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Equilibriums and Periodic Solutions of Related
Systems of Piecewise Linear Difference
Equations

Wirot Tikjha, Yongwimon Lenbury, Evelina Giusti Lapierre

Abstract—In this paper we consider three systems of piecewise
linear difference equations where the initial condition for each
system is an arbitrary point on the real plane. For one system we
show that there exists exactly two prime period-6 solutions, and that
every solution of the system is eventually one of the two prime
period-6 solutions except for equilibrium point. For the remaining
two systems we show that every solution of each system is the
unique equilibrium solution.

Keywords—periodic solution; systems of piecewise linear
difference equations.

I. INTRODUCTION

N recent history there has been a surge of interest in

difference equations. Rational difference equations are used
in predator-prey models [1], [2], [3], and echo and
reverberation models [4]. Linear difference equations are used
for modeling weather patterns [2], [5], [6] and neural
networks [7]. During the last three years we have been
particularly interested in the global behavior of systems of
piecewise linear difference equations. This paper is part of a

general project which involves the following system
Xnyl = |xn|+ayn+b
,n=0,1,... (N)
Vil = xn+c|yn|+d
where the parameters a,b,c,d e {—1, 0, 1} and initial

conditions (XO, yO) € ]Rz. There are 81 special cases. The

system’s number N is given by

N=27@+1)+90b+1)+3C+1)+(@+1)+1.
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This family of piecewise linear difference equation are the
prototypes for more elaborate piecewise difference equation
that, in many cases, exhibit complicated behavior. Interest in
the area began in 1984 when Davaney published his famous
paper introducing the gingerbread man map:

Xnp1 = [Xnl-yn+1
,h=0,1,...
Yner = *n
with  parameters a,beR and initial conditions

(Xg: ¥o) € B2 See [8], [9].

The gingerbread man map was Devaney’s response to the
1978 generalized Lozi equation:

Xnel = —a|xn|+ Y +1
,h=0,1,...
Yn+1 bxp
with  parameters a,beR and initial conditions

(Xg: ¥g) € B2 See [21, [3], [3].

The Lozi equation had been used to examine an attractor
that was observed by Lorenz in the Henon map, a non-linear
system of difference equation

2
Xoyl = —&T+yp+l
,h=0,1,...
Yns1 = bXn
with  parameters a,beR and initial conditions

(XO, yO) 1S ]R2 that modeled weather patterns. See [10].

For other systems of this form, see [6], [11], [12], [13],
[14], [15].

II. PROBLEM FORMULATION

Reconsider this family of system
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Xnel = |xn|+ayn+b
,n=0,1,... (N)
Vel = xn+c|yn|+d
We will first share the results of the special case N =1:
Xna1 = [%n[-¥n -1
,n=0,1,... (1
Ynet = %n|yn|-1

where the initial conditions (XO, yO) € ]Rz. We show that

every solution of System(1) is eventually one of the following
period-6 cycles:

X0 =3, Yo =-3
X = 5, i = -1
Xy =5 Y, =3
P61= 2 2
X3 =1, Y3 =1
Xy = l,y4 =-1
Xg =1, Y5 =-3
Xy = ! Yo =-3
0 5’ 0
« _17 y = 13
1 5° 1 5
5 1
X = , = ——
2 2 2 5
P6:
« _21 y 3 19
3 5’ 3 5
3 3
1 11

or the unique equilibrium solution (1,-1).
We next consider the special case when N = 20:

Xoe1 = Py +1
,h=0,1,...

Xn—|yn|

(20)

Ynt1

where the initial condition (Xp> Yp) € ]Rz.We will show that
. w .

every solution {(Xn . ¥Yn )}n:5 of System (20) is the

equilibrium solution, (2, 1).

Lastly, we consider the special case when N =21:
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= |xn|—yn +1
,n=0,1,...

xn—|yn|+1

Xn+1
(21
Ynt

where the initial condition (XO’ yO) € Rz. We will show that

. w .
every solution {(Xn > ¥n )}n:3 of System (21) is the

equilibrium solution, (1,1).
II. RESULT

IIT. A GLOBAL BEHAVIOR OF SYSTEM (1)

Set
Q= {(x ):x20,y20}
Q2= {(X,y): x<0,y>0}
Q3= {(X,y): x<0,y<0}
Q4= {(X,y): x>0,y <0}.

0
Theorem 1. Let {(Xn »¥n )} n=0 be a solution of System (1)

with (XO, yo) € RZ. Then, there exists a non-negative integer

N > 0 such that the solution {(Xn > Yn )} of System (1)

o0
n=N
is either the prime period-6 cycle P61 or the prime period-6
cycle P62 except for equilibrium point.

The proof of Theorem 1 is a direct consequence of the
following lemmas.

Lemma 2. Assume that there is a positive integer N such that

XN =YN 20 Then the solution of System (1),

@ . . . 1
{(xn > Yn )} n=N+1’18 the prime period-6 cycle, Fy.
Proof: Suppose that (XN N ) satisfies the hypothesis, then
XN =XN ~ Xy 1=
YN#1TXN XN =T
1
Hence (XN+1’ yN+1) = (—1, - 1) eP6.
Lemma 3. Assume that there is a positive integer N such that
XN = YN —2<0 and YN S 0. Then the solution of System
o . . . 1
(1), {( Xn>Yn )}n:N 40 the prime period-6 cycle, F.
Proof. Suppose that (XN>YN) satisfies the hypothesis, then
N4 YN F2-YNy D =1
YNpI=TYN T2HYN =3

Hence (XN+1’ yN+l) :(1,—3)eP1.

6
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Lemma 4. Letl = {(x, - 3)|x € R}. Then every solution
{(Xn . ¥Yn )}:o:o of System (1) with an initial condition in L is
eventually prime period-6 solution, P61 or P62 .
Proof. Case 1: Suppose (XO’ yo) el and Xo = 0.

Then X =X +2>0 and Y1 =% —4.

If y1=x0—420, then (X3, y3):(_1’_1)ep61'

Suppose  that Y] =%o— 4<0, then Xy =5 and
Yy = 2XO -3.
Case 1.1: Suppose Yy = 2x0 -320,
3
andso — < Xg < 41, then Xy = —2X0 +7 and
2
Y3 =-"2Xy +7.

3 7
If X3 =Y3 :—2x0+720,(andso ESXO _2j, then by

o . . 1
Lemma 2, {(Xn »Yn )} n=3 18 eventually prime period-6, P6 .
Suppose that X3 =Yz = —2X0 +7<0,

7
(also, — <Xy < 4).
2

We will prove, by mathematical induction, that for
7

Xo € (,4) the solution is eventually prime period-6. For
2

each n>0, let P(n) be the following statement: For

Xo € (an, b ),

4n+2
Xen+4 =2 Xp~%n
Yon+d :—24n+2x0+5n -2<0.

If X0 €(ap,Cpl, then X6n+4 <0. So, the solution is
eventually prime period-6.

If X, € (cn.bp ), then X¢ .4 >0. So,
4n+3

X6n+5 = 2 Xg =20 +1>0

Yon+s ==

Xgrng =2 %) =20 +3> 0
Venee =2 %y 20 =3 <0,
Xon+7 =3

Yone7 = p4n+a Xo —40p — 1.
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If Xo € I:bn+1’bn) , then Yont7 = 0. So, the solution is
eventually prime period-6, P61 .

If X0 e(cn,bn+1),then Yoni7 < 0. So

X648 = pin+4 Xg +40p +5>0
Veneg =2 Xy 40, +3>0,
X6n+9 = _24n+5 X +86p +1
Venng = -2 %y + 857 +1.

If Xo € (Cn,an+1:| , then X6n+9 = Y6n+9 >0. So,

o0
{(Xn »¥Yn )} =0 is eventually prime period-6 solution, P61 .

If Xo € (an+1’bn+l)’ then
4n+5

%6149 = Y6n+9 =-2 X0 +8d +1< 0, where
. :19xz4:n+il—3’ - 19><24:n+1’
5%x2 5%x2
19x24M2 4 19x24M2 4
gt T

We shall show that P(0) is true . For

X0 e(ao,bo):(;4j and

X3 =Yy = —2XO +7 < 0. Thus, we have

. _ ,4(0)+2
x6(0)+4—x4—4x0—15—2 xo—do,
x6(0)+4:y4:—4x0+13

_ ,4(0)+2
=-2 x0+§0—2<0.
7 15
If XOE(aO’CO:I:(z’4:|’ then x4:4x0—15£0. By

o0
Lemma 3, {(Xn,yn )} ned is eventually prime period-6

. 1
solution P6 .

15
If X0 G(CO’bO):(4’4)’then X4 =4xO —15> 0. Thus,

we have
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_ _ ,4(0)+3
x6(0)+5—8x0—29—2 x0—250+1>0

Yo(0y+s =3

_ _ ,4(0)+3
X6(0)+6_8X0_27_2 x0—250+3>0

_ _ 4(0)+3
y6(0)+6—8x0—33—2 x0—250—3<0,

X6(0)+7 =°

_ _ ,4(0)+4
y6(0)Jr7 —16x0—61—2 x0—450—1.

61
If X0 e[bl,bo}:[mAj,then X6(0)+7 :16X0 -61>0, so

—16X0+65>0. By Lemma 2,

X6(0)+8 = Y6(0)+8 =

{(xn »Yn )} ::9 is prime period-6.

15 61
Ifyo e(co,bl):(4,16),then

X6(0)+7 = 16XO —61<0. Thus, we have

Xs(0)sg = ~16% +65 = HO+4 Xo +465+5>0
Yeoprs =16% 57 = yHO)+4 Xo — 46 +3 >0,
X(0y19 = 32X +121 = HO+S Xo + 83 +1
Ye(oyro = —32%9 +121 = HOF3 Xo +88y +1.

15 121
If Yo e(co,al} =(4,32]Then

—32x, +12120. So, by Lemma 2

X6(0)+9 = Yo(0)+9

{(Xn’ Yn )}

If Yo e(al,bl):(ﬂ,mj,then

32y, +121<0.

0

n=10 js eventually prime period-6, P61 .

X6(0)+9 = Y6(0)+9 =

Hence P(0) is true.
Next, we assume that P(N) is true for some positive integer
N >1. We shall show that P(N+1) is true. Since P(N) is true,

—24N+5x0 +85) +1<0,

«2IN+5 3 g, p4N+4 +1J

5><24N+5 K 5><24N+4

X6N+9 = Y6N+9 = where

X0 € (aN+l’bN+l) :[19

Then
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4N+6

Xo(N+1)+4 = X6N+10 =2 Xo —16dy =3
_ JA(N+D)+2
=2 X0 ~ON+1
AN+6
Yo(N+1)+4 = YoN+10 =2 Xp +160y +1
_ SAN+D+2
=-2 Xo + 5N R 2
AN+6
19x2 “11
= —24N+6 x0 +[X] < 0.
5
Note that
5 _19x24N+6—1_19x24N+6—16+15
N +1 5 5 5
=165y +3.
If
(19528 N5 _3 192Ny
Xoe(aN+rCN+1]— 4N+5 IN+6 |’
5x2 5x2

4N+6
4AN+6 19x2 -1

w . .
By Lemma 3, {(xn . ¥Yn )}n=6 N+10 S eventually prime

period-6, Pﬁl.
4N+4
+1

s ANF |

«2IN+6 1900

19
5><24N+6 >

Ifxo€(°N+rbN+4):

_4N+6 19x24N+6 4
then X6N 410 =2 Xo — f > 0.

Thus, we have

X6(N+1)+5 = X6N+11

_ JAN4D)+3

=2 x0—25N+1+1>0
Yo(N+1)+5 = *6N+11= >
X6(N+1)+6 ~ X6N+12

L 4(N+1)+3

=2 x0—25N+1+3>0

Yo(N+1)+6 = Y6N+12

_SAN+D+3
=2 X0 _25N+1 -3
4N+7
19x2 +13
:24N+7X0_(XJ<0’
5

X6(N+1)+7 = X6N+13 =2

326
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Yo(N+1)+7 = Y6N+13

_4(N+1)+4
=2 Xo — 40N 1
If
y [b - 19x2¥N+8 1 19 ptN+4
(S . = )
0 N+2> "N+l 5><24N+8 5><24N+4
then
_4(N+1)+4
YoN+13 = 2 Xg ~ 40N 41 1
4N +8
19x2 +1
=24N+8X0_(XJ20,
5
4N+8
XeN+14 = 2 Xo T 40N 4 5
AN+S 195 24N+8 o)
=-2 Xo+t| —————— >0
5
4N+8
YeN+14 = 2 Xg +40N4 +5>0. By Lemma 2,

e}
{(Xn >Yn )} n=6N+14 is eventually prime period-6.
If

Xo € (CN+1’bN+2) :(19

x2#NFO 1 g, p#N+8 +1]

5 2#N+6 5 2 NT8
then
_ JA(N+D)+4
YeN+13 =2 Xp ~ 4041 1
AN 48 19x 24N+
=2 XO— — | <0.
5

Thus, we have
X6(N+1)+8 = X6N+14
_ SAN+D+4
=-2 x0+46N+1+5>0
Yo(N+1)+8 = Y6N+14

_ SAN+D)+4
=2 X0 —45N at 3

AN4S 19x24N+8 19
=2 il E— >0,
5

_ S AN+D+5
X6(N+1)+9 = X6N+15 = ~2 Xp +80N 4 +1

Yo(N+1)+9 = Y6N+15 = 4N+ Xp +80N 4 +1
If
19x 24 NH0 1 19, p4N+9 5
X0€(°N+1""‘N+2]:( S ANF6 T ANT9 |
then
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X6oN+15 = Y6N+15

4(N+1)+5

=-2 x0+85N+1+1

4N+9
19%2 -3
=_24N+9+(XJ20.

5

e¢]

By Lemma 2, {(Xn’yn)}n:6N+15 is eventually prime

. 1
period-6, P6 .

If
) (a . ) 19x2¥N+9 3 g, p4N+8
e 9 = 9 9
0 N+2°“N+2 552 3N+9 5 N+8
then
X6oN+15 = Y6N+15
_ JA(N+D+5
=2 x0+85N+1+1
4N+9
19%2 -3
_—24N+9x0+ . <0
5

Hence, P(N+1) is true. By mathematical induction, P(n) is true
for alln>0.

. . 19
lim by = lim ¢y =—.
o0

Note that lim a, =
n— n—o n— 5

19
We also note that if (Xo,y0)=(—,—3), then
5

3 3 )
X2, Y2 ) =| ——,—— | P;.
(3 3) [ 5 5) 6
3
Case 1.2: Suppose y, =2xy—-3<0,| andso0< xy <— |,
2 0 (N
then Xy :—4X0 +5 and Yy :—4XO +5.
5 >
If x,e O,Z , then x4:y4:—4x0+5_0. So we
© . .
apply Lemma 2 and {(xn, Yn )}n: 4 1 eventually prime

. 1
period-6, P6 .

Suppose that x,e|—,—|. We will prove, for
071472

4 2
by mathematical induction. For each n>0, let Q(n) be the

53
Xo € (—, —j, that the solution is eventually prime period-6

following statement: For Xo € (dn ,€n ) s

4n+3
X6n+s5 =2 X0 ~%n
4n+3

Yonis = 2 X +on—2<0.
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0

If X, e(dn, fn], then X¢.. s <0. So, {(xn, yn)}nzo is

eventually prime period-6, P61'

If X0 e(fn,en),then X6n+5 >0. So

Xgrog =2 xg ~20m +1> 0
Yon+6 = =

Xon+7 = 24n+4 ) -20n+3>0
Yener =2 %y~ 20 -3 <0,
X6n+8 =2

Yon+s = 24n+5 X0 —4opn -1

If Xg € [en+1’ en), then Yon+g = 0, So the solution is
eventually prime period-6, P61'

If Xo € ( f, en+1) , then Yonsg < 0. Thus, we have

_p4n+5

X6n+9 = Xg +4opn +5>0

4n+5

=2 x0—4an+3>0,

4n+6
X6n+10 = 2

24n+6

Yén+9

X +80p +1

y6n+10:_ XO+80n+1.

If Xo e(fn,dm_l], then X6n+10 = Yon+10 = 0, and so

1
P6'

If X0 E(dn+l’ en+1), then Xon+10 = Yon+10 < 0, where

7242 4 75240+

dn = N En =
5 ><24n+2 5 24n+1

7y 04M+3 4n+3

5% 24n+3 5
The proof is similar to the previous case. We can conclude

that Q(n) is true for all N> 0.

the solution is eventually prime period-6 solution,

>

Tx2 1
N O-n: .

fn:

Note that lim dn = lim ey = lim fp =
ote that_lim dp im ep im f,

N—o0 nN—o0

[N

7
We also note that (—, - 3) € P62.
5

Case 2: Let (XO, yo) el and Xg <O. Then Yo = -3. Thus,

Xy ——2x0+5>0and y, =-3.
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We see that (X2’y2) el and Xy > 0. By Case 1, every

. o0 . . . 1
solution {(Xn, Yn )} n=p 18 eventually prime period-6, P6 or
2
R - 0

of system (1) with

Lemma 5. Every solution {(Xn > Yn )}:1020

initial condition in Qp is eventually prime period-6, P61 or
2
P -

Proof. Let (XO’ yo) € Q1 Then Xg =20 and Yo = 0. Hence,

X =% Yo ~!
Y1=% Yo~ 1
If Xlzylzxo—y0+120, then by Lemma 2,

1

(. v,) e s

If X| :ylzxo—y0+1<0,then

Xy =—2x0+2y0+1

Yy :2x0—2y0—3<0.

If X, :—2x0+2y0+1:—y2—2s0, then by Lemma 3,
1

(¥, ) F-

If Xy =—2x0 +2yO +1>0, then

X3 :—4x0+4y0 +3,

Y3 =-3. Hence by Lemma 4, the solution is eventually

2
P6'

prime period-6, P61 or 0
. w .

Lemma 6. Every solution {(Xn > Yn )}n:O of System (1) with

initial condition in Q3 is eventually prime period-6, P61 or
2

P -

Proof. Let (XO’ yo) € Q3. Then X < 0 and Yo < 0. Hence,

X ==X~ Y1

ylzx0+y0—1<0,

Xy ==3.

By Lemma 4, the solution is eventually prime period-6,
1 2

P6 or P6 . u

o0
n=0 of System (1) with

an initial condition in Q, is eventually prime period-6 solution

Lemma 7. Every solution {(xn, Yn )}

period-6, P6l or P62 .
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Proof. Let (XO’ yO) €Q, . Then Xg < 0 and Yo < 0. Hence,
X ==Xy = Yo —1
ylzxo—y0—1<0.
Case 1: Suppose X ==Xy =Y —1< 0 then,
Xy :2y0 +1>0
Yy :—2y0 -3<0,
y3==3.
By Lemma 4, the solution is eventually prime period-6, P61 or
RZ.
Case 2: Suppose X ==Xy = Yo —-1>0 and so —Xo > 1.

Then,
Xy == 2x0 -1>0

y2=—2y0—3<0,

X3 :—2x0+2y0+1>0

Y3 = —2xO —2yO -5.
If y3= —2X —2y0 —52>0 then
Xy :4y0 +5>0
V4= 4y0 +5>0.
By Lemma 2, the solution is eventually prime period-6, P61 .
If Y3 ==2Xy =2y, —5<0, then
X4 =4y0 +5>0
y4:—4x0—5.
f < > < h
I y4=—4x0—5_0, andso—Z_ X0 <—1{, then
X5 =4X, +4yy+9>0
Y5 :—4x0 +4y0 -1>0.

By Lemma 5, the solution is eventually prime period-6, P61 or

5
P62' If Y4 :—4X0 -5>0, (andso X0 <—4j, then

Xg :4x0 +4y0 +9
Y5 = 4x0 +4y0 +9.
If X5 =Y5 2 0, then by Lemma 5, the solution is eventually

. . 1 2
prime period-6, P6 or P6 .
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If X5 =Yz < 0, then by Lemma 6, the solution is eventually
prime period-6, P61 or P62' O

Lemma 8. Every solution {(Xn > ¥Yn )} of System (1) with

o0
n=0
an initial condition in Qq is eventually prime period-6, P6l or
RZ.

Proof. Let (XO’ yo) €Qy, Xg >0 and Yo <0. Then,

X :‘Xo“ Yo —1 =%y =Y ~1

Y1 =% —‘yo‘—l =Xg+ Yy~ L-

If (Xl’ yl) € ]Rz \Qq, we apply the above lemmas to
conclude that the solution is eventually prime period-6. For
the case that x = Xg — Yo —1>0 and y, = Xg+ Yo —1<0,
then

Xy :‘xl‘— Y1 -1 = —2y0 -1

V=% = |y -1=2% 3.

If (XZ’ y2) € Rz \Qy, we apply the above lemmas to

conclude that the solution is eventually prime period-6. For
the case that x, =-2y,-1>0 and y, = 2%y —3<0,

3
(and S0 Xy < 5 and Yo<— %j, then

X3 =‘x2‘— Yy —1 = -2x) 2y, +1
ysz"z“yz“lzz"O‘ZVo‘S-

If (X3, y3) € Rz \Q4 , we apply the above lemmas to

conclude that the solution is eventually prime period-6. For
the case that X3 = —ZXO - 2y0 +1>0 and
y3= ZXO —2y0 -5<0, then
Xy = ‘x3‘— y3 =1 =—4xy+5
Ya=%3 “V3“1 =4 >

If (X4,y4)e]R2\Q4, we apply the above lemmas to

conclude that the solution is eventually prime period-6. For

the case that Xy = -4 X + 5>0 and

5 5 1
y4:—4y0—5<0(andso X<z and -z< y<—§),then
xsz‘x4‘— Y -1 =-4xy +4y,+9

Y5 =%y “y4“1:‘4x0 —4Y -1
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If (XS’ yS) € Rz \Q4 , we apply the above lemmas to

conclude that the solution is eventually prime period-6. For

the case that X5 = —4X0 + 4y0 +9>0 and

y5:—4x0—4y0—1<0,ﬂwn
x6zhﬁ—y5—1:8y0+9
Ve = Xs |vs|-1= 8%, ~7.

If (x6,y6)eR2\Q4, we apply the above lemmas to

x6:8y0+9>0 and y6:—&%+7<0,

1).

conclude that the solution is eventually prime period-6. For
2

the case that
> d
and Yy, €
4 0

>

J

the solution of System (1) is eventually prime period-6, P61 or

and so Z

<X <§wmd—2< <
g <%0 <3 g <%0

1

"2

(

7
We will prove that for X0 e( ,
8

P62 by Mathematical induction.
For each n > 0, let P(n) be the following statement: For
X0 e(an,bn) and Yo e(cn,dn)

4n+3 4n+3
Xene7 = 2 Xp +2 Yo +1

4n+3 4n+3
Y8n+7 =-2 Xp +2

such that Xgn47 18 positive and Ygn47 18 negative.

Yo +%n>

Otherwise, the solution is eventually prime period-6, P61 or

P62‘ If Xen+7 is positive and Yan+7 is negative, then

_ ,4n+4
g =2

224n+4y0_+5h’

X8+ x0<—5h

Y8n+8
such that Xen+8 is positive and Ygn+8 is negative when
Xo € (en s bn) and yp € (Cn ,—€n ) Otherwise, the solution
is eventually prime period-6, P61 or P62‘

If Xen+8 is positive and Ygn+8 is negative, then

4n+4 4n+4
X8n+9::2 xO-—Z yO-—(Zéh-+1)
x0+2 yO—L

4n+4 4n+4
Ygn+o =2

such that X8n+9 is positive and Y8n+9 is negative.
Otherwise, the solution is eventually prime period-6, P61 or

P62' If Xn+9 is positive and Y8n+9 is negative, then
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4n+5

Xene10 =2 Yo~ (200 +1)
4an+5

Ysnaro =2 %o~ (200 +3),
such that Xen+10 is positive and Y8n+10 is negative when

Xg € (en, fn) and Yo € (Cn , dn +1) . Otherwise, the solution

2
P6'

If Xen+10 is positive and Y8n+10 is negative, then
4n+5 4n+5

is eventually prime period-6, P61 or

x0—2
4n+5

y0+1

Yan+11 = 0 Yo —(40n +5),

such that Xen+11 is positive and Yan+11 is negative.

Xen+11 = 2

24n+5x 9

Otherwise, the solution is eventually prime period-6, P61 or

2
P -
If Xgn111 is positive and yg ., is negative, then
4n+6
Xgnel2 = 2 x0+(4@1+5)

4n+6
Yeni12 =2 Yo~

such that Xen+12 is positive and Y8n+12 is negative when

(45n-+5),

X € (en, bn+1) and Yo € (—bn+1, dn+1) . Otherwise, the
solution is eventually prime period-6, P6l or P62 .

If Xg, 115 is positive and Yan+12 is negative, then

4n+6 4n+6
-2 X0-+2 Yo +

4n+6 4n+6
Ygni13 =2 X—2 Yo~ L

such that Xen+13 is positive and Yan+13 is negative.

X8n+13 = (83n +9)

Otherwise, the solution is eventually prime period-6, P61 or

2
P -
If Xen+13 is positive and Yn+13 is negative, then
4n+7
Xana1a =2 Yo +(8n +9)
4n+7
Yonsia =2 Xo+(86h +7).

such that Xen+14 is positive and Yon+14 is negative when
Xo € (an+1, bn+1) and Yo € (Cn+1, dn+1)' Otherwise, the

solution is eventually prime period-6, P61 or P62 where
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o T
2 2 2
e
2 2 2
S = Hantd
We shall show that P(0) is true. For

75 9 1
Xoe(a()abo):(gaz)a yO G(COado)z(_g,_E) and
= 8%y +7 <0. Then
_ 24(0)+3 X+ 24(0)+3

X6 =8y0+9>0, Yg

x7:8x0+8y0+1 y0+1

4(0)+3 4(0)+3
y7:—8x0+8y0+15 =-2 ©) x0+2 (0)

Yo t 51 ,
where X7 is positive and Y7 is negative. Otherwise, we apply

the above lemmas to conclude that the solution is eventually a
prime period-6.
If X is positive and Y7 is negative, then

_ _ ,4(0)+4
XQ —16x0 -15 =2

_,4(0)+4

X0 +§1

y8:16y0+15 y0+§1,

where Xg is positive and ¥g is negative when Xg € (eO’ bO)

and yp € (CO’ —eo). Otherwise, we apply the above lemmas

to conclude that the solution is eventually a prime period-6.
If g is positive and ¥g is negative is negative, then

L4(0)+4 o - 4O+

Xg =16x) —16y, —31= o~ (261+1)

4(0)+4 o + A0+,

y9:l6x0+16y0—1 =2 -1,

0
where Xy is positive and ) is negative. Otherwise, we apply

the above lemmas to conclude that the solution is eventually
prime period-6 solution.

If Xy is positive and 1) is negative, then

4(0)+5
Xjp =32y —31=-2 Yo —(261+1)
Vi =32%-33 =2% 0% —(26143),
where X0 is positive and Y10 is negative when

X € (eo, fO) and Yy, € (CO’dl)' Otherwise, we apply the
above lemmas to conclude that the solution is eventually
prime period-6.

If X10 is positive and Y10 is negative, then

_ — ,4(0)+5 4(0)+5
xll_—32x0—32y0+1_—2 x0—2 %

40S40S,

0+1

V1= 32x0 —32y0 - 65
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0 —(451+5),

where X1 is positive and Y11 is negative. Otherwise, we

apply the above lemmas to conclude that the solution is
eventually prime period-6.

If X1 is positive and Y11 is negative, then

4(0)+6
X[y = —64% +65= -2 Xo +(460+5)
4(0)+6
Yo =64y, —65 =-2 © Yo —(450+5),
where X\ is positive and Y12 is negative when

Xg € (eO’bl) and yp, € (_bl’ dl)' Otherwise, we apply the
above lemmas to conclude that the solution is eventually
prime period-6.

If X1 is positive and Y12 is negative, then

4(0)+6 4(0)+6
X3 = ~64% + 64y +120= 2 OO OOy 1 (8540)

06, H0)+6

yl3=—64x0—64y0—1 = yO—l,

where X 3 is positive and Y13 is negative. Otherwise, we

apply the above lemmas to conclude that the solution is
eventually prime period-6.

If X3 is positive and Y13 is negative, then

4(0)+7
X4 =128y, +129 =2 © Yo +(880+9)
Vg = —128%y +127 =28 Oy 1 (859+7),
where X4 is positive and Y14 is negative when

X0 e(al’bl) and Yy e(cl,d ) Otherwise, we apply the

above lemmas to conclude that the solution is eventually
prime period-6. Hence P(0) is true.

Next, we assume that P(N) is true for some Ne N . We
shall show that P(N+1) is true.

Since P(N) is true, for

) ) 24N+7_1 24N+6+1
XOE(""NH’ N+1)‘ LANFT TLANTG |
. B _24N+7_1 —24N+7+1
yOE(CNH’ N+1)_ LANST AN )
4n+7
Xen+14 =2 Yo +(8§n +9)>0, and
Yreta =2 %y + (850 +7) < 0. Then
_ _24N+7 24N+7 1
XQ(N+1)+7 = *8N+15 = Xo * Yo *
_ 24(N+1)+3 X + 24(N+1)+3 Yo + 1,
4N+7 4N+7
Y(N+1)+7 = Y8N+15 = 2 Xo t2 vo + (165 +15)

4(N+1)+3 4(N+1)+3
:_2 X0+2 y0+5N+1
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2
If (XS(N+1)+7’ y8(N+1)+7) eR \Q4, then we apply the

above lemmas to conclude that the solution is eventually
prime period-6. For the case that

(XS(N+1)+7’ Y(N +1)+7) € Qy, then
4(N+1)+4
XS(N+1)+8 = XN +16 = 2 X0~ ON41
4(N+1)+4

Y8(N+1)+8 = Y8N+16 =2 Yo T ON41-

2
If (X8(N+1)+7’ y8(N+1)+7)ER \Q4, then we apply

the above lemmas to conclude that the solution is eventually
prime period-6. The case when

b . LAN48 | 4N+6
Xoe(eN+1’ N+1)_ LANA8 T aN+6 » and

_24N+7 -1 _24N+8 +1J
, we

yOE(°N+1"‘3N+1):£ LANFT T AN+8

have X8(N+1)+8 >0 and y8(N+l)+8 <0, then

4(N+1)+4 4(N+1)+4

Xp =2 Yo~ (20N 41 +1)
4(N+1)+4

X§(N+1)+9 = 2

4(N+1)+4
Yg(N-+1)j+9 =2 X +2 Yo~ 1.
2
If (XS(N+1)+9’ y8(N+l)+9) € R"\Qy, then we apply the

above lemmas to conclude that the solution is eventually
prime period-6.

It (XS(N+1)+9’ y8(N+1)+9) €Qy, then
4( N +1)+5
XS(N+1)+10 = —2 Vo —(20n41 +1)
4(N+1)+5
Y8(N+1)+10 = 2 X~ (20N +3)-
It (XS(N+1)+10’ y8(N+1)+10)€R2 \Qy, then we apply

the above lemmas to conclude that the solution is eventually
prime period-6. The case when
AN+8

. 1 2N
XOE(eN+1’ N+1)‘ JANTS AN »and

_24N+7 _1 _24N+11 41
> » We
24N+7 24N+11

yOE(CN+1’dN+1):(

have X8(N+1)+10 > (0 and y8(N+1)+10 < 0. Then
4(N+1)+5 4(N+1)+5
-2 Xy —2

X§(N+1)+11 = 0 Yo +1

4(N+1)+5 4(N+1}+5
Yg(N+1)+11 =2 X0 =2 Yo ~ (4941 +5)
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2
If (X8(N+l)+11’ y8(N+1)+11)€R \Qy, then we apply

the above lemmas to conclude that the solution is eventually
prime period-6.

it (X8(N+1)+1 1> Y8(N+1)+1 1) € Qy, then

N6, +(40y4 +5)

Yo _(45N+1 +5)~

If (XS(N+1)+12’ yg(N+1)+12) eR> \Q,. then we apply

the above lemmas to conclude that the solution is eventually
prime period-6. The case when

X(N+1y+12 = 2
4 N+1)+6
Y8(N+1)+12 = 2

b ) LANH8 | LANHO
Xoe(eN+1’ N+2)_ 4N+8  .4N+0  |-and

2 2

ANHO 4N+ +1J

4N+10 > ,4N+11

yoe(_bN+2’dN+2):( N 5

we have X8(N+1)+12 > 0and y8(N+l)+12 < 0. Then

4( N +1)+6 4( N+1)+6
X(N-+1}+13 = 72 Xp+2 y0*(85N+1 +9)

4(N+1)+6 4(N+1)+6
Yg(N+1)j+13 = 72 X =2 Yo !

2
It (X8(N+1)+13’ y8(N+1)+13)€R \Qy, then we apply

the above lemmas to conclude that the solution is eventually
prime period-6.

If (X8(N+1)+13’ Vg(N+1)+13) €Qy - then
4(N+1)+7
(N Yo +(80N41 +9)
4(N+1)+7
X0 +(8§NJrl + 7).

2
It (XS(N+1)+14’ y8(N+1)+14) €R7\Qy, then we apply

the above lemmas to conclude that the solution is eventually
prime period-6. The case when

SN, 24N+10+1J

XS(N+1)+14 =2

YR(N+1)+14 = 2

XOe(aN+2’bN+2):£

LANIT * 4N+10
; . AN AN+
yOE(CN+2’ N+2)_ LANHTT  4N+IT | we

have Xg N 1)114 >0 and Yo N 1)414 <O

Hence P(N +1) is true. By mathematical induction P(n) is
true for all n> 0.

Note that
lim a, = lim by = lim ¢y = lim f, =1
n—oo N—oo n—o Nn—o0
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and lim ¢y = lim d = lim —by = lim —ep =-1.
nN—oo Nn—oo Nn—oo Nn—oo

The proof is complete. O

II1. B GLOBAL BEHAVIOR OF SYSTEM (20)

In this sub-section, we consider the system:
Xn41 = Pn[-vn+1

,n=0,1,... (20)

Yn+1 X0 ~|¥n|

where the initial condition (X0 , yO) € ]RZ. We will show that

o0
every solution {(Xn . ¥Yn )}n:5 of System (20) is the
equilibrium solution, (2, 1).

w .
Theorem 2. Let {(xn, Yn )}n=0 be the solution of System
(20).

o0

Thml{(Xn,yn)}nzsisequﬂﬂnhunpohn(2,1)
Proof. Suppose Xg» Yo € R.

We will first show that Xy 2 ‘yz‘. (20.1)

By the triangle inequality
[Pl <y 4
=[xy ~[yo|- ol ~vo +1)
4%%%%%%%*4
=‘XO‘—X0+‘y0‘—y0+l
=X Y
We see that
i+ vy =%+
So
‘x1‘+x1 2‘y1‘+y1—1.
Thus
vy +12 2+
We have Xy 2 =Y,.
It is clear that for any XY eR.
‘xl‘—xl+‘yl‘—yl >0, and so
=X +‘yl‘ 2y —‘xl‘ , which mean
X| —‘yl‘ s‘xl‘— Y1 +1, that is

Yy < Xy

Since Xy 2 =Y, and Xy 2 Yy, We know Xy 2 ‘yz

2

as required.
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Next we show that X32Yy32 0. (20.2)

By condition (20.1), we know
Y3 =Xy —‘yz‘ 20.
We also know that Xy 2 0 and Xy 2 Y.
So X3 =‘x2‘—y2 +1
=Xy =Y, +1>0.
Clearly, X3 2 Y32 0 as require.

Next we show that Xy 2 Yy +1 and Y4 > 0. (20.3)

By condition (20.2), we know
X4 :‘x3‘—y3+1:x3—y3+120
Yy :XB—‘yS‘:x3—y3 2 0.

So Xg =Yy +12>0, asrequire.

Finally, we show that Xg = 2 and Y5 = 1.

By condition (20.2), we know

Xg :‘x4‘—y4+1=(y4+1)—y4+1=2
Vs =%y ~[val=vg +1-v, =1

and the proof is complete. 0

IIT.C GLOBAL BEHAVIOR OF SYSTEM (21)
In this sub-section, we consider the system:
nel = [%n[-Yn+1

,h=0,1,...

xn—|yn|+1

X
(21)
Yn+1
where the initial condition (XO, yO) € RZ. We will show that
. (D .
every solution {( Xn>Yn )}n:S of System (21) is the
equilibrium solution, (1, 1).

(e8]
Theorem 3. Let {(Xn, Yn )}n:() be the solution of System

© . g . .
(21). Then {(Xn > Yn )}n:5 is the equilibrium point (1, 1).
Proof. Suppose Xg: Yo € R.
We will first show that
‘xl‘+xl +32> ‘yl‘+ Y-
By the triangle inequality

@1.1)
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‘ylel‘ = ‘Vl ‘Xl‘
:‘XO —‘y0‘+1—‘x0‘+ Yo —1‘
:‘XO “X0‘+ Yo “VO“
:HXO“XO +‘V0“ VO‘

= (x|~ %0 +[¥o| - vo-
This implies that
X0 —‘y0‘+1‘— ‘xo‘— Yo +1‘ S‘XO‘—XO +‘y0‘— Yo +3,
and so

on‘—yo+1‘+‘x0‘—y0+1+32‘x0—‘y0‘+1‘+x0—‘y0‘+1.

Hence ‘Xl‘ +X T+ 3> ‘yl‘ +Yy,as required.

Next we show that ‘yz‘ <Xy +1. (21.2)
Clearly, for any X,y € R,

‘xl‘—xl +‘y1‘— y) 2 0, and so

X| —‘y1‘+1£‘x1‘—yl +2.
By condition (21.1), we have

X —‘y1‘+12—‘xl‘+yl—2.

Hence ‘Xl —‘yl‘+l < ‘Xl‘— Y] + 2 and so
‘yz‘ < X5 +1, as required.

Next we show that X3 2 Y32 0. (21.3)

By condition (21.2), we have
‘yz‘éxl—kl and so
yzs‘yz‘sxzﬂs‘xz‘ﬂ.
Then x3:‘x2‘—y2+120

Y3 :xz—‘y2‘+120.
Forany x,,y, € R we have

‘xz‘—x2+‘y2‘—y2 > 0.
So we know

‘XZ‘— Yy 2 Xy —‘yz‘ and so

X3 :‘xz‘—yz +12> Xy —‘y2‘+1: Y3
Hence x, > Y3 2 0, as required.

Next we show that Xy > Yy > 0. (21.4)

By condition (21.3), we have
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x4=‘x3‘—y3+1:x3—y3+120

Y4 :x3—‘y3‘+1:x3—y3+120.
Hence x, =y, >0, as required.

Finally, we will show that X5 =Yg = 1.
By condition (21.4), we have

XS:‘X4‘—y4+1:X4—y4+1=1
Y5 =x4—‘y4‘+1=x4—y4+1:1.

Hence (X5 , ys) = (1, l) , the equilibrium solution.

IV. CONCLUSION AND DISCUSSION

We utilized mathematical induction, and direct
computations to show that every solution of System (1) is
eventually either one of the two prime period-6 solution or the
equilibrium solution, and that every solution of System (20)
and System (21) is the unique equilibrium solution.
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