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Abstract—Artificial fish swarm (AFS) algorithm is one of the 

latest additions to the swarm intelligence family of metaheuristics for 

hard optimization problems. This paper presents multithreaded, 

object-oriented implementation of the modified artificial fish swarm 

algorithm for unconstrained optimization. Our proposed algorithm’s 

modifications consist of reinforced exploration and different local 

search i.e. way to generate new candidate solution. Our software 

system implementation for unconstrained optimization problems was 

done in the .NET production environment using C# programming 

language with flexible GUI (Graphical User Interface) and it was 

successfully tested on five standard unconstrained benchmark 

problems using different sets of parameters. 

 

Keywords—Artificial fish swarm, Swarm intelligence, 

Optimization metaheuristics, Nature inspired algorithms, 
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I.  INTRODUCTION 

PTIMIZATION is a process of finding the extreme value 

of a function in the domain of its definition 

(unconstrained optimization), possibly subject to various 

constraints on the variable values (constrained optimization). 

Numerous deterministic mathematical techniques are available 

to solve different types of optimization problems, continuous 

or combinatorial, both unconstrained and constrained, but 

these methods do not always produce satisfactory results. The 

development of methods for solving wide range of 

optimization problems has been conditioned by the size and 

complexity of the problems. The efficiency of such methods is 

measured by their ability to find acceptable results within a 

reasonable amount of time [1].  

Fortunately, for solving complex problems (for example the 

Travelling salesman problem – TSP), usually we do not need 

to find the optimal solution, good quality suboptimal solution 

within reasonable computational time is satisfactory. Heuristic 
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methods (or simply heuristics) have been devised to tackle 

such problems. These algorithms have relatively low computa-

tional complexity (typically polynomial) and do not guarantee 

that the optimal solution will be retrieved. Heuristics improve 

algorithm’s performance by shortening the execution time at 

the cost of accuracy. There are two types of heuristic methods 

[2]: constructive and local search heuristics. Constructive 

heuristics build solution to the problem in a step by step 

manner until the complete solution is generated. They start up 

with an “empty” solution and gradually build a complete 

solution. On the other side, when local search heuristics is 

used, complete solution is randomly chosen from the 

population of potential solutions, and then that solution is 

being incrementally improved during algorithm’s execution. In 

its basic form, local search heuristics search neighborhood of 

the current solution and choose its best neighbor.  

With the growing requirements for hard problem solving, 

metaheuristics have occupied attention in recent decades. 

Metaheuristics can be determined as the collection of 

algorithms’ concepts which are used for defining general 

heuristic methods applicable on wide variety of problems [2]. 

Thus, metaheuristics search for a good heuristics for a 

particular problem.  

The use of nature-inspired metaheuristics designed to solve 

optimization problems has become very popular. The corner 

stone of nature-inspired algorithms are the basic principles 

found in nature and social behavior. They are applicable to a 

number of problems, including scientific, industrial and 

commercial. Nature-inspired heuristic techniques should fulfill 

several requirements [3]: 
 

• ability to handle different type of problems; 

• ease of use with few control variables; 

• good convergence mechanism to the global minimum in 

consecutive independent trials. 
 

Nature-inspired metaheuristics consist of two families of 

algorithms [4]: evolutionary computation (EC) and swarm 

intelligence algorithms. Although both these groups of 

algorithms are used for solving optimization problems, they 

are complementary and can be joined together to create hybrid 

algorithms for hard-to-solve problems. The field of EC is often 

considered to comprise four major paradigms [4]: genetic 
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algorithms (GA), evolutionary programming (EP), evolution 

strategies (ES) and genetic programming (GP).  

Swarm intelligence algorithms are focused on insect 

behavior and mimic insect’s problem solution abilities. The 

key concept of the swarm intelligence lies in a simple set of 

rules that control each of the individuals which exhibit 

remarkable collective intelligence.  Their advantage lies in the 

fact that they provide many near-optimal solutions in each 

iteration of the algorithm’s execution and choose the best 

solution according to a given criteria. The emergent behavior 

of multiple unsophisticated agents interacting among 

themselves and with their environment leads to a functional 

strategy that is useful to achieve complex goals in an efficient 

manner [5]. Ants for instance are capable of finding the 

shortest path from their colony to food sources and back, while 

bees perform waggle dances to convey useful information on 

nectar sources to their hive mates. Swarm intelligence models 

have many desirable properties which were adopted from real 

systems and include feedback and adaptation to changing 

environments and multiple decentralized interactions among 

agents to work collaboratively as a group in completing 

complex tasks [5]. From the computational perspective, swarm 

metaheuristics are stochastic search algorithms enhanced with 

robust and efficient search process and diversity maintaining 

capability. With these characteristics, they successfully deal 

with the distributed and multimodal optimization problems. It 

also should be noted that the mechanism of forgetting is also 

adopted in swarm intelligence algorithms such that the solution 

space can be explored in a comprehensive manner. With this 

mechanism, the algorithms are able to avoid convergence to a 

local optimum solution and at the same time to discover a 

global optimum solution with a high probability [5].  

 Incorporating intelligent behavior of insects or animal 

groups such as flocks of birds, schools of fish, colonies of ants 

[6], [7], [8], [9] bees [10], [11], [12], cuckoos [13], [14], etc. 

[15] into computer algorithms are typical examples of a swarm 

intelligence algorithms. 

The optimization algorithms which are inspired by 

intelligent behavior of school of fishes (Artificial fish swarm - 

AFS) are among the most recently introduced techniques. 

Several approaches have been proposed to model the specific 

intelligent behaviors of fish and since its invention the AFS 

algorithm has been successfully applied to many kinds of 

problems [16], [17], [18], [19], [20], [21]. According to the 

various applications mentioned above, AFS algorithm 

confirmed its good performance.  

 In this paper, we will present our implementation of 

modified AFS algorithm [20]. For the purpose of testing its 

robustness and performances, we developed software named 

modified AFS System (mAFSs) for solving unconstrained 

optimization problems in .NET environment using C# 

programming language. Our proposed modifications of the 

algorithm in [20], the software system, as well as testing 

results on standard benchmark functions for unconstrained 

problems will be in detail showed in this paper.  

 The organization of the remainder of the paper is as follows. 

Section 2 describes the original AFS paradigm. In Section 3 

exhaustive discussion of modified AFS algorithm is 

represented. Section 4 shows in detail our software 

implementation of the modified AFS algorithm. In Section 5 

we present the test results obtained by mAFSs application on 

five standard unconstrained benchmarks with various 

parameters. Conclusions and future work are contained in the 

final Section 6. 

II.  FUNDAMENTS OF THE AFS ALGORITHM 

Mathematical models, which are adopted in the AFS 

algorithm, imitate the fish swarm series of behavior in nature 

and can be defined as follows [22]: 
 

 random behavior;  

 searching behavior;  

 swarming behavior;  

 chasing behavior; 

 leaping behavior;  
 

Random behavior is general fish behavior and it refers to 

random movement in the water for seeking food and other fish. 

Searching behavior is tightly connected with fish’s vision or 

sense. When fish senses or visualizes areas with more food, it 

goes straight and quickly to those areas. Fish naturally 

organize themselves into the groups called swarm. This 

swarming behavior enables them to avoid risks and dangers 

and to ensure their survivor. Chasing behavior is correlated 

with the scenario when a fish or group of fish in the swarm 

discovers food, and other fish in the neighborhood also find 

that food dangling after it. Leaping behavior manifests when 

fish cannot find more food in a particular region. In this case, 

fish leaps to look for food in the other locations.  

Movements of the artificial fish in the algorithm are 

implementations of the above listed mathematical models. 

Each fish is an independent artificial agent. The position of a 

fish  in the search space is represented as a point, which can be 

for example a vector in multi-parameter function optimization 

problems (each vector component encodes one function’s 

parameter). Collection of all points (potential solutions to the 

problem) forms the search space. Thus, AFS metaheuristics 

utilizes population of points to locate promising regions in the 

search space and potentially optimal solution.  

Complying with the fact that AFS algorithm presented in 

this paper tackles global optimization problems, following 

notation will be employed: x
i
 ∈ R

n
  is the i-th fish (point) in the 

population, x
best

 is the point with the least function value and 

f
best

 is the function value of point x
best

. In this case, x
i
 is vector 

and  i
kx  ∈ R

n
  is the k-th (k=1,…,n) component of  vector x

i
, m 

is the number of points in the population.  

The next behavior of artificial fish depends on its current 

state and environmental state. Random behavior is expressed 

in the initialization phase of the algorithm. The crucial step in 

the AFS algorithms is a “visual scope”. A basic biological 
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behavior of any animal is to discover a region with more food, 

by its vision or sense. The visual scope of each point x
i
 is 

defined as the closed neighborhood of x
i
 with ray equal to a 

positive quantity called "visual" [20]. Depending on the 

current position of the individual in the population, marked as 

x
i
 ∈ R

n
, three possible situations may occur [20]: 

 

1.     when  the “visual scope” is empty (np
i
=0, see (1)) and 

there are no other individuals  in its neighborhood to 

follow, x
i
 individual moves randomly searching for a 

better region; 

2.     when the “visual scope” is crowded, the x
i
 individual has 

difficulty to follow any particular individual, and searches 

for a better region choosing randomly another location 

from the “visual scope”; 

3.     when the “visual scope” is not crowded, the x
i
  individual 

can choose between two options: to swarm moving 

towards the central or to chase moving towards the best 

location within the “visual scope”. 
 

The condition that determines the crowd issue of x
i
 

individual in the “visual scope” is given in (1): 
 

                           
m

npi

   θ,                                    (1) 

 

where θ ∈ (0, 1] is the crowd parameter, m is the number of 

individuals in the population and np
i
 is  the number of 

individuals in the  “visual scope”.  

When the “visual scope” is empty or when it is crowded, 

fish enters random or searching behavior phase respectively. In 

the first case, fish xi moves randomly seeking for a better area. 

In the second case, fish x
i
 chooses a random point within 

boundaries of its “visual scope” and a movement towards it is 

carried out if it improves current x
i
 location. Otherwise, fish 

employs random behavior like in the first case.   

When “visual scope” is not crowded, fish x
i 
has option to 

swarm or to chase. The swarming behavior is characterized by 

a movement towards the central point in its “visual scope”. 

The swarming behavior is progressive stage that is activated 

only if the central point has a better function value than the 

current xi, and it is defined as [20]: 
 

i

Ij

j

np

x

s
i






 ,                             (2) 

 

where I
i
 is the set of indices of the points inside the “visual 

scope” of point x
i
, where x 

i I
i
 and I

i
 ∈ {1,…,m}. If the central 

point has worse function value than x
i
, the searching behavior 

is activated. 

The other option is that the point x
i
 follows the chasing 

behavior. The chasing behavior presents a movement towards 

the point x
min

 that has the least function value within the 

“visual scope”. Again, like in the previous case, if function 

value of xmin, denoted as f(x
min

) is worse than value of x
i
, 

denoted as f(x
i
), searching behavior is employed. 

The swarm and chase behavior can be considered as local 

search procedures. These two behaviors deal with the process 

of exploitation of previously discovered solutions. Leaping 

behavior solves the problem when the best objective function 

value (x
best

) in the population does not change for a certain 

number of algorithm’s iterations. In this scenario, there is a 

real possibility that the algorithm is trapped in suboptimal 

region (local optimum). Leaping behavior conducts the 

process of exploration by selecting random point (individual) 

from the population and helps the algorithm to leap out from 

suboptimal region of the search space. This exploration 

process empowers algorithm for obtaining better results in 

solving numerous problems. 

III.   MODIFIED AFS ALGORITHM 

In this Section we present modified AFS algorithm, along 

with our additional modifications, which were first introduced 

in [20]. We briefly describe algorithm’s outline, as well as 

eight main implemented methods. This background is 

necessary for understanding inner working of our software 

system implementation described in the next Section.  

Modification of AFS metaheuristics are directed towards: 
 

     new implementation of random, searching and leaping 

fish behaviors; 

     a greedy selection applied in the selection process; 

     local search at the end of each iteration aiming to improve 

the best solution; 

     a priority-based strategy which increase speed of fish 

movements. 
 

Algorithm proposed in [20] has been forged for solving 

bound constrained optimization problems in aspect that 

feasibility is always satisfied during the algorithm’s run. We 

slightly modified this algorithm by reinforcing exploration 

process with more frequent triggering of leaping behavior and 

by using different implementation of Local search around the 

best solution. Pseudo code of our algorithm is given below: 
 

Start 

     t = 0 

     x
i (t) (i = 1, . . .,m) ← Initialize 

    While (stopping criteria are not met) do 

        For (each x
i (t)) 

            If (“visual scope” is empty)  

                y
i (t)← Random(x

i (t)) 

            else If (“visual scope” is crowded) 

                y
i (t)← Search(x

i (t)) 

            else 

               y
i (t)← best of Swarm(x

i (t)) and Chase(x
i (t)) 

         End for 

         x
i (t + 1)(i = 1, . . .,m) ← Select(x

i (t), y
i (t) (i = 1,….,m)) 

         If (leaping criteria is met or “stagnation” occurs) 

            x
rand

(t + 1) ← Leap(x
rand

 (t + 1)) 

         x
best

 (t + 1) ← Local(x
best

 (t + 1)) 

        t = t + 1 

    End while 

End 
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In the presented algorithm, t represents counter of iterations, 

while x
rand

 is used to denote a randomly selected point from the 

population of candidate solutions.  

As we can see, the algorithm employs eight main methods: 

Initialize, Random, Search, Swarm, Chase, Select, Leap and 

Local. All mentioned methods and also other implementation 

details will be briefly described in the next few paragraphs.  

     Initialize method generates random initial population of 

candidate solutions (m points in the set of Ω). Each vector x
i
 is 

calculated using (3): 
 

 x
i
k = lk +α(uk–lk), where k=1,2…,n,               (3)                           

 

where uk and lk represent the upper and lower bounds of 

parameters respectively, and α is uniformly distributed random 

number in the range [0,1] (α ~ U[0,1]). 

In the body of Initialize function, values of best and worst 

candidate solutions found in the population are also computed. 

If the objective is to minimize function, (4) is used: 
 

f
best

 = min (f(x
i
),   i = 1, . . .,m and  f

worst
 = max (f(x

i
), 

 i =1,…,m                      (4)                                                                        
 

 Visual scope as a fixed “visual” value for all the population 

is defined as: 
 

               v=δmax(uk–lk), for k=1,2…,n                             (5)       

                            

In (5), δ is positive visual parameter which is in initial AFS 

algorithm maintained fixed during iterative process. According 

to conducted experiments, slow reduction of δ hastens the 

convergence to the optimal solution [23]. Thus, this 

algorithm’s implementation uses the following modification 

every s iterations [20]: 
 

                  δ = max{δ
min

,πδ},                                    (6) 
 

where πδ is in the range (0,1), and δ
min

 is sufficiently small 

positive constant. 

Random method is triggered when visual scope is empty as 

well as in Search method when condition that x
rand

 is worse 

than x
i
 is satisfied. Details are shown in pseudo code below. 

 

For (each component xk) 

   α1 ~ U[0,1]; α2 ~ U[0,1]     

   If (α1 > 0.5)  

      If ((uk – xk) > v)  

         yk = xk + α2 v 

      else 

         yk = xk + α2 (uk − xk) 

   else 

      If ((xk – lk) > v)  

         yk = xk − α2 v 

      else 

         yk = xk − α2 (xk − lk) 

End for 

 

 

Search method is activated when the “visual scope” is 

crowded. A point inside “visual scope” (x
rand

) is selected in a 

random manner, and the point x
i
 is moved towards x

rand
 if 

condition that f(x
rand

)<f(x
i
) is satisfied. If not, the point x

i
 is 

moved  randomly (see Random method above).  x
i
 is 

dislocated towards x
rand

 using direction d
i
 = x

rand
 - x

i
  [20].  In 

the algorithm shown below, simple movement along a 

direction d  is depicted. 
 

α ~ U[0,1] 

For (each component xk) 

   If (dk > 0)  

      yk =  xk + α  (uk − xk) 

   else 

      yk =  xk + α  (xk − lk) 

End for 
 

When the “visual scope” of a point x
i
 is not crowded Swarm 

and Chase methods are invoked. In this scenario, the point 

may have two behaviors. The first one is correlated with 

movement towards the central point of “visual scope” (denoted 

as c). Direction of the movement is defined in Swarm method 

as d
i
 = c – x

i
.  xi is moved according to the algorithm shown in 

Search method if f(c)<f(x
i
). Chase method is related with a 

movement towards the point with the least function value x
min

 

and it defines direction d
i
=x

min
- x

i
.. x

i
 is moved according to 

the algorithm shown in Search method if x
min

 uplifts x
i
. 

Otherwise, the method Search is triggered.  

 Code inside Select method is used to determine whether or 

not the foregoing selected trial point y
i
 (t) should proceed as 

new i-th point position using form of greedy selection: 

 

 




 


otherwise),t(x

))t(x(f))t(y(f(if),t(y
)1t(x

i

iii
i

                 (7)  

 

Leap method is used to maintain diversification in the 

population, or to help algorithm leap out the local and try to 

converge to the optimal solution (global minimum). In the first 

case, the population is enriched with new, random solution 

when leaping criteria is met (see (8)).  

                         0i
Ψ

t
                                       (8) 

where t  is the iteration number, is leaping control parameter 

and i is integer. In the other words, when iteration number is 

divisible by the leaping control parameter without residuum, 

leaping behavior is triggered.   is hard coded parameter of 

the algorithm. 

If  the algorithm stagnates for a certain number of iterations, 

it is possible that it has been trapped into a local minimum. In 

this case, leaping function is invoked every z iterations when 

the following expression holds: 
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                   |f
best

(t)−f
best

(t−z)|≤η,                                        (9)                                               
 

where η is a small positive tolerance and z defines the 

periodicity for testing the criterion [20].  

Algorithm proposed in [20] calls leaping behavior only if 

the algorithm stagnates for a certain number of iterations. Our 

modified algorithm triggers leaping more frequently, and 

according to conducted tests slightly better results are 

achieved. Moreover, AFS algorithm described in [20] is 

special instance of modified one proposed in this paper when  

  > t parameter set holds. Leap behavior code is shown 

below. 
 

For (each component xk
rand

) 

   α1 ~ U[0,1]; α2 ~ U[0,1]     

   If (α1 > 0.5)  

      xk
rand

= xk
rand

+ α2(uk- xk
rand

) 

    else 

       xk
rand

= xk
rand

- α2(xk
rand

-lk) 

End for 
 

    We completely modified Local method used in [20]. This 

method is used for gathering local information around the 

current best solution in population. In fact, this is random 

search employed on one component of x
best

. After choosing 

random component of x
best

 (denoted as 
best
randx  ), and random 

solution from the population x
rand

, the following expression is 

applied: 
 

                 
)xx(*   x best

rand
rand
rand

best
rand  1 ,                  (10) 

 

where φ1 is random number between -0.1 and 0.1. If one 

component modification of x
best

 gives better result, enhanced 

current best solution is retained. Similar principle is also used 

in [24] in mutation operator implementation. 

The algorithm is terminated when one of the following 

conditions is verified: 
 

                |ff|ornfenfe bestworstmax
               (11)            

 

where nfe represents the counter for the number of objective 

function evaluations, nfe
max

 is the maximum number of 

function evaluations allowed, and ε is a small positive 

tolerance. The values fworst and f
best

 were previously defined 

in (4). 

IV.   SOFTWARE IMPLEMENTATION 

We have developed and tested our software implementation 

for modified AFS algorithm which we entitled mAFSs 

(modified AFS system). We coded software in object-oriented 

fashion and used multiple threads execution. With object-

oriented design, software scalability is improved, and so, 

implementation of new programming logic for different 

optimization problems would take less time.  

We used approach similar to global parallel EA where the 

only one population of candidate solution is employed. The 

only difference between this and our approach is in the level of 

parallelization. While global parallel EA explicitly parallelize 

fitness function computation and genetic operators’ appliance, 

we implemented parallelization on the level of individual 

solutions. In our approach, each solution executes in its own 

thread. Similar software which parallelized algorithm’s runs 

was proposed for the Artificial bee colony (ABC) algorithm in 

[25]. 

We developed software in C# using the.NET Framework 

4.0. We chose C# as programming language because of its 

obvious advantages over C, C++ and JAVA.  

We used many classes which are tightly connected. We 

wanted to make the adaptation process of our algorithm to new 

optimization problems easy, so we created abstract class 

MAFSAbastract which is later inherited by problem specific 

classes like in [25].  MAFSHAbastract has all above 

mentioned main methods (see Section 3). We also use Boolean 

methods called CheckVisualScope and CheckStagnation which 

check whether “visual scope” is empty or crowded and if 

stagnation occurs respectively.  CheckVisualScope returns 0 if 

“visual scope” is empty and otherwise returns 1. Analogically 

is done in CheckStagnation function. The most important 

method in our algorithm is Run which encapsulates all other 

methods and enables multi-threaded functionality. Leaping 

criteria check is implemented as a simple line of code in this 

method. Pseudo-code for Run method is given below (for 

simplicity reasons, details about multi-threaded functionality 

are omitted):  
 

Initialize 

t=0 

Repeat 

 For ((each x
i 
(t)) 

      If((CheckVisualScope=0)) 

          y
i 
(t) = Random(x

i 
(t)) 

       else if ((CheckVisualScope==1)) 

          y
i 
(t) = Search(x

i 
(t)) 

       else  

         y
i 
(t) = best of Swarm(x

i 
(t)) and Chase(x

i 
(t)) 

     End for 

     x
i 
(t + 1)(i = 1, . . .,m) = Select(x

i 
(t), y

i 
(t) (i = 1, . . .,m)) 

     If ((CheckStagnation==1) or (t mod  )==0) 

       x
rand

(t + 1) = Leap(x
rand

 (t + 1)) 

     x
best

 (t + 1) = Local(x
best

 (t + 1)) 

t=t+1 

Until stopping criteria is met 

 

 Screenshot of basic Graphical user interface (GUI) of 

mAFSs can be seen in Fig. 1. From Fig.1 we can see that user 

can adjust multiple parameters of the modified AFS algorithm. 

Other parameters are hard coded into the software and cannot 

be changed by the user.  For simplicity reasons, parameters are 

divided into two groups: mAFSs control and problem specific 

parameters.  
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Fig. 1 Screenshot of mAFSs GUI 
   

Control parameters are: 
 

 visual Parameter (δ) is positive visual parameter         

(δ >0); 

 crowded Parameter (θ) is fraction of the fish that 

defines crowded situation; 

 reduction Factor (πδ) if factor by which δ is reduced as  

iteration proceed; 

 runtime defines number of algorithm’s runs.  
 

Problem specific parameters are: 
 

 no. of parameters (n) is the number of parameters of   

the problem to be optimized; 

 lower Bound (l) is lower bound of problem parameters; 

 upper Bound (u) is upper bound of problem 

parameters.  

V.   OPTIMIZATION EXPERIMENTS AND BENCHMARK RESULTS 

 All tests have been performed on Intel Core2Duo T8300 

2.4Ghz mobile processor with 4GB of RAM on Windows 7 

Ultimate x64 Operating System in Visual Studio 2010 and 

.NET Framework 4.0 environment. Only operating system, 

Visual Studio system processes and mAFSs process have been 

executing during the tests.  

The bound constraint optimization problems in this paper 

follow the form: 
 

              minimize f(x) subject to  x                        (12) 
 

where x is a continuous variable vector with domain   R
n
, 

and f(x) :   R is a continuous real-valued function. The 

domain  is defined within upper and lower limits of each 

dimension [26].  

 For testing purposes, we used standard five unconstrained 

benchmark functions: 
 

   Ackley; 

 Griewank; 

 Rastrigin; 

 Rosenbrock; 

 Sphere. 

Parameter range and formulation of above enlisted 

benchmarks are given in Table I.  
 

Table I.  Benchmark functions summary 
 

Function Range Formulation 

 

Ackley 

 

[-32,32]
n
 ex

n
x

n

n

i
i

n

i
i

 



20))2cos(
1

exp()
1

2,0exp(20

11

2   

 

Griewank 

 

[-600,600]
n
 1)cos(

400

1

11

2 


n

i

i
n

i
i

i

x
x  

Rastrigin 

 

[-

5.12,5.12]
n
 

]10)2cos(10[
1




i

n

i

n
i xx   

Rosenbrock [-100,100]
n
 ])1()(100[ 222

1

1
1 




 ii

n

i
i xxx  

 

Sphere 

 

[-100,100]
n
 



n

i
ix

1

2  

 

We ran two sets of test for each benchmark problem, first 

with 10 runs, and second with 30 runs, each starting from an 

independent population with a different random number seed. 

We wanted to see how runtime effects algorithm’s 

performance.  

 Values for parameters which are not adjustable by the user 

(hard coded parameters) are set like in [23]. The number of 

fish (m) in the population depends on n (number of problem 

parameters), where m=10n. We used fixed values for nfe
max

 = 

250000, ε = 10-4 and η=10-8. Leaping control parameter  is 

set to 5 which mean that at in least each fifth iteration 

exploration is performed. Because of this parameter is added 

in our version of the algorithm, we wanted to see how it affects 

performance, so we run additional test with   set to 3. These 

results will also be showed in this Section.  

  Values for parameters which can be controlled through 

software’s GUI (see Fig.1) are shown in Table II and Table III. 

For all four benchmarks we used the same values for problem 

specific parameters. 

   For each benchmark, we show best, mean and standard 

deviation results. Tests for 10 and 30 runs are shown in Tables 

IV and V respectively.  
 

Table II  Control parameter values 
 

Parameter Value 

Visual Parameter ( δ ) 1 

Crowded Parameter ( θ) 0.8 

Reduction Factor ( πδ ) 0.9 

Runtime 10/30 

 

Table III  Problem specific parameter values 
     

Parameter Value 

No. of parameters (n) 100 

Lower Bound ( l ) -100 

Upper Bound ( u ) 100 
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 As we can see from Table IV and Table V, mAFSs obtains 

satisfying results for all presented benchmarks and can be 

compared with other algorithms and software systems like the 

one presented in [25].  

All runs in conducted experiments were stopped with nfe
max

 

= 250,000 as mentioned before. Comparative analysis of 

results with 10 and 30 runs (Table IV vs. Table V) lead to the 

conclusion that the performance of the algorithm is not 

affected by the number of runs. Almost all results are similar 

with very small digression which can be neglected.  The only 

noticeable difference is observed in tests with Griewank and 

Sphere function. In the first case, bests obtained with 10 and 

30 runs differ by the factor of 10
-1

. In Sphere benchmarks, 

mean results differ by the same factor.  
 

Table IV  Optimization results for 10 runs 
 

Function  Results 

Ackley 

 

Best 

Mean 

Stdev. 

5.88E-4 

0.005 

0.003 

Griewank 

Best 

Mean 

Stdev. 

1.13E-8 

2.09E-6 

2.15E-6 

Rastrigin 

Best 

Mean 

Stdev. 

8.75E-4 

8.31E-3 

2.34E-3 

Rosenbrock 

Best 

Mean 

Stdev. 

2.15E-2 

0.018 

0.077 

Sphere 

 

Best 

Mean 

Stdev. 

2.15E-5 

0.23E-3 

6.88E-4 
 

 

 

Table V  Optimization results for 30 runs 
 

Function  Results 

Ackley 

 

Best 

Mean 

Stdev. 

1.18E-4 

0.004 

0.003 

Griewank 

Best 

Mean 

Stdev. 

8.97E-9 

0.13E-6 

1.81E-6 

Rastrigin 

Best 

Mean 

Stdev. 

3.62E-4 

2.15E-3 

1.15E-3 

Rosenbrock 

Best 

Mean 

Stdev. 

1.02E-2 

0.011 

0.056 

Sphere 

 

Best 

Mean 

Stdev. 

1.99E-5 

8.77E-4 

4.12E-4 
 

As mentioned above, to measure the impact of newly added  

parameter on algorithm’s performance, we conducted another 

test with 30 runs, but now  is set to 3 as opposite to 5 like in 

previous tests with different runtime values. With the decrease 

of leaping control parameter, exploration power is elevated 

and at least, in each third iteration random search occurs. 

By comparing Tables V and VI, where   is set to 5 and 3 

respectively, we conclude that this parameter does not have 

strong impact on the performance. It has slightly improved 

best, means, as well as standard deviation results in tests with 

all five benchmark functions. 
     

Table VI  Optimization results for 30 runs with   set to 3   
 

Function  Results 

Ackley 

 

Best 

Mean 

Stdev. 

0.223E-4 

0.004 

0.003 

Griewank 

Best 

Mean 

Stdev. 

4.24E-9 

0.05E-6 

0.99E-6 

Rastrigin 

Best 

Mean 

Stdev. 

1.33E-4 

0.75E-3 

1.85E-3 

Rosenbrock 

Best 

Mean 

Stdev. 

7.33E-1 

0.009 

0.031 

Sphere 

 

Best 

Mean 

Stdev. 

0.85E-5 

6.39E-4 

4.25E-4 
 

VI.   CONCLUSION 

In this paper, we presented our implementation of a 

modified AFS algorithm for solving unconstrained 

optimization problems. Our algorithm differs that the one 

proposed in [20]. We introduced additional parameter which is 

called leaping control parameter ( ) in order to maintain 

diversify in the population. Also, we modified local search 

procedure around the current best solution. Object-oriented 

design and appropriate GUI of presented software system 

allow for easy modifications and adjustments to different 

optimization problems. The performance of the modified AFS 

algorithm was tested on several well-known benchmark 

functions with different number of runs and different sets for 

 . The algorithm has shown its potential to handle various 

unimodal and multimodal test functions. As a part of our future 

work, we are interested in exploring other benchmark and real 

life problems. 
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