
 

 

  
Abstract—Goal of the work is to analyze the function of the 

pneumatic actuator. A relation between the device construction and 
the hysteresis in the pressure/stroke relation was studied. A 
Numerical model of the actuator was created and its results were 
analyzed. Hyperelastic material properties of the rubber diaphragm 
were applied in the model and influence of friction between rubber 
and steel parts of the actuator was evaluated. Reasons of hysteresis 
were identified and some modifications of the actuator are suggested. 
 

Keywords—hyperelasticity, hysteresis, numerical analysis, 
pneumatic actuator.  

I. INTRODUCTION 
HE paper deals with the numerical analysis of the 
mechanical behavior of the pneumatic actuator. High 

precision of control rod stroke is required for this important 
control and regulating device. Unfortunately, there is one 
negative effect, which affects the accuracy significantly. It is   
hysteresis in the stroke/pressure relation, i.e. difference in this 
relation during the pressure increase and decrease. This work 
analyzes the possible causes of this hysteresis, and searches a 
way to reduce it to a minimum. 

Analysis will reveal only the reasons caused by the shape 
and assembly of the actuator, and by the friction between its 
particular parts. Others reasons as a possible viscoelastic 
behavior of the elastomer parts are not included. 

II. MATERIAL AND METHODS 

A. Actuator Geometry 
The geometric model of the actuator is shown in Fig. 1 and 

the scheme of the actuator parts can be seen in Fig. 2. The 
elastic (rubber) diaphragm (a) is fixed between two discs (b) 
in the closed case (c) and it is mounted on a steel core (d). 
This core is supported by the steel spring (e) on the one side. 
A control rod is connected with this assembly. The rubber 
diaphragm is reinforced by the textile on one side (f). 

A pressure difference on the one and the other side of the 
diaphragm causes movement of the rod in the axial direction 
of the actuator.  
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Fig. 1 partially cut model of the actuator 
 

 
 

Fig. 2 scheme of the actuator structure 
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B. Material Characterization 
Basic element of the actuator is the rubber diaphragm (Fig. 

2a). Final position of the control rod depends on the 
mechanical properties of the diaphragm, on the spring 
stiffness (Fig. 2e), and on the pressure difference inside the 
actuator.  

Therefore we need to characterize the mechanics of the 
rubber diaphragm accurately. Due to these facts, the material 
of the diaphragm (elastomer) was tested in all three basic 
deformation modes (Fig. 3): uniaxial tension (Fig. 3a), 
equibiaxial tension (Fig. 3b) and pure shear (Fig. 3c). Data 
from these tests are needed to set correct constants for 
hyperelastic material model [1]-[8]. The properties of textile 
were measured in uniaxial tension test. 
 

 
 

Fig. 3 schemes of three deformation modes of elastomer tests 
 

Uniaxial tension test of textile 
Textile of the diaphragm was tested in uniaxial tension test, 

to find out basic mechanical constants of this material. Young 
modulus (in warp direction) and Poisson ratio were evaluated 
in this test. 
 

Uniaxial tension test of elastomer 
Uniaxial tension tests of elastomer [9], according ISO 37 

standard, was performed to determine the hyperelastic 
material parameters. The test was performed on a universal 
tensile testing machine. A 1 mm thick dumb-bell shaped 
specimen (type 1A – ISO 37) was used (Fig. 4). Stress/strain 

curve was measured during the whole range of loading. 
Specimens were loaded up to deformation of ε=1.0. 
 

 
 

Fig. 4 1A type of uniaxial tension test specimen (ISO 37) 
 

Equibiaxial tension test of elastomer 
A bubble inflation technique was used to characterize the 

elastomer in the equibiaxial tension [10]-[15]. 
The bubble inflation technique involves a uniform circular 

specimen clamped at the rim and inflated by increasing the air 
pressure on one side. The specimen deforms into the shape of 
bubble (Fig. 5 and 6). The inflation of the specimen results in 
an equibiaxial stretching near the pole of the bubble and a 
planar tension near the rim. Due to the spherical symmetry at 
the bubble pole, where σ represents the hoop stress σθθ=σφφ. 
Then the Cauchy stress tensor can be expressed as 
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Fig. 5 the bubble inflation technique 
 
As the thickness t of the inflated specimen is small 

compared with its radius of curvature r, the thin shell 
assumption is appropriate, allowing us to neglect the radial 
stress σrr in comparison with the stress σθθ. In addition we 
equate σθθ to the thickness-averaged hoop stress, which leads 
to 
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where p is the differential inflation pressure inside the bubble, 
r is radius of curvature of the specimen and t is the specimen 
thickness (Fig. 5). 

Considering the material incompressibility, the thickness of 
the inflated specimen can be expressed as 
 

2
0

θθλ
tt = , (3) 

 
where t0 is the initial specimen thickness (unloaded state). The 
stretch λθθ at the pole of the inflated specimen must be 
measured. Generally, the stretch λ is the ratio between the 
actual length l and the initial length l0, or 
 

0l
l

=λ . (4) 

 
Using a video camera, the stretch λθθ and the radius of 

curvature r were measured. 
Substituting equation (3) into the equation (2) the hoop 

stress becomes 
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To compute the hoop stress σθθ from the (5) the pressure p 

inside the bubble, the radius of curvature of the bubble r, and 
the stretch λθθ at the bubble pole must be measured during the 
inflation. To characterize the hyperelastic material behavior, 
knowledge of the entire stress/strain curve is necessary (Fig. 
7). Thus, the above mentioned parameters were recorded 
continuously during the whole test. 
 

 
 

Fig. 6 inflated equibiaxial specimen with white stripes 
 

Specimens with thickness t0=1 mm were tested, and 
diameter of the hole through which the bubble is inflated was 
50 mm. Pressure was measured using a digital manometer. 

The inflation of the specimen was recorded using a video 
camera and the stretch and bubble radius were obtained by 
analyzing the resulting video. Finally, the manometer display 
appeared in the video images, so relating the pressure to every 
stretch or radius value was simple and reliable. 

To determine the bubble radius and stretch from the video 
images, two stripes were drawn on the specimen surface, 
identifying two points on the bubble silhouette. Tracing an arc 
through these points and the pole of the bubble allows the 
determination of the radius and the length of the arc (Fig. 6). 
 

 
 

Fig. 7 results of tests of elastomer 
 

Pure shear test of elastomer 
In this test, the specimen is loaded by tension similarly like 

in the uniaxial tension test. Important difference is in the 
boundary conditions during the test. Cross-section area of the 
uniaxial specimen (Fig. 3a) is not constrained and it can freely 
contract in its both dimensions during the loading. Contrary 
uniaxial tension, pure shear specimen can change only its 
thickness during the test. Its width will remain constant during 
the whole range of loading (Fig. 3c). To fulfill this condition it 
is necessary that the height of the sample is substantially 
smaller than its width and that both longitudinal edges of 
specimen are firmly clamped in the long clamps which 
prevent change of the specimen width. 

C. Hyperelasticity 
A hyperelastic material constants will be set up from results 

of tests presented above. Currently, a number of hyperelastic 
material models are available that vary in defining the strain 
energy density function W [16]-[21]. W is a function of a 
deformation tensor, whose derivative with respect to a strain 
component determines the corresponding stress component. 
Explicitly, 
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where Sij are components of the 2nd Piola Kirchhoff stress 
tensor and Cij are components of the right Cauchy-Green 
deformation tensor [22], which will be as follows 
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Hyperelastic models are usually named after their authors. 

Some of the best known and most used models are: Neo-
Hookean, Mooney-Rivlin, Yeoh, Second Order Invariant, 
James-Green-Simpson, Ogden, Gent, Arruda-Boyce [23]-[28]. 

D. Numerical (FEM) Model of the Actuator 
Considering the geometry of actuator (Fig. 1 and 2), the 

finite element (FE) numerical model was created (Fig. 8) [29]-
[47]. Thanks to the axial symmetry of the whole problem we 
could make 2D axisymmetric model with defined axis of 
symmetry. The model consists of planar surface which 
represents half section of the elastic diaphragm, then of three 
curves that represent rigid parts of the assembly, and of 
central element (lower straight line) that represents elastic 
support (spring) (Fig. 8). This element is located in the axis of 
symmetry of the actuator. 
 

 
 

Fig. 8 numerical finite element model of the actuator 
 

The diaphragm consists of two materials: elastomer which 
is joined with textile from one side. The textile (Fig. 2f) is on 
the side where the diaphragm is in contact with the metal core 
of the actuator (Fig. 2). Material parameters of textile were 
measured in uniaxial tension test and they are: Young 
modulus E=280 MPa (and no bending stiffness, i.e. no 
rotation degrees of freedom are shared) and the Poisson ratio 
ν=0.3. From hyperelastic tests of elastomer (mentioned in the 
chapter II.B) Arruda-Boyce hyperelastic model was set for 
elastomer [48]. To set up hyperelastic material constants of 

this model, least square method was used. Constants were 
computed from the data shown in Fig. 7 and 9. Comparison of 
the Arruda-Boyce hyperelastic model and experimental data is 
in Fig. 9. 

Arruda-Boyce hyperelastic model defines strain energy 
density function W as 
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where I1 is first invariant of the right Cauchy-Green 
deformation tensor, defined in (7), and the constants ci are 
always defined as: c1 = 1/2, c2 = 1/20, c3 = 11/1050, c4 = 
19/7000 and c5 = 519/673750. Initial shear modulus μ and 
limiting stretch λL are hyperelastic constants computed from 
experimental data. Constants computed for the model shown 
in Fig. 9 are: μ=0.38793 MPa and λL=995567. 
 

 
 

Fig. 9 fitting of hyperelastic model and experimental data 
 

Curves of both parts of actuator case and core (Fig. 8) are 
created as rigid bodies. Central spring stiffness is 3 N/mm. A 
contact between rigid parts of the model and the elastic 
diaphragm was defined in the model. 

E. Loads and Boundary Conditions of Numerical Model 
Whole analysis consists of four basic steps: 
- clamping the outer rim of the diaphragm in the actuator 

case (time: 0.0 to 1.0), 
- mounting the diaphragm on the core (time: 1.0 to 2.0), 
- pressure decreasing on the left side of the diaphragm 

(time: 2.0 to 3.0), 
- returning the pressure to its initial value (time: 3.0 to 

4.0). 
 

Clamping of the Diaphragm Rim in the Actuator Case 
As we need to be as close to the reality as it is possible, the 

fixation of the diaphragm in the model is done by real 
clamping of the diaphragm rim between two parts of the 
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actuator case (Fig. 10). A contact between the case parts and 
the diaphragm is applied and the two parts of the case 
approach against each other. 
 

 
 

Fig. 10 clamping of the diaphragm rim in the actuator 
 

Mounting the Diaphragm on the Core 
The steel core (with the spring element) is pushed into the 

diaphragm during the second step (Fig. 11). The contact 
between the core and the diaphragm occurs and the initial 
position of actuator parts, before the pressure application, is 
reached. 
 

 
 

Fig. 11 mounting the diaphragm on the core 
 

Pressure Application on One Side of the Diaphragm 
Left end of the spring is fixed at the beginning of this step 

and the pressure decrease is applied on the inner (left) side of 
the diaphragm (side with the textile). The spring is pressed by 
this condition and the core moves to left in the Fig. 12. 
 

Returning the Pressure to Its Initial Value 
The fourth step is opposite to the third step. The pressure 

increases to the initial value and the core with the diaphragm 
return to the same position as at time=2.0. 

 
For the analysis of the influence of friction a number of 

friction coefficients were used. Computations were carried out 
with next friction coefficients (fc): 0; 0.05; 0.07; 0.1; 0.15; 
0.25 and 0.35. 
 

 
 

Fig. 12 model after the application of pressure 

III. RESULTS AND DISCUSSION 
Two main effects were evaluated. If, and how could the 

friction influence the stroke/pressure hysteresis? Stroke was 
measured as a horizontal displacement of the actuator core. 
And secondly influence of diaphragm structure and geometry 
on its deformation and on the hysteresis was studied.  

A. Influence of Friction on the Hysteresis 
The largest hysteresis occurred in the models with friction 

coefficient fc = 0.05 and fc = 0.07. The situation in these two 
cases is the same and the result is shown in the Fig. 13. The 
hysteresis is decreasing with a next increase or decrease of the 
value of friction coefficient and it will vanish when the 
friction coefficient has value fc = 0 or its value is higher than 
0.25 (Table I and Fig. 14). 

During loading and movement of the diaphragm, it tends to 
slip over the surface of the core, and this fact causes a rising 
of the diaphragm edge from the core edge (Fig. 15). Then the 
hysteresis is caused by a difference between moments in 
which the slip occurs, because the moments of these slips can 
differ in case of pressure decreasing and pressure increasing. 
If the friction coefficient fc = 0, the slip should occur in the 
same moment without the influence of a previous history of 
loading (decrease or increase of pressure) and thus no 
hysteresis should occur. This fact was also approved by the 
results of the model with fc = 0. This model was therefore used 
to approve initial hypothesis about the fact that the only the 
friction will be the reason of the hysteresis in the numerical 
model. 
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Results, described above, shows that the pressure will not 
always be sufficient to fix the diaphragm to the core surface 
and then the slip of the diaphragm can occur. Thus some 
modification in shape and dimension of particular parts of 
actuator (for example large radius of the upper disc (b) in Fig. 
2) could solve this problem. 
 

 
 

Fig. 13 hysteresis in the pressure/stroke relation with the friction 
coefficients 0.05 and 0.07 

 
TABLE I INFLUENCE OF FRICTION COEFFICIENT ON THE HYSTERESIS IN 

NUMERICAL MODEL 
 

Friction 
coefficient fc 

Hysteresis 
[mm] 

0 0 
0.05 0.76 
0.07 0.783 
0.1 0.285 
0.15 0.174 
0.25 0.046 
0.35 0 

 

 
 

Fig. 14 relation between the friction and the hysteresis 
 

 
 

Fig. 15 the diaphragm edge raising during the pressure change 
 

The maximal values of hysteresis in numerical models with 
fc = 0.05 and fc = 0.07 are 0.76 mm and 0.78 mm respectively 
(Table I). We can compare the results of model shown in Fig. 
13 with the results of tests of real actuators in Fig. 16. Five 
actuators were tested and average hysteresis was 1.21 mm 
(Table II). 
 

 
 

Fig. 16 results of tests of real actuators 
 
We can see that the real hysteresis is larger then the 

hysteresis computed in numerical model. It means that apart 
form the friction there are other factors influencing the 
hysteresis. But these factors were not included in the 
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numerical model because our main goal was to find out how 
the friction influences the hysteresis. The most significant of 
these other factors will be the own hysteresis of elastomer 
which is generally known and described [49]. To be sure 
about the elastomer hysteresis a cyclic tension test of the 
elastomer was carried out. On the results of this test (Fig. 17) 
we can clearly see the hysteresis of the material and even the 
Mullins effect [50]-[54]. 

 
TABLE II HYSTERESIS IN REAL ACTUATORS 

 
Specimen number Hysteresis 

[mm] 
1 1.13 
2 1.22 
3 1.38 
4 1.02 
5 1.28 

Average hysteresis 1.21 
 

B. Influence of Diaphragm Structure on Its Deformation 
The bend of diaphragm, which occurs when the diaphragm 

is rolling on the surface of the core, is a next critical point. 
The maximum of stress and strain occurs here (Fig. 18). 
 

 
 

Fig. 17 result of cyclic tension test of diaphragm elastomer 
 

The textile tension stiffness is significantly greater than the 
stiffness of the diaphragm elastomer. Thus, only the 
compression occurs in the entire thickness of the elastomer 
during the diaphragm bending shown in Fig. 18 and 19. Due 
to that fact a collapse of the diaphragm can occur at the end of 
stroke and a self contact of the diaphragm surface should 
occur (Fig. 19). 

Therefore, there is a contact between the two faces of the 
diaphragm. In this case, there would be a considerably greater 
friction than in the case of contact of the diaphragm (from the 
side with textile) with a steel core. That phenomenon could 
again strongly affect the hysteresis. 

 

 
 

Fig. 18 critical point of model where the maximum of stress and 
strain occurs 

 
 

 
 

Fig. 19 the diaphragm collapse during its rolling on the core 

IV. CONCLUSION 
Possible critical effects were revealed in the actuator 

analysis. They are: diaphragm slipping on the core surface and 
diaphragm collapse during the rolling along the core. These 
facts should be considered during future designs and 
modifications of actuators. Next possible effects as for 
example a viscoelastic character of elastomer, which were not 
included in the model, could increase the hysteresis of the real 
actuator.  
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