2012. Revised April 29, 2013.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III-44006

M. Tuba is with the Faculty of Computer Science, Megatrend University

of Belgrade, Serbia, e-mail: tuba@ieee.org

N. Bacanin is with the Faculty Computer Science, Megatrend University

of Belgrade, Serbia, e-mail: nbacanin@megatrend.edu.rs

N. Stanarevic is with the Faculty of Mathematics, University of Belgrade,

Serbia, e-mail: srna@stanarevic.com

methods (or simply heuristics) have been devised to tackle

such problems. These algorithms have relatively low computa-

tional complexity (typically polynomial) and do not guarantee

that the optimal solution will be retrieved. Heuristics improve

algorithm’s performance by shortening the execution time at

the cost of accuracy. There are two types of heuristic methods

[2]: constructive and local search heuristics. Constructive

heuristics build solution to the problem in a step by step

manner until the complete solution is generated. They start up

with an “empty” solution and gradually build a complete

solution. On the other side, when local search heuristics is

used, complete solution is randomly chosen from the

population of potential solutions, and then that solution is

being incrementally improved during algorithm’s execution. In

its basic form, local search heuristics search neighborhood of

the current solution and choose its best neighbor.

With the growing requirements for hard problem solving,

metaheuristics have occupied attention in recent decades.

Metaheuristics can be determined as the collection of

algorithms’ concepts which are used for defining general

heuristic methods applicable on wide variety of problems [2].

Thus, metaheuristics search for a good heuristics for a

particular problem.

The use of nature-inspired metaheuristics designed to solve

optimization problems has become very popular. The corner

stone of nature-inspired algorithms are the basic principles

found in nature and social behavior. They are applicable to a

number of problems, including scientific, industrial and

commercial. Nature-inspired heuristic techniques should fulfill

several requirements [3]:

• ability to handle different type of problems;

• ease of use with few control variables;

• good convergence mechanism to the global minimum in

consecutive independent trials.

Nature-inspired metaheuristics consist of two families of

algorithms [4]: evolutionary computation (EC) and swarm

intelligence algorithms. Although both these groups of

algorithms are used for solving optimization problems, they

are complementary and can be joined together to create hybrid

algorithms for hard-to-solve problems. The field of EC is often

considered to comprise four major paradigms [4]: genetic

Multithreaded implementation and performance

of a modified artificial fish swarm algorithm for

unconstrained optimization

Milan Tuba, Nebojsa Bacanin, and Nadezda Stanarevic

O

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 215

algorithms (GA), evolutionary programming (EP), evolution

strategies (ES) and genetic programming (GP).

Swarm intelligence algorithms are focused on insect

behavior and mimic insect’s problem solution abilities. The

key concept of the swarm intelligence lies in a simple set of

rules that control each of the individuals which exhibit

remarkable collective intelligence. Their advantage lies in the

fact that they provide many near-optimal solutions in each

iteration of the algorithm’s execution and choose the best

solution according to a given criteria. The emergent behavior

of multiple unsophisticated agents interacting among

themselves and with their environment leads to a functional

strategy that is useful to achieve complex goals in an efficient

manner [5]. Ants for instance are capable of finding the

shortest path from their colony to food sources and back, while

bees perform waggle dances to convey useful information on

nectar sources to their hive mates. Swarm intelligence models

have many desirable properties which were adopted from real

systems and include feedback and adaptation to changing

environments and multiple decentralized interactions among

agents to work collaboratively as a group in completing

complex tasks [5]. From the computational perspective, swarm

metaheuristics are stochastic search algorithms enhanced with

robust and efficient search process and diversity maintaining

capability. With these characteristics, they successfully deal

with the distributed and multimodal optimization problems. It

also should be noted that the mechanism of forgetting is also

adopted in swarm intelligence algorithms such that the solution

space can be explored in a comprehensive manner. With this

mechanism, the algorithms are able to avoid convergence to a

local optimum solution and at the same time to discover a

global optimum solution with a high probability [5].

 Incorporating intelligent behavior of insects or animal

groups such as flocks of birds, schools of fish, colonies of ants

[6], [7], [8], [9] bees [10], [11], [12], cuckoos [13], [14], etc.

[15] into computer algorithms are typical examples of a swarm

intelligence algorithms.

The optimization algorithms which are inspired by

intelligent behavior of school of fishes (Artificial fish swarm -

AFS) are among the most recently introduced techniques.

Several approaches have been proposed to model the specific

intelligent behaviors of fish and since its invention the AFS

algorithm has been successfully applied to many kinds of

problems [16], [17], [18], [19], [20], [21]. According to the

various applications mentioned above, AFS algorithm

confirmed its good performance.

 In this paper, we will present our implementation of

modified AFS algorithm [20]. For the purpose of testing its

robustness and performances, we developed software named

modified AFS System (mAFSs) for solving unconstrained

optimization problems in .NET environment using C#

programming language. Our proposed modifications of the

algorithm in [20], the software system, as well as testing

results on standard benchmark functions for unconstrained

problems will be in detail showed in this paper.

 The organization of the remainder of the paper is as follows.

Section 2 describes the original AFS paradigm. In Section 3

exhaustive discussion of modified AFS algorithm is

represented. Section 4 shows in detail our software

implementation of the modified AFS algorithm. In Section 5

we present the test results obtained by mAFSs application on

five standard unconstrained benchmarks with various

parameters. Conclusions and future work are contained in the

final Section 6.

II. FUNDAMENTS OF THE AFS ALGORITHM

Mathematical models, which are adopted in the AFS

algorithm, imitate the fish swarm series of behavior in nature

and can be defined as follows [22]:

 random behavior;

 searching behavior;

 swarming behavior;

 chasing behavior;

 leaping behavior;

Random behavior is general fish behavior and it refers to

random movement in the water for seeking food and other fish.

Searching behavior is tightly connected with fish’s vision or

sense. When fish senses or visualizes areas with more food, it

goes straight and quickly to those areas. Fish naturally

organize themselves into the groups called swarm. This

swarming behavior enables them to avoid risks and dangers

and to ensure their survivor. Chasing behavior is correlated

with the scenario when a fish or group of fish in the swarm

discovers food, and other fish in the neighborhood also find

that food dangling after it. Leaping behavior manifests when

fish cannot find more food in a particular region. In this case,

fish leaps to look for food in the other locations.

Movements of the artificial fish in the algorithm are

implementations of the above listed mathematical models.

Each fish is an independent artificial agent. The position of a

fish in the search space is represented as a point, which can be

for example a vector in multi-parameter function optimization

problems (each vector component encodes one function’s

parameter). Collection of all points (potential solutions to the

problem) forms the search space. Thus, AFS metaheuristics

utilizes population of points to locate promising regions in the

search space and potentially optimal solution.

Complying with the fact that AFS algorithm presented in

this paper tackles global optimization problems, following

notation will be employed: x
i
 ∈ R

n
 is the i-th fish (point) in the

population, x
best

 is the point with the least function value and

f
best

 is the function value of point x
best

. In this case, x
i
 is vector

and i
kx ∈ R

n
 is the k-th (k=1,…,n) component of vector x

i
, m

is the number of points in the population.

The next behavior of artificial fish depends on its current

state and environmental state. Random behavior is expressed

in the initialization phase of the algorithm. The crucial step in

the AFS algorithms is a “visual scope”. A basic biological

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 216

behavior of any animal is to discover a region with more food,

by its vision or sense. The visual scope of each point x
i
 is

defined as the closed neighborhood of x
i
 with ray equal to a

positive quantity called "visual" [20]. Depending on the

current position of the individual in the population, marked as

x
i
 ∈ R

n
, three possible situations may occur [20]:

1. when the “visual scope” is empty (np
i
=0, see (1)) and

there are no other individuals in its neighborhood to

follow, x
i
 individual moves randomly searching for a

better region;

2. when the “visual scope” is crowded, the x
i
 individual has

difficulty to follow any particular individual, and searches

for a better region choosing randomly another location

from the “visual scope”;

3. when the “visual scope” is not crowded, the x
i
 individual

can choose between two options: to swarm moving

towards the central or to chase moving towards the best

location within the “visual scope”.

The condition that determines the crowd issue of x
i

individual in the “visual scope” is given in (1):

 
m

npi

 θ, (1)

where θ ∈ (0, 1] is the crowd parameter, m is the number of

individuals in the population and np
i
 is the number of

individuals in the “visual scope”.

When the “visual scope” is empty or when it is crowded,

fish enters random or searching behavior phase respectively. In

the first case, fish xi moves randomly seeking for a better area.

In the second case, fish x
i
 chooses a random point within

boundaries of its “visual scope” and a movement towards it is

carried out if it improves current x
i
 location. Otherwise, fish

employs random behavior like in the first case.

When “visual scope” is not crowded, fish x
i
has option to

swarm or to chase. The swarming behavior is characterized by

a movement towards the central point in its “visual scope”.

The swarming behavior is progressive stage that is activated

only if the central point has a better function value than the

current xi, and it is defined as [20]:

i

Ij

j

np

x

s
i






 , (2)

where I
i
 is the set of indices of the points inside the “visual

scope” of point x
i
, where x

i I
i
 and I

i
 ∈ {1,…,m}. If the central

point has worse function value than x
i
, the searching behavior

is activated.

The other option is that the point x
i
 follows the chasing

behavior. The chasing behavior presents a movement towards

the point x
min

 that has the least function value within the

“visual scope”. Again, like in the previous case, if function

value of xmin, denoted as f(x
min

) is worse than value of x
i
,

denoted as f(x
i
), searching behavior is employed.

The swarm and chase behavior can be considered as local

search procedures. These two behaviors deal with the process

of exploitation of previously discovered solutions. Leaping

behavior solves the problem when the best objective function

value (x
best

) in the population does not change for a certain

number of algorithm’s iterations. In this scenario, there is a

real possibility that the algorithm is trapped in suboptimal

region (local optimum). Leaping behavior conducts the

process of exploration by selecting random point (individual)

from the population and helps the algorithm to leap out from

suboptimal region of the search space. This exploration

process empowers algorithm for obtaining better results in

solving numerous problems.

III. MODIFIED AFS ALGORITHM

In this Section we present modified AFS algorithm, along

with our additional modifications, which were first introduced

in [20]. We briefly describe algorithm’s outline, as well as

eight main implemented methods. This background is

necessary for understanding inner working of our software

system implementation described in the next Section.

Modification of AFS metaheuristics are directed towards:

 new implementation of random, searching and leaping

fish behaviors;

 a greedy selection applied in the selection process;

 local search at the end of each iteration aiming to improve

the best solution;

 a priority-based strategy which increase speed of fish

movements.

Algorithm proposed in [20] has been forged for solving

bound constrained optimization problems in aspect that

feasibility is always satisfied during the algorithm’s run. We

slightly modified this algorithm by reinforcing exploration

process with more frequent triggering of leaping behavior and

by using different implementation of Local search around the

best solution. Pseudo code of our algorithm is given below:

Start

 t = 0

 x
i (t) (i = 1, . . .,m) ← Initialize

 While (stopping criteria are not met) do

 For (each x
i (t))

 If (“visual scope” is empty)

 y
i (t)← Random(x

i (t))

 else If (“visual scope” is crowded)

 y
i (t)← Search(x

i (t))

 else

 y
i (t)← best of Swarm(x

i (t)) and Chase(x
i (t))

 End for

 x
i (t + 1)(i = 1, . . .,m) ← Select(x

i (t), y
i (t) (i = 1,….,m))

 If (leaping criteria is met or “stagnation” occurs)

 x
rand

(t + 1) ← Leap(x
rand

 (t + 1))

 x
best

 (t + 1) ← Local(x
best

 (t + 1))

 t = t + 1

 End while

End

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 217

In the presented algorithm, t represents counter of iterations,

while x
rand

 is used to denote a randomly selected point from the

population of candidate solutions.

As we can see, the algorithm employs eight main methods:

Initialize, Random, Search, Swarm, Chase, Select, Leap and

Local. All mentioned methods and also other implementation

details will be briefly described in the next few paragraphs.

 Initialize method generates random initial population of

candidate solutions (m points in the set of Ω). Each vector x
i
 is

calculated using (3):

 x
i
k = lk +α(uk–lk), where k=1,2…,n, (3)

where uk and lk represent the upper and lower bounds of

parameters respectively, and α is uniformly distributed random

number in the range [0,1] (α ~ U[0,1]).

In the body of Initialize function, values of best and worst

candidate solutions found in the population are also computed.

If the objective is to minimize function, (4) is used:

f
best

 = min (f(x
i
), i = 1, . . .,m and f

worst
 = max (f(x

i
),

 i =1,…,m (4)

 Visual scope as a fixed “visual” value for all the population

is defined as:

 v=δmax(uk–lk), for k=1,2…,n (5)

In (5), δ is positive visual parameter which is in initial AFS

algorithm maintained fixed during iterative process. According

to conducted experiments, slow reduction of δ hastens the

convergence to the optimal solution [23]. Thus, this

algorithm’s implementation uses the following modification

every s iterations [20]:

 δ = max{δ
min

,πδ}, (6)

where πδ is in the range (0,1), and δ
min

 is sufficiently small

positive constant.

Random method is triggered when visual scope is empty as

well as in Search method when condition that x
rand

 is worse

than x
i
 is satisfied. Details are shown in pseudo code below.

For (each component xk)

 α1 ~ U[0,1]; α2 ~ U[0,1]

 If (α1 > 0.5)

 If ((uk – xk) > v)

 yk = xk + α2 v

 else

 yk = xk + α2 (uk − xk)

 else

 If ((xk – lk) > v)

 yk = xk − α2 v

 else

 yk = xk − α2 (xk − lk)

End for

Search method is activated when the “visual scope” is

crowded. A point inside “visual scope” (x
rand

) is selected in a

random manner, and the point x
i
 is moved towards x

rand
 if

condition that f(x
rand

)<f(x
i
) is satisfied. If not, the point x

i
 is

moved randomly (see Random method above). x
i
 is

dislocated towards x
rand

 using direction d
i
 = x

rand
 - x

i
 [20]. In

the algorithm shown below, simple movement along a

direction d is depicted.

α ~ U[0,1]

For (each component xk)

 If (dk > 0)

 yk = xk + α (uk − xk)

 else

 yk = xk + α (xk − lk)

End for

When the “visual scope” of a point x
i
 is not crowded Swarm

and Chase methods are invoked. In this scenario, the point

may have two behaviors. The first one is correlated with

movement towards the central point of “visual scope” (denoted

as c). Direction of the movement is defined in Swarm method

as d
i
 = c – x

i
. xi is moved according to the algorithm shown in

Search method if f(c)<f(x
i
). Chase method is related with a

movement towards the point with the least function value x
min

and it defines direction d
i
=x

min
- x

i
.. x

i
 is moved according to

the algorithm shown in Search method if x
min

 uplifts x
i
.

Otherwise, the method Search is triggered.

 Code inside Select method is used to determine whether or

not the foregoing selected trial point y
i
 (t) should proceed as

new i-th point position using form of greedy selection:





 


otherwise),t(x

))t(x(f))t(y(f(if),t(y
)1t(x

i

iii
i

 (7)

Leap method is used to maintain diversification in the

population, or to help algorithm leap out the local and try to

converge to the optimal solution (global minimum). In the first

case, the population is enriched with new, random solution

when leaping criteria is met (see (8)).

 0i
Ψ

t
 (8)

where t is the iteration number, is leaping control parameter

and i is integer. In the other words, when iteration number is

divisible by the leaping control parameter without residuum,

leaping behavior is triggered.  is hard coded parameter of

the algorithm.

If the algorithm stagnates for a certain number of iterations,

it is possible that it has been trapped into a local minimum. In

this case, leaping function is invoked every z iterations when

the following expression holds:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 218

 |f
best

(t)−f
best

(t−z)|≤η, (9)

where η is a small positive tolerance and z defines the

periodicity for testing the criterion [20].

Algorithm proposed in [20] calls leaping behavior only if

the algorithm stagnates for a certain number of iterations. Our

modified algorithm triggers leaping more frequently, and

according to conducted tests slightly better results are

achieved. Moreover, AFS algorithm described in [20] is

special instance of modified one proposed in this paper when

 > t parameter set holds. Leap behavior code is shown

below.

For (each component xk
rand

)

 α1 ~ U[0,1]; α2 ~ U[0,1]

 If (α1 > 0.5)

 xk
rand

= xk
rand

+ α2(uk- xk
rand

)

 else

 xk
rand

= xk
rand

- α2(xk
rand

-lk)

End for

 We completely modified Local method used in [20]. This

method is used for gathering local information around the

current best solution in population. In fact, this is random

search employed on one component of x
best

. After choosing

random component of x
best

 (denoted as
best
randx), and random

solution from the population x
rand

, the following expression is

applied:

)xx(* x best

rand
rand
rand

best
rand  1 , (10)

where φ1 is random number between -0.1 and 0.1. If one

component modification of x
best

 gives better result, enhanced

current best solution is retained. Similar principle is also used

in [24] in mutation operator implementation.

The algorithm is terminated when one of the following

conditions is verified:

  |ff|ornfenfe bestworstmax
 (11)

where nfe represents the counter for the number of objective

function evaluations, nfe
max

 is the maximum number of

function evaluations allowed, and ε is a small positive

tolerance. The values fworst and f
best

 were previously defined

in (4).

IV. SOFTWARE IMPLEMENTATION

We have developed and tested our software implementation

for modified AFS algorithm which we entitled mAFSs

(modified AFS system). We coded software in object-oriented

fashion and used multiple threads execution. With object-

oriented design, software scalability is improved, and so,

implementation of new programming logic for different

optimization problems would take less time.

We used approach similar to global parallel EA where the

only one population of candidate solution is employed. The

only difference between this and our approach is in the level of

parallelization. While global parallel EA explicitly parallelize

fitness function computation and genetic operators’ appliance,

we implemented parallelization on the level of individual

solutions. In our approach, each solution executes in its own

thread. Similar software which parallelized algorithm’s runs

was proposed for the Artificial bee colony (ABC) algorithm in

[25].

We developed software in C# using the.NET Framework

4.0. We chose C# as programming language because of its

obvious advantages over C, C++ and JAVA.

We used many classes which are tightly connected. We

wanted to make the adaptation process of our algorithm to new

optimization problems easy, so we created abstract class

MAFSAbastract which is later inherited by problem specific

classes like in [25]. MAFSHAbastract has all above

mentioned main methods (see Section 3). We also use Boolean

methods called CheckVisualScope and CheckStagnation which

check whether “visual scope” is empty or crowded and if

stagnation occurs respectively. CheckVisualScope returns 0 if

“visual scope” is empty and otherwise returns 1. Analogically

is done in CheckStagnation function. The most important

method in our algorithm is Run which encapsulates all other

methods and enables multi-threaded functionality. Leaping

criteria check is implemented as a simple line of code in this

method. Pseudo-code for Run method is given below (for

simplicity reasons, details about multi-threaded functionality

are omitted):

Initialize

t=0

Repeat

 For ((each x
i
(t))

 If((CheckVisualScope=0))

 y
i
(t) = Random(x

i
(t))

 else if ((CheckVisualScope==1))

 y
i
(t) = Search(x

i
(t))

 else

 y
i
(t) = best of Swarm(x

i
(t)) and Chase(x

i
(t))

 End for

 x
i
(t + 1)(i = 1, . . .,m) = Select(x

i
(t), y

i
(t) (i = 1, . . .,m))

 If ((CheckStagnation==1) or (t mod )==0)

 x
rand

(t + 1) = Leap(x
rand

 (t + 1))

 x
best

 (t + 1) = Local(x
best

 (t + 1))

t=t+1

Until stopping criteria is met

 Screenshot of basic Graphical user interface (GUI) of

mAFSs can be seen in Fig. 1. From Fig.1 we can see that user

can adjust multiple parameters of the modified AFS algorithm.

Other parameters are hard coded into the software and cannot

be changed by the user. For simplicity reasons, parameters are

divided into two groups: mAFSs control and problem specific

parameters.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 219

Fig. 1 Screenshot of mAFSs GUI

Control parameters are:

 visual Parameter (δ) is positive visual parameter

(δ >0);

 crowded Parameter (θ) is fraction of the fish that

defines crowded situation;

 reduction Factor (πδ) if factor by which δ is reduced as

iteration proceed;

 runtime defines number of algorithm’s runs.

Problem specific parameters are:

 no. of parameters (n) is the number of parameters of

the problem to be optimized;

 lower Bound (l) is lower bound of problem parameters;

 upper Bound (u) is upper bound of problem

parameters.

V. OPTIMIZATION EXPERIMENTS AND BENCHMARK RESULTS

 All tests have been performed on Intel Core2Duo T8300

2.4Ghz mobile processor with 4GB of RAM on Windows 7

Ultimate x64 Operating System in Visual Studio 2010 and

.NET Framework 4.0 environment. Only operating system,

Visual Studio system processes and mAFSs process have been

executing during the tests.

The bound constraint optimization problems in this paper

follow the form:

 minimize f(x) subject to x (12)

where x is a continuous variable vector with domain   R
n
,

and f(x) :   R is a continuous real-valued function. The

domain  is defined within upper and lower limits of each

dimension [26].

 For testing purposes, we used standard five unconstrained

benchmark functions:

 Ackley;

 Griewank;

 Rastrigin;

 Rosenbrock;

 Sphere.

Parameter range and formulation of above enlisted

benchmarks are given in Table I.

Table I. Benchmark functions summary

Function Range Formulation

Ackley

[-32,32]
n
 ex

n
x

n

n

i
i

n

i
i

 



20))2cos(
1

exp()
1

2,0exp(20

11

2 

Griewank

[-600,600]
n
 1)cos(

400

1

11

2 


n

i

i
n

i
i

i

x
x

Rastrigin

[-

5.12,5.12]
n

]10)2cos(10[
1




i

n

i

n
i xx 

Rosenbrock [-100,100]
n
])1()(100[222

1

1
1 




 ii

n

i
i xxx

Sphere

[-100,100]
n
 



n

i
ix

1

2

We ran two sets of test for each benchmark problem, first

with 10 runs, and second with 30 runs, each starting from an

independent population with a different random number seed.

We wanted to see how runtime effects algorithm’s

performance.

 Values for parameters which are not adjustable by the user

(hard coded parameters) are set like in [23]. The number of

fish (m) in the population depends on n (number of problem

parameters), where m=10n. We used fixed values for nfe
max

 =

250000, ε = 10-4 and η=10-8. Leaping control parameter is

set to 5 which mean that at in least each fifth iteration

exploration is performed. Because of this parameter is added

in our version of the algorithm, we wanted to see how it affects

performance, so we run additional test with  set to 3. These

results will also be showed in this Section.

 Values for parameters which can be controlled through

software’s GUI (see Fig.1) are shown in Table II and Table III.

For all four benchmarks we used the same values for problem

specific parameters.

 For each benchmark, we show best, mean and standard

deviation results. Tests for 10 and 30 runs are shown in Tables

IV and V respectively.

Table II Control parameter values

Parameter Value

Visual Parameter (δ) 1

Crowded Parameter (θ) 0.8

Reduction Factor (πδ) 0.9

Runtime 10/30

Table III Problem specific parameter values

Parameter Value

No. of parameters (n) 100

Lower Bound (l) -100

Upper Bound (u) 100

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 220

 As we can see from Table IV and Table V, mAFSs obtains

satisfying results for all presented benchmarks and can be

compared with other algorithms and software systems like the

one presented in [25].

All runs in conducted experiments were stopped with nfe
max

= 250,000 as mentioned before. Comparative analysis of

results with 10 and 30 runs (Table IV vs. Table V) lead to the

conclusion that the performance of the algorithm is not

affected by the number of runs. Almost all results are similar

with very small digression which can be neglected. The only

noticeable difference is observed in tests with Griewank and

Sphere function. In the first case, bests obtained with 10 and

30 runs differ by the factor of 10
-1

. In Sphere benchmarks,

mean results differ by the same factor.

Table IV Optimization results for 10 runs

Function Results

Ackley

Best

Mean

Stdev.

5.88E-4

0.005

0.003

Griewank

Best

Mean

Stdev.

1.13E-8

2.09E-6

2.15E-6

Rastrigin

Best

Mean

Stdev.

8.75E-4

8.31E-3

2.34E-3

Rosenbrock

Best

Mean

Stdev.

2.15E-2

0.018

0.077

Sphere

Best

Mean

Stdev.

2.15E-5

0.23E-3

6.88E-4

Table V Optimization results for 30 runs

Function Results

Ackley

Best

Mean

Stdev.

1.18E-4

0.004

0.003

Griewank

Best

Mean

Stdev.

8.97E-9

0.13E-6

1.81E-6

Rastrigin

Best

Mean

Stdev.

3.62E-4

2.15E-3

1.15E-3

Rosenbrock

Best

Mean

Stdev.

1.02E-2

0.011

0.056

Sphere

Best

Mean

Stdev.

1.99E-5

8.77E-4

4.12E-4

As mentioned above, to measure the impact of newly added

parameter on algorithm’s performance, we conducted another

test with 30 runs, but now is set to 3 as opposite to 5 like in

previous tests with different runtime values. With the decrease

of leaping control parameter, exploration power is elevated

and at least, in each third iteration random search occurs.

By comparing Tables V and VI, where  is set to 5 and 3

respectively, we conclude that this parameter does not have

strong impact on the performance. It has slightly improved

best, means, as well as standard deviation results in tests with

all five benchmark functions.

Table VI Optimization results for 30 runs with  set to 3

Function Results

Ackley

Best

Mean

Stdev.

0.223E-4

0.004

0.003

Griewank

Best

Mean

Stdev.

4.24E-9

0.05E-6

0.99E-6

Rastrigin

Best

Mean

Stdev.

1.33E-4

0.75E-3

1.85E-3

Rosenbrock

Best

Mean

Stdev.

7.33E-1

0.009

0.031

Sphere

Best

Mean

Stdev.

0.85E-5

6.39E-4

4.25E-4

VI. CONCLUSION

In this paper, we presented our implementation of a

modified AFS algorithm for solving unconstrained

optimization problems. Our algorithm differs that the one

proposed in [20]. We introduced additional parameter which is

called leaping control parameter () in order to maintain

diversify in the population. Also, we modified local search

procedure around the current best solution. Object-oriented

design and appropriate GUI of presented software system

allow for easy modifications and adjustments to different

optimization problems. The performance of the modified AFS

algorithm was tested on several well-known benchmark

functions with different number of runs and different sets for

 . The algorithm has shown its potential to handle various

unimodal and multimodal test functions. As a part of our future

work, we are interested in exploring other benchmark and real

life problems.

REFERENCES

[1] Chiong R., Nature-Inspired Algorithms for Optimisation, Springer,

2009, p. 536.

[2] Michalewicz Z., Fogel B. D., How to solve it: Modern Heuristics 2nd

edition, Springer-Verlag, 2004, p. 561.

[3] Storn R., Price K., Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces, Journal of

Global Optimization, Vol. 11, Issue 4, 1997, pp. 341–359.

[4] Kennedy J., Eberhart, C. R., Swarm Intelligence, Morgan Kaufman,

2001, p. 512.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 221

[5] Chee Peng L., Satchidananda D., Innovations in Swarm Intelligence,

Springer, 2010, p. 256.

[6] Jovanovic R., Tuba M., An ant colony optimization algorithm with

improved pheromone correction strategy for minimum weight vertex

cover problem, Applied Soft Computing, Vol. 11, Issue 8, 2011, pp.

5360-5366.

[7] Tuba M., Jovanovic R.: An Analysis of Different Variations of Ant

Colony Optimization to the Minimum Weight Vertex Cover Problem,

WSEAS Transactions on Information Science and Applications,

Volume 6, Issue 6, June 2009, pp. 936-945

[8] Jovanovic R., Tuba M.: Ant Colony Optimization Algorithm with

Pheromone Correction Strategy for Minimum Connected Dominating

Set Problem, Computer Science and Information Systems (ComSIS),

Vol 10, No. 1, 2013, pp.133-149

[9] Tuba M., Jovanovic, R.: Improved Ant Colony Optimization Algorithm

with Pheromone Correction Strategy for the Traveling Salesman

Problem, International Journal of Computers, Communications &

Control, Vol. 8, Issue 3, 2013, pp. 409-417

[10] Brajevic I., Tuba M., An upgraded artificial bee colony algorithm

(ABC) for constrained optimization problems, Journal of Intelligent

Manufacturing, 2012, available Springer Online First, DOI:

10.1007/s10845-011-0621-6, pp. 1-12.

[11] Tuba M., Bacanin N., Stanarevic N.: Adjusted artificial bee colony

(ABC) algorithm for engineering problems, WSEAS Transaction on

Computers, Volume 11, Issue 4, April 2012, pp. 111-120

[12] Subotic M., Tuba M., Stanarevic N.: Different approaches in

parallelization of the artificial bee colony algorithm, International

Journal of Mathematical Models and Methods in Applied Sciences,

Vol. 5, Issue 4, 2011, pp. 755-762

[13] Tuba M., Subotic M, Stanarevic N.: Performance of a modified cuckoo

search algorithm for unconstrained optimization problems, WSEAS

Transactions on Systems, Volume 11, Issue 2, February 2012, pp. 62-74

[14] Tuba M., Jovanovic R., Brajevic I.: Parallelization of the Cuckoo Search

Using CUDA Architecture, Proceedings of the 19th American

Conference on Applied Mathematics, Cambridge, MA, USA, 2013, pp.

137-142

[15] Tuba M., Brajevic I., Jovanovic R.: Hybrid Seeker Optimization

Algorithm for Global Optimization, Applied Mathematics and

Information Sciences, Vol. 7, No. 3, 2013, pp. 867-875

[16] Farzi S., Efficient Job Scheduling in Grid Computing with Modified

Artificial Fish Swarm Algorithm, International Journal of Computer

Theory and Engineering, Vol. 1, No. 1, 2009, pp. 13-18.

[17] Rocha A. C., Fernandes E., Mutation-Based Artificial Fish Swarm

Algorithm for Bound Constrained Global Optimization, Numerical

Analysis and Applied Mathematics ICNAM, Article in Press, 2011,

doi:10.1063/1.3636841, pp.751-754.

[18] Bing D., Wen D., Scheduling Arrival Aircrafts on Multi-runway Based

on an Improved Artificial Fish Swarm Algorithm, ICCIS, Article in

Press, 2010, doi: 10.1109/ICCIS.2010.338, pp. 499 – 502.

[19] Jiang M., Mastorakis N., Yuan D., Lagunas M. A., Image Segmentation

with Improved Artificial Fish Swarm Algorithm, LNEE Vol 28,

Springer, 2009, pp. 133-138.

[20] Rocha A. M. A. C., Fernandes E. M. G. P, Martins T. F. M. C, Novel

Fish Swarm Heuristics for Bound Constrained Global Optimization

Problems, Comp. Science and its App. – ICCSA 2011, Lecture Notes in

Computer Science, Vol. 6784, 2011, doi: 10.1007/978-3-642-21931-

3_16, pp. 185-199.

[21] Dong Z., Xiao W., Zhang X., Artificial Fish Swarm Algorithm-Assisted

and Receive-Diversity Aided Multi-user Detection for MC-CDMA

Systems, Computer and Information Science, Vol. 2, No. 4, 2009, pp.

75-80.

[22] Jiang M., Wang Y., Pfletschinger S., Lagunas M., Yuan D., Optimal

multiuser detection with artificial fish swarm algorithm,

Communications in Computer and Information Science, Vol. 2, Part 22,

2007, pp. 1084-1093.

[23] Fernandes E. M. G. P., Martins, T. F. M. C., Rocha, A. M. A. C, Fish

swarm intelligent algorithm for bound constrained global optimization,

CMMSE 2009, ISBN: 978-84-612-9727-6, pp. 461–472

[24] Bacanin N., Tuba M., Artificial Bee Colony (ABC) Algorithm for

Constrained Optimization Improved with Genetic Operators, Studies in

Informatics and Control, Vol. 22, No. 2, 2012, pp. 137-146.

[25] Bacanin N., Tuba M., Brajevic I., Performance of object-oriented

software system for improved artificial bee colony optimization,

International Journal of Mathematics and Computers in Simulation,

Vol. 5, Issue 2, 2011, pp. 154-162.

[26] Ali M. M., Khompatraporn C., Zabinsky Z. B., A numerical evaluation

of several stochastic algorithms on selected continuous global

optimization test problems, Journal of Global Optimization, Vol. 31,

2005, pp. 635–672.

Milan Tuba received B.S. in mathematics, M.S. in

mathematics, M.S. in computer science, M.Ph. in

computer science, Ph.D. in computer science from

University of Belgrade and New York University.

 From 1983 to 1994 he was in the U.S.A. at

Vanderbilt University in Nashville and Courant

Institute of Mathematical Sciences, New York

University and later as an assistant professor of

electrical engineering at Cooper Union Graduate

School of Engineering, New York. During that time

he was the founder and director of Microprocessor

Lab and VLSI Lab, leader of scientific projects and supervisor of many

theses. From 1994 he was associate professor of computer science and

Director of Computer Center at University of Belgrade, Faculty of

Mathematics, and from 2004 also a Professor of Computer Science and Dean

of the College of Computer Science, Megatrend University Belgrade. He was

teaching more than 20 graduate and undergraduate courses, from VLSI design

and Computer architecture to Computer networks, Operating systems, Image

processing, Calculus and Queuing theory. His research interest includes

mathematical, queuing theory and heuristic optimizations applied to computer

networks, image processing and combinatorial problems. He is the author of

more than 100 scientific papers and a monograph. He is coeditor or member

of the editorial board or scientific committee of number of scientific journals

and conferences.

 Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York

Academy of Sciences 1987, AMS 1995, SIAM 2009, IFNA. He participated

in many WSEAS Conferences with plenary lectures and articles in

Proceedings and Transactions.

Nebojsa Bacanin received B.S. and M.S. in

economics and computer science in 2006 and 2008

from Megatrend University of Belgrade and also

M.S. in computer science in 2008 from University

of Belgrade. He is currently a Ph.D. student at

Faculty of Mathematics, Computer Science Depart-

ment, University of Belgrade and works as teaching

assistant at Faculty of Computer Science,

Megatrend University of Belgrade. He is the author

or coauthor of more than 10 research papers. His

current research interest includes nature inspired metaheuristics with accent

on swarm intelligence and global optimization.

 Mr. Bacanin is also a research member of Project No. III-44006, Ministry of

Science, Republic of Serbia.

 Mr. Bacanin participated in WSEAS conferences.

Nadezda Stanarevic received B.S. in mathematics

in 2006 and M.S. in mathematics in 2008 from Uni-

versity of Belgrade, Faculty of Mathematics. She is

currently Ph.D. student at Faculty of Mathematics,

Computer science department, University of Belgrade

She is the author and coauthor of more than 10 scien-

tific papers. Her current research interest includes

nature inspired metaheuristics.

 Ms. Stanarevic participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 7, 2013 222

