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Abstract—Competitiveness and rapid expansion of flexible
manufacturing system (FMS), as one of the industrial alterna-
tives, has attracted the attention of many practitioners and aca-
demicians. Globalization has further encouraged FMS development
into distributed, self-reliant units of production center. Flexible
manufacturing system in distributed system (FMSDS) considers
multi-factory environments, where jobs are processed by a system
of FMSs. Scheduling problems in FMSDS deal with allocation
of jobs to factories, independent assignment of job operation to
machines, and operations sequencing on a machine. In addition,
many previous studies neglect the impact of maintenance as one of
the core parts of production scheduling. Maintenance significantly
affects the overall performance of production scheduling. As such,
maintenance is considered in this paper as part of production
scheduling. This paper aims to minimize the global makespan over
all the factories. This paper proposes an improved immune algorithm
(IIA) to solve scheduling problems in FMSDS subjects to machine
maintenance. Antibody encoding is adopted to explicitly represents
information about a factory, job, and maintenance, while a greedy
decoding procedure exploits scheduling flexibility and determines
the job routings. Instead of the traditional mutation operator, an
improvised mutation operator is used to improve the solutions by
refining the most promising individuals within passing generation
(iteration). The proposed approach was compared with an ant colony
algorithm and several variants of genetic algorithms. The proposed
IIA improved the global makespan from 4% to 33% compared with
other algorithms. IIA performance has also been tested with several
adjustments of population sizes, clonal selection rates, and local
explorative mutation rates.

Keywords—distributed manufacturing, flexible manufacturing sys-
tem, artificial immune system, preventive maintenance, optimization

I. I NTRODUCTION

PRODUCTION scheduling problems in the manufacturing
industry have been the subject of research initiatives for

several years. Developments in computer technology have
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promoted new ways of solving problems related to production
scheduling. The newly developed methods have rendered
exact approaches insufficient to handle complex and changing
environments of production scheduling. In general, production
scheduling involves allocating a limited amount of resources
(i.e., machine) to a number of tasks over a time horizon.
With the many available feasible solutions for different task-
resource assignments, production scheduling problems are
considered one of theNP-hard problems [1]. Given this issue,
both practitioners and academicians aim to solve production
scheduling problems.

Strong market competition and challenging manufacturing
environment a have necessitated the evolution of the ways
organizations attain success and gain a competitive edge.
Flexible manufacturing system (FMS) is the result of growing
demand for quantity and quality. FMS combines the efficiency
of a high-production line and the flexibility of job shops,
which makes it suitable for mid-volume batch production
and mid-variety of products [2]. FMS offers high investment
value and benefits, which gives it a competitive advantage in
today’s challenging and globalized market. Such benefits can
be exploited to achieve the best efficiency in this particular
area. FMS has been studied extensively since the 1980s, and
most studies focus on allocation, scheduling, loading, and
control problem. The scheduling problem in FMS can be
further defined as an optimization of one or more system
criteria with consideration of a limited set of resources while
taking various constraints into account.

Production scheduling of a single-factory is directed toward
minimization of total operating cost, completion time, and
order fulfillment of assigned machine to process the job’s
operations. Today’s trend of globalization has cultivated the
emergence of the distributed scheduling (DS) in FMS. DS can
be defined as a multi-factory production system where each
factory is geographically distributed and possesses the ability
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to process product parts independently. Consequently, DS may
yields different production lead times, operating costs, and
completion times [3], [4]. Thus, exact and heuristic solutions
becomes insufficient and unscalable, which makes them un-
able to handle scheduling problems in flexible manufacturing
system distributed scheduling (FMSDS) that considers dif-
ferent combinations of process plans. As such, scheduling
in FMSDS has been considered directly in recent works,
including [3], [5], [6], [7].

Thus, with respect to available studies intended to solve
scheduling problems in FMSDS, production schedule opti-
mization can be concluded to involves three hierarchical prob-
lems that need to be solved sequentially or simultaneously [8],
[9]:

1) Allocation of the most suitable factory for the job (as-
signment problems).

2) Routing of the most suitable machine for each assigned
operations of the job within the given factory (routing
problem).

3) Sequencing the most suitable assignment of the op-
erations to machines over the time span (sequencing
problem).

In a real manufacturing environment, machine maintenance
is unavoidable. Unexpected machine breakdown (stochastic
unavailability) and scheduled preventive maintenance (deter-
ministic unavailability) are the main reasons for machine un-
availability for a period of time [10]. Research efforts on ma-
chine maintenance have increased because machine mainte-
nance directly affects the production rate, product quality, ma-
chine availability and utilization ratio [4]. The lack of machine
maintenance disrupts predetermines plan or scheduling as a
result of process mismatching during machine unavailability.
Thus, maintenance policy in production scheduling is vitals
in ensuring machine availability and utilization ratio, while
maximizing the facility with minimum cost and reducing
unforeseen breakdowns. To the best of our knowledge, Chan
et al. [4], who proposed genetic algorithm with dominated
genes (GADG), is the first work that addresses all the features
of FMSDS and considers machine maintenance.

Solutions to optimization problems are inspired by several
mechanisms that form the building block of a very complex
natural immune systems defense against pathogenic organ-
isms. The immune algorithm (IA) is a meta-heuristic which is
developed based on such system. Explorative powers of hyper-
mutation operator, solution diversity through its receptor edit-
ing operator, and evolutionary capacity of memory cell in IA
makes this algorithm a suitable alternative in the optimization
domain. As such, this paper proposes the use of AI to
solve scheduling problems in FMSDS subjects to machine
maintenance. The objectives of this study include proposing
an improved IA with guided initialization mechanism and
yielding optimal or lowest makespan while considering the
impact of machine maintenance.

The remainder of this paper is organized as follows:
Section II discusses previous works that were conducted to
solve scheduling problems in FMS. Section III highlights the
problem statement, constraints and parameters of distributed
production scheduling of an FMS subject to maintenance.
Section IV discusses the proposed solution in detail. Section V
elaborates the results of the proposed approach, compares the
parameters, and compares the proposed approach with other
algorithms. Section VI concludes this paper.

II. RELATED WORKS

Different methods have been proposed to solve scheduling
problems in FMS. Lee and DiCesare [11] formulated a Petri
net model for a single manufacturing environment. The model
was used to model the routing flexibility, resource sharing,
lot sizes, and concurrency of a production schedule. Paulli
[12] proposed a hierarchical algorithm based on similarities
with the job-shop scheduling problem in FMS. Reyeset al.
[13] further enhanced the Petri net model with a hybrid
search algorithm to mitigate the complexity of the problem.
Kumar et al. [14] introduced a different approach that used
an ant colony optimization (ACO) method that applied a
graph-based representation where a collective outcome of all
solution found by the ant will be the final solution of the
algorithm. Jeraldet al. [15] tested genetic algorithm (GA),
simulated annealing, memetic algorithms, and particle swarm
optimization algorithms. Different problem complexities were
conducted on each approach to test their performances. In all
cases of the problems, particle swarm optimization produced
the best result compared with the others. Wadhwaet al.
[16] designed a knowledge-based GA that is integrated with
the classical genetic algorithm to generate initial popula-
tion, selection operator, and crossover operator. Burnwal and
Deb [17] used cuckoo search-based algorithm to optimize
scheduling problems in FMS, which is compared with the
performance of the GA and the particle swarm algorithm.

Shen [5] proposed a hybrid of agent-based algorithm and
genetic algorithm in the distributed scheduling system. Fea-
tures such as encapsulation, coordination and negotiation,
and decision schemes between agent-based algorithm and
GA were studied to solve scheduling problems in FMSDS.
An adaptive genetic algorithm with dominant genes was
introduced by Chanet al. [3] to solve scheduling prob-
lem in FMSDS. Chanet al. [4], [18] also enhanced ge-
netic search performance by using dominant genes, modified
crossover mechanism, and saturation operator for monitoring
the similarity of the solution pool. Jiaet al. [6] introduced
a hybrid of genetic algorithm and Gantt chart to derive
the schedules. This study achieved minimum makespan, job
tardiness, or manufacturing cost of small-sized and medium-
sized scheduling problem in FMSDS. Aboutalebiet al. [7]
introduced a combination of memetic algorithm, particle
swarm optimization and timed Petri net algorithm to solve
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scheduling problems in FMSDS. In the proposed method,
the FMSDS is formulated by timed Petri net. Scheduled
tasks are conducted by memetic algorithm and particle swarm
optimization methods in which reasonable results are obtained
and compared with available approaches in the literature.

Preventive maintenance (PM) scheduling problems in other
problem domains have been explored by previous researchers.
Gopalakrishnanet al. [19] developed a tabu search algorithm
with the aim to maximize priority tasks subject to resource
availability constraints while performing tests with a bench-
mark problem that successfully reduced the optimality gap.
Particle swarm optimization is proposed by Pereireet al. [20],
who focused on reliability and cost evaluation by using a
probabilistic model. PM in FMS equipment was studied by
Xue et al. [21], who proposed ant colony optimization (ACO)
based on multiple ant colonies. The ant colonies were divided
into general-ant colony and core-ant colony. The effectiveness
and the efficiency of the adaptive strategies applied in the
algorithm were demonstrated through the reasonable results
obtained.

Few studies discuss PM for scheduling problems in
FMSDS. A genetic algorithm with dominant genes was intro-
duced by Chanet al. [4], who later enhanced the algorithm
with premature avoidance and local search strategy [18].
Three separate studies were conducted by Chunget al. [22]
to prove the influences of PM for scheduling problems in
FMSDS by using the same approach as in [3], [4], [18].
Different maintenance models were tested, and the results
were compared with prior research. However, few studies
focus on solving FMSDS-related problems by using IA.

IA, which is based on the adaptive natural immune system
of vertebra, has been used in various applications, such as ma-
chine learning, pattern recognition and detection, scheduling,
intrusion detection, data manipulation and analysis, evolution-
ary computation, and optimization [23], [24], [25], [26], [27],
[28], [29]. IA features that are not limited to self-organizing,
adaptivity, and uniqueness have the potential to be used in
developing computational models applied in business [23],
[25], [29], [30], [31], sciences and engineering [27], [28],
[32], [33], and optimization domain [24], [33], [34], [35].
Generally, IA is known for its advantages, such as memory
cells (reservation of good solutions), high-rate of somatic
mutation or hyper-mutation (explorative and/or diversification
mechanism), and receptor editing (escaping local optima,
adaptivity) [36]. Despite available studies on IA, this research
was conducted in response to an encouraging yet challenging
opportunity to use a renowned IA as a suitable choice to
address underlying problems in FMSDS subject to machine
maintenance.

III. PROBLEM DESCRIPTION

The notations used to describe the problem studied through-
out the paper are given in Table I.

TABLE I
PROBLEM NOTATION

Notation Description

f index for factory,f = 1, , F,
whereF is the number of factories

i index for job, i = 1, , I,
where I is the number of job

j index for operation,j = 1, , Ni,
whereNi is the number of operation in jobi

h index for machine,f = 1, , Hf ,
whereHf is the number of machine in factoryf

k index for time slot,k = 1, , K,
whereK is the maximum time horizon

Dif The delivery time required to deliver product from the
location of factoryf to the location of jobi

Tijfh operating lead time of operationj of
job i on machineh in factory f

M maximum machine age

Sij starting time of operationj of job i

Eij ending time of operationj of job i

Ci completion time of jobi

χif = 1, if job i is allocated to factoryf
= 0, otherwise

δijfhk = 1, if operationj of job i
occupies time slotk on machineh in factory f
= 0, otherwise

γijfh = 1, if machineh in factory f
is maintained after operationj of job i
= 0, otherwise

The FMSDS problem can be stated as follows: a number of
jobs (i) are expected to be received in the distributed network,
and a suitable factory (f = 1, ..., F) will be assigned to the
job to generate corresponding production scheduling. Each
individual factory has a number of machines (h = 1, 2, ...,
Hf ) with different efficiencies or operating lead times (Tijfh)
in producing various product types. Each job has up toNi

operations, and every operation can be performed by more
than one machine (not all), but must be in the same factory.
The traveling time between factoryf and job i is denoted as
Dif .

A number of jobs (i) are expected to be received in the
distributed network, and a suitable factory (f = 1, ...,F) will
be assigned to the job to generate corresponding production
scheduling. Each individual factory has a number of machines
(h = 1, 2, ...,Hf ) with different efficiencies or operating lead
times (Tijfh) in producing various product types. Each job
has up toNi numbers of operations, and every operation can
be performed by more than one machine (not all), but in the
same factory only. The traveling time between the factoryf
and the jobi is denoted asDif .

Each machine conforms to a maximum machine age (M),
where the machine age equals the cumulated processing time
of operations. A maintenance procedure has to be carried out
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right after the completion of the current operation when the
machine age reaches the threshold denoted as M, outlined in
[4]. After every maintenance procedure, the machine age of
the particular machine will be reset to 0, as shown in Fig. 1.

Machine Age

Time Horizon

M

Operating

Maintenance

Idling

Fig. 1. Sample of machine age modeling for a machine when reaching
maximum machine age adopted from [22].

The maintenance model used in this paper is a linear
relationship between the required maintenance time and the
machine age, where maintenance time equals three times the
machine age. For example, if the machine age is 40 units of
time, then the maintenance time is 120 units of time. This
maintenance model will simultaneously affect the results of
the FMS distributed production scheduling. The maintenance
model is shown in Fig. 2.

Fig. 2. Relationship between maintenance time and machine age for linear
relationship model adopted from [22].

The objective of the study is to minimize the total maximum
makespan of the last job operation. As such, the objective
function is defined in (1). Completion time (Ci) is defined as
the summation of the completion time of the last operationNi

of job i and the delivery time between the factoryf and the
job i, as defined in (2). The decision variables are as follows:
χij denoted true if jobi is allocated to factoryf ; δijfhk if
operationj of job i occupies time slotk on machineh in
factory f ; andγijfh if machineh in factory f is maintained
after operationj of job i. Once obtained, the starting time
value of operationj of job i (Sij), ending time of operationj
of job i (Eij), and completion time (Ci) can be calculated.

ObjectiveZ : min(max{Ci}). (1)

Ci = EiNi
+
∑

Difχif . (2)

The problem is subject to the following constraints:
Precedence constraints:

Sij ≥ Ei(j−1) (i = 1, 2, ..., I; j = 2, 3, ...,Ni). (3)

Processing time constraints:

Eij − Sij =

∑

fh

χifTijfh (i = 1, 2, ..., I; j = 1, 2, ..., Ni). (4)

∑

fhk

δijfhk =

∑

fh

χifTijfh (i = 1, 2, ..., I; j = 1, 2, ...,Ni). (5)

Operation constraints:
∑

fhk

δijfhk = 1 (i = 1, 2, ..., I; j = 1, 2, ...,Ni). (6)

Processing operation constraints:

∑

fh

δijfhk ≤ 1 (i = 1, 2, ..., I; j = 1, 2, ...,Ni; k = 1, 2, ...,K). (7)

Machine capacity constraints:

∑

ij

δijfhk ≤ 1 (k = 1, 2, ...,K;h = 1, 2, ...,Hf ; f = 1, 2, ..., F ). (8)

Factory constraints:
∑

f

χif = 1 (i = 1, 2, ..., I). (9)

According to Constraint 3, as given above, every operation
can only begin after the completion of the prior operation.
Constraint 4 states that when an operation commences, it will
continue until it finishes without any disruption. Constraint
5 states that the assigned time slot must be equal to the
required operation time. Constraint 6 requires each operation
to be carried out on a single machine throughout the horizon.
Constraint 7 requires each operation to be executed on a
single machine at each unit of time. Constraint 8 requires each
machine to handle only a single operation at each unit of time.
Constraint 9 indicates that each job can only be assigned to
a single factory.

IV. A N IA FOR SOLVING SCHEDULING PROBLEMS IN

FMSDS SUBJECTS TOMAINTENANCES

To further explain how IA can be implemented for opti-
mization domain, the following section will elaborate on the
generic IA with its standard operators. The proposed improved
IA is then presented. The encoding and decoding process
of the solution, solution initialization and clonal selection,
and hyper-mutation are discussed to clarify the proposed
improved IA differs from the generic IA. Hyper-mutation is
also further divided into two consecutive sections, namely,
local and global mutations.
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A. Generic IA

IA is a collection of complex adaptive pattern recognition
systems that mimic the natural immune system that defends
an organism from foreign antigens (bacteria or viruses) by
detecting, identifying, and killing pathogens and tumor cells
(antigens) to protect it against diseases [24]. The system can
recognize or identify cells (or molecules) within the organism
as either harmful (non-self-cell) or harmless (self-cell) [1]
to allow the system to naturally evolve to recognize and
neutralize threats. In a typical infection process, infestation
and proliferation of a pathogen within the organism occurs.
Pathogens and antigens correspond to specific foreign pro-
teins.

When a harmful non-self-cell enters the body, the immune
system responds by providing immediate but nonspecific
defense to protect the organism from any possibilities of
an infection (innate immunity) [24]. Phagocyte, which is an
antigen-presenting cell, will detect the presence of non-self
cells and fight them by secreting T-cell-activating molecules.
If this level of the immune system is penetrated by antigens
or pathogens, the system initiates adaptive behavior (adaptive
immunity) [1]. The activated T-cells select appropriate B-cells,
which have receptors that closely resemble the antigenic or
pathogenic signatures of the foreign proteins (clonal selection
hypothesis). Then, these B-cells attach to the detected foreign
protein’s signature (binding site/epitope); this attachment pro-
cess is known as affinity. Affinity is the measure for evaluating
the successful binding of foreign proteins and B-cells [26].
This scenario is illustrated in Fig. 3.

structurally 

similar -

high affinity

low affinity

receptor

lymphocyte

epitope

Fig. 3. Illustration of B-cells attach themselves to the detected foreign
protein’s signature (binding site/epitope) adopted from [37].

The B-cells then modify themselves (cellular reproduction)
via somatic hyper-mutation or receptor editing to attain better
affinity against antigens or pathogens by rapidly mutating
or randomly changing their receptors’ genetic orientation,
respectively (affinity maturation). Afterwards, B-cells start to
proliferate to produce clones, with a large number of identical
B-cells being duplicated. Some of the mature B-cells will
produce new plasma cells while others with high affinity

threshold will be sustained as long-lasting memory cells [1].
The plasma cells secrete a large number of antibodies, which
are distributed randomly throughout the blood and lymph
systems, and are capable of recognizing and killing foreign
proteins as well as detecting and recognizing malfunctioning
self-cells. The memory B-cells with long life spans remain
in the system to effectively accelerate the response of the
immune system to future exposure to similar infection, while
the other remaining clones of B-cells will die or be replaced
by another new clone. The overall summary of generic IA
discussed so far is shown in Fig. 4.

START

Stopping 
Criterion?

No

Clone Selected
Population Cell

Yes END

Hyper-mutation

Population Initialization

Selection

Next Generation

Population Evaluation

Parameter Settings

1. Population size
2. Clonal Selection Percentage
3. Generation Number

Immune 
Memory 

Fig. 4. Flowchart of generic IA.

B. Proposed Improved Immune Algorithm (IIA)

To implement the mechanisms explained in Section IV-A to
address scheduling problems in FMSDS, several adaptations
and adjustments are needed. The original IA must metaphor-
ically match the imposed scheduling problems in FMSDS to
meet the objective. For clarity, the analogy of IIA for this
particular study is given in Table II.

The overall flows of the proposed IIA are shown in Fig. 5 to
illustrate the proposed IIA procedures. The improved version
of IA operators is highlighted by the thick border in the figure.
The first procedure involves setting the parameters, where
user-defined parameters, such as population size (popN ),
generation number, and clonal selection percentage (Cr), are
assigned an individual value. The first step is then followed
by the initialization of the populations (see Section IV-B2
for details), population ranking, and clonal selection. Simple
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TABLE II
I IA ANALOGY

Immunology Terms Scheduling Terms

B-cells Machine available

Antibody Machine assignment

Foreign protein Job allocation

Receptor Assigned job-machine

Affinity Evaluation measures (makespan)

Affinity maturation Improvisation process

Cloning Duplication

Hyper-mutate Improvisation scheme #1

Receptor editing Improvisation scheme #2

Binding site/Epitope Job assigned to a machine

High Affinity Job assigned to a machine
(with low makespan)

encoding during the initialization phase and greedy-based
decoding scheme (see Section IV-B1 for details) during eval-
uation phase are conducted. After the clonal selection phase,
a set of individuals are selected from the total population size
where cloning is performed first, followed by somatic mu-
tation (hyper-mutation) conducted on the cloned individual.
At this point, only the local mutation operators are involved.
Next, receptor editing (global mutation) is performed on one
or more individuals of the population based on a probabilistic
scheme (see Section IV-B3 for details on both local and global
mutations). Then, the best among cloned individuals will be
retained as an immune memory for the remaining generation
numbers (iterations). If the termination condition (maximum
generation number) is met, the proposed IIA terminates.

1) Antibody Encoding and Decoding:Information encoded
in the antibody of the IIA for FMSDS has to specify the
allocation of each job to factory, the routing of every job
through machine, and the sequence of the operations. Ba-
sically, this study reuses the benefit of simple operation-
based encoding method proposed in [8] for the distributed
scheduling problems without routing flexibility, where rele-
vant extension that includes flexibility issues of the FMSDS is
considered. The receptor size (rp) within an antibody is equal
to the total number of operations of all jobs. Every receptor
is represented by a triplet notation (f, i, p), which denotes
the factory (f), the assigned job (i), and the PM flag (p).
Note that all the operations of the same job are represented
by different receptors within the same antibody, which are
interpreted according to the order of receptor occurrence on
the antibody given that the order for the operation of a job is
fixed. Concerning the adoption of the simple representation
as per [8], no information about alternative machine routes
is explicitly encoded into the receptor. This information is
retrieved during the decoding phase. A sample individual is
given in Fig. 6.

Job 1, job 2, and job 3 are assumed have two, two, and
three operations, respectively, so that an antibody consists of 7

START

Stopping 
Criterion?

No

Clone Selected
Population Cell

Yes END

1st Hyper-mutation

Population Initialization

Selection

Next Generation

Global Mutation
(on all cell)

Local Mutation
(on cloned cell)

Population Evaluation

Randomized

Parameter Settings
1. Population size
2. Clonal Selection Percentage
3. Generation Number

Rank population
(descending)

Clonal Selection 
Percentage 
(Top best)

Immune 
Memory 

2nd Hyper-mutation

Fig. 5. Flowchart of proposed IIA

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

Fig. 6. Sample antibody encoding

receptors. Each receptor consists of three types: “2,1,< p >”,
“1,2,< p >”, and “1,3,< p >” which means that jobsN1 and
N2 are processed in factoryF1 andN3 is processed in factory
F2. The decoding process exploits the provided information
by each antibody to generate a schedule, and the affinity of
each antibody is evaluated afterwards. The objective of the
scheduling problems in FMSDS is to minimize the global
makespan of the factory network to ensure that the affinity of
an antibody is inversely related to the global makespan.

Antibodies explicitly represent information of job assign-
ments to factories, and the order of the antibody’s receptor is
relevant to determine the priority of each operation, with no
information on job routing considered. Instead of complicat-
ing gene encoding, the flexibility problem is considered in the
decoding phase, where it can dispatch job operations to one
of the alternative machines within the selected factory. Thus,
information on job routing is conducted implicitly within
the decoding process. Based on the order determined by the
antibody’s receptors, operations are considered sequentially.
When the respective operation is dispatched to a machine,
the starting time equals the completion time of the last
operation assigned to the machine. If the considered operation
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requires more than one machine, the decoding process selects
the routing that always guarantees the lowest current local
makespan where the one that provides the lowest completion
time for the operations assigned so far is selected. However,
if different routings lead to the same current local makespan,
the machine with the smallest processing time is chosen.
If the available machines have the same smallest current
local makespan and processing time, any of them is selected
at random in order to give the optimization algorithm the
opportunity to search different regions of the solution space.
The decoding process is completed by adding the delivery
time (according to the factory the job is assigned to) as soon
as all the operations have been scheduled, thus obtaining the
local and global makespans.

2) Population Initialization and Clonal Selection:The
initial population is determined in three phases: the first phase
randomly generates jobs until all the operations of the jobs
are generated; the second phase randomly assigns jobs to
factories in which related operations of the respective jobs
will be amended to satisfy factory allocation constraints; and
the third phase generates the maintenance flag at random. This
process repeats until all individuals of the population (popN )
are initialized. Note that these three phases are conducted with
respect to the encoding and decoding schemes in the previous
section.

During the clonal selection phase, a set of individuals from
the current population are chosen to apply IIA operators and
generate high affinity memory cell(s) to include in the next
generation. The clonal selection is dependent on the affinity
(makespan) of the antibody. Therefore, a ranking strategy is
conducted by sorting the population by decreasing affinity
(starting from the best to the worst individual). TheCr % of
the best population will be considered for cloning, in which
each of these cloned cells undergo affinity maturation process,
whereas the rest of the population will be re-initialized with
the three-phase initialization mechanism previously described.
This re-initialization is conducted to give good antibodies
more chances for affinity maturation, while giving even less
promising individuals the opportunity to participate in the evo-
lution; the search will move toward most promising regions
while guaranteeing a certain diversity of the solution pool and
preventing premature convergence of the algorithm.

3) Hyper mutation Operators:In this study, the mutation
operators shares coherent behaviours with GA, where both
have a mutation operator that either randomly generates a
string or a decimal, or randomly flips a binary digit of the
individual. However, IIA mutation operator differs in that,
depending on individual affinity, inferior antibodies mutate at
a higher rate compared with superior antibodies. This process
is known as somatic mutation (hyper-mutation). To comply
with this requirement, the mutation operator is conducted in
a continuous loop in which the loop limit is calculated as
follows:

Rm = Round{(1 − Apopn) ∗ popN} (10)

whereRm is the mutation rate,Apopn
is the affinity of the

nth population, andpopN is the total population size. The
somatic mutation used here can be categorized into local and
global mutations.

a) Local Mutation: Local mutation is involved in ex-
changing information of the antibody’s receptor, which is
conducted on a single antibody where only routing of the
operations of jobs are affected (local effects). Local mutation
aims to enhance the algorithms to better examine the search
space. Two types of local mutations operator are employed,
namely, uniform and exploration. The uniform mutation
operator is conducted repeatedly when the mutation is in
the somatic mutation loop, whereas the exploration mutation
operator mutates based on user-defined probabilities within
the somatic mutation loop.

Simple swapping mechanism (SSM) is a uniform local
mutation operator that randomly selects a pre-defined number
of pair of receptors within a single antibody to permute
their positions (Fig. 7). However, an end-to-end swapping
mechanism (EESM) is employed as an exploration local
mutation operator that exchanges first and last pairs of every
receptors within a single antibody to permute their positions
(Fig. 8). Note that every antibody explicitly encodes only the
job information. However, exchanging the antibody’s receptor
does not effect the feasibility of scheduled job routing.

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

1, 3, 0 1, 2, 1 2, 1, 0 1, 2, 0 2, 1, 11, 3, 01, 3, 1

Fig. 7. Illustration of SSM.

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

2,1,1 1,3,1 2, 1, 0 1,3,0 1,3,01,2,11,2,0

Exchange

Fig. 8. Illustration of EESM.

b) Global Mutation: Global mutation involves exchang-
ing information of the antibody’s receptor, which is conducted
on a single antibody at a time and involves factory assignment
of jobs and the maintenance flag. Global mutation aims to
explore more solutions of the search space with different
assignments of jobs to factories and varied scheduled mainte-
nance. To maintain consistency with the antibody’s remaining
receptors and meet factory constraints, all receptors have to
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reflect the new job assignments in which all the receptors
related to the selected job in the antibody have to be updated
(global effects). The updating process is conducted on all
antibodies after the last immune operator to maintain the
antibody’s feasibility (receptor editing).

Two types of global mutation are considered (Fig. 9):
random factory assignment (RFA) and random scheduled
maintenance (RSM). Global mutation has a significant effect
on operation scheduling, which is why it is applied at some
iterations based on certain probabilities to allow the algorithm
to explore solutions to a given job assignment before changing
it. As such, two additional parameters are defined based on
Equations 11 and 12, respectively: the probability of applying
RFA mutation (Rg1) and the probability of applying RSM
mutation (Rg2), both applied to every generation.

Rg1 = (1− Rm)/2 (11)

Rg2 = (1− Rm)/3 (12)

1, 3, 0 1, 3, 0 1, 2, 1 2, 1, 0 1, 3, 1 1, 2, 0 2, 1, 1

2, 3, 0 1, 2, 1 2, 1, 0 1, 2, 1 2, 1, 1

random factory assignment random scheduled maintenance

2, 3, 0 2, 3, 1

Legalization

Fig. 9. Global mutation: RFA and RSM.

whereRg1 is the mutation rate for RFA,Rg2 is the mutation
rate for RSM, andRm is the mutation rate. As mentioned
previously, global mutation significantly affects operation
scheduling. Whenever a local mutation is not performed,
global mutation is conducted with a reduced probability. For
RFA, the probability is reduced in half (1

2 ), while the RSM
probability is reduced by one-third (1

3 ). As such, the global
mutation will be applied to some parts of the population’s
individual. Note thatRm mutation rate is used because the
global mutation is directly proportional to the individual’s
affinity. The use of this mutation rate minimally adjusts the
available population’s individual and provides diversity within
the overall population.

V. COMPUTATIONAL RESULTS AND DISCUSSION

The performance of the IIA has been tested in several
instances. Two separate experiments were conducted. The first
experiments was based on dataset that was obtained from
Chanet al. [4], [38], [39], while the second experiment was
based on datasets that were obtained from Fisher and Thomp-
son’s benchmark data [40]. The first experiment compares IIA
with other algorithms designed for FMSDS (with maintenance
for a specific dataset), in particular, ACO by Kumaret al.
[14], GA with Dominant Gene (GADG) by Chanet al. [4],

[38], [39], modified GADG (MGADG) by Chunget al. [41],
and improved GA (IGA) by De Giovanni and Pezella [9].
The second experiment compares IIA with other algorithms
that were used on the benchmark dataset; these algorithms are
modified GA (MGA) by Jiaet al. [8] and IGA by De Giovanni
and Pezella [9]. IIA was implemented in C# compiler and run
independently on a personal computer equipped with a 2.0
GHz Intel Core i5 processor and 2 GB RAM.

All datasets considered in this study are summarized in
Table III. Both experiments were run independently and
the best results among five test runs were recorded. IIA
parameters were calibrated for the preliminary test on all
datasets described above. The details of four parameters for
each dataset considered are given in Table IV.

TABLE III
DATASETS PARAMETERS/PROPERTIES

Experiment 1

Data labels F Hf i Ni Reference

fjs01 1 3 5 4 [4], [38], [39]
fjs02 1 10 100 n.a. [38]

dfjs01a 2 3 10 4 [4], [41]
dfjs01b 2 3 10 4 [4], [41]

Experiment 2

Data labels F Hf i Ni Reference

Mt06 1 6 6 6 [40]
Mt10 1 10 10 10 [40]
Mt20 1 5 20 5 [40]

*a without maintenance integration, *b with maintenance integration
*n.a.: not available/no specific numbers of operation (flexible)

TABLE IV
IIA CONTROL PARAMETERS

Parameter fjs01,02 dfjs01(a) dfjs01(b) Mt06,10,20

Generation No. 500 100 5000 5000
Run No. 5 5 5 5
Local Explorative
Mutation Rate 0.05 0.1 0.15 0.3
(Reesm)
Options No. 4 4 4 4

Based on Option: 1 2 3 4

Population Size 50 75 150 300
(popN )
Clonal Selection 0.25 0.45 0.65 0.75
Rate (Cr)

Results of the first and second experiments are given
in Table V. The first column reports the dataset name of
testing instance, and the following column represents the
compared algorithms consecutively with the relative deviation
of makespan with respect to the proposed IIA. The relative
deviation is defined as in 13.

dev = [(MKcomp −MKIIA)/MKcomp] ∗ 100% (13)
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MKIIA is the makespan obtained by the proposed IIA,
andMKcomp is the other algorithm that was presented for
comparison. As given in Table V, IIA outperforms other
algorithms by obtaining optimal results for every datasets on
both experiments considered in this study. Results that were
denoted as “n.a” indicate that the algorithm consideration of
the datasets is unavailable. The relative deviation obtained by
IIA compared with that of other algorithms for Experiment
1 are between5% ≤ dev ≤ 33%, whereas average relative
deviation for Experiment 2 is between11% ≤ dev ≤ 14%.
In total, results obtained by IIA relatively deviate between
4% ≤ dev ≤ 33%. Although five runs seems few, IIA
shares relatively coherent convergence rate with GA (e.g.,
[42]), which generally requires a higher number of generation
numbers. However, the optimal solution was achieved com-
pared with other algorithms. Thus, few test runs can support
the capabilities of our proposed IIA against those of other
algorithms. In addition, Fig. 10 shows the decrease of the
average makespan and the best makespan over five runs for
the Mt06 dataset with 6 jobs and 6 machines. The figure
indicates that our algorithms improved the average makespan
very rapidly; the best global makespan (52) was achieved after
25 generations.

In addition, IIA considered various parameter combina-
tions. Determining the appropriate parameters has important
effects on the quality of the solutions and reduces the proba-
bility of avoiding premature convergence. As such, identifying
the appropriate parameter combinations by analyzing different
parameter combinations, specifically the clonal selection rates
(Cr), local explorative mutation rates (Reesm), and popula-
tion sizes (popN ), were investigated. The details of different
parameter combination results are graphically shown in Figs.
11(a), (b), and (c). ThepopN value used are 50, 75, 150, 300;
Reesm value used are 0.05, 0.1, 0.15, and 0.3; andCr used
0.25, 0.45, 0.65, and 0.75. Figure 11(a) shows the relative
average deviation of makespan when different combinations
of popN andCr values were used. On the other hand, Fig.
11(b) shows the relative average deviation of makespan when
different combinations ofpopN andReesm values were used.
Figure 11(c) shows the relative average deviation of makespan
when different combination ofReesm and Cr values were
used.

From the overall view of Fig. 11(a), fluctuation behaviour
is observed whenpopN value is 50, 150, and 300. However,
steady behavior is observed whenpopN value is 75, in which
higherCr value resulted in higher deviation values. However,
suggestedCr values are 0.45, 0.65, and 0.75, which were
combined withpopN values of 50, 150, and 50, respectively.
On the other hand, Fig. 11(b) revealed stochastic behavior
with different values ofpopN . From the overall view of
Fig. 11(b), the best values forReesm are 0.05 and 0.15
which suitable withpopN values of 300 and 75, respectively.
Lastly, Fig. 11(c) shows a steady decreasing trend of rela-

tive average deviation with increasingCr values. Although
fluctuating values were observed with differentRessm values,
Fig. 11(c) suggests thatReesm andCr value of 0.1 and 0.75,
respectively, produce the lowest relative average makespan
deviation.

Arguably, different combinations of parameters ofCr,
Reesm, andpopN values produced different outputs. However,
the short-listed parameters provide insight on how IIA may
have behaved differently. First, a high value ofCr (e.g., 0.65
and 0.75) may be coupled with low valuepopN (e.g., 50) and
Reesm (e.g., 0.1) to consistently produce the best makespan
value. This scenario is possible as higherCr value involves
selecting higher percentage of population to be cloned and
hyper-mutated (global and uniform local mutation) in small
popN , where low number ofReesm indicates that a small
number of that population had explored different search
spaces and relatively “escaped” possible local optima. On the
other hand, a high value ofReesm (e.g., 0.15) may shows
some anomalies at a lower value ofpopN (e.g., 75) where
instead of producing the worst output, the best makespan
was obtained. This scenario is possible because diversity
of solution is actively maintained, which drives the IIA to
search other regions of the search space that have not been
explored before. However, stochastic output may not be a
feasible choice in manufacturing settings where the quality
and productivity is the main concern. Thus, to summarize the
best parameters out of the discussed ones, the best values
were 150 ≤ popN ≤ 300, 0.65 ≤ Cr ≤ 0.75, and
0.05 ≤ Reesm ≤ 0.1.

The scheduling problem in FMSDS subject to machine
maintenance is considered as another alternative to reduce
cost and to increase overall productivity. This outcome is
possible because a large number of machines can operate at an
optimum level, and the possibility of machine breakdown can
be reduced. Based on the results, we found that amalgamating
PM policy can maintain overall system performance while
optimize production scheduling plan and reduce possible
machine unavailability. The obtained results indicate that IIA
produced a relatively more satisfactory solution than other
meta-heuristic algorithms applied in a similar field. As in the
work of Jiaet al. [8], we observed diversity and quick solution
evaluation because of the simplified encoding scheme of IIA.
The greedy decoding scheme always guarantees a superior
solution, thereby improving solution quality in each evaluation
process. Therefore, IIA was found suitable and competitive
in solving scheduling problem in FMSDS subject to machine
maintenance.

The applicability and potential of IIA in solving the prob-
lem identified in this paper may be achieved by further
improving the following aspects:

1) Given the stochastic nature of IIA parameters, an exten-
sion with an artificial neural-network can be developed
to find system-specific parameters or operating strategies
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TABLE V
COMPARISON BETWEEN THE RESULTS OF THE FIRST AND SECOND EXPERIMENTS.

Experiment 1
Data Name ACO dev(%) GADG 1,2,3 dev(%) MGADG dev(%) IGA dev(%) IIA

fjs01 42 +33.33 36 +22.22 35 +20.00 35 +20.00 28
fjs02 n.a. n.a. 227 +11.01 n.a. n.a. n.a. n.a. 202

dfjs01a n.a. n.a. 42 +16.67 n.a. n.a. 37 +5.41 35
dfjs01b n.a. n.a. 122 +30.33 93 +8.60 n.a. n.a. 85

Experiment 2
Data Name MGA dev(%) IGA dev(%) IIA

Mt06 55 +9.09 55 +9.09 50
Mt10 972 +8.64 930 +4.52 888
Mt20 1207 +24.28 1172 +22.01 914

Average improvement +14.00 +11.87
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Fig. 10. Makespan results for Mt06 dataset.

or develops an expert system for obtaining scheduling
knowledge in FMSDS environment.

2) Rescheduling strategies can be incorporated in IIA to
improve solution quality and system state in a real-time
operation, which can enhance productivity as a result..

3) Incorporating IIA with an efficient machine maintenance
strategy can improve solution reliability and quality.

4) Worst-case scenarios (i.e., machine breakdown) can be
simulated to further test IIA capabilities in a real-time
environment.

5) A systematic methodology can be developed to add
additional values to the major IIA operators (e.g., hyper-
mutation, affinity maturation/clonal selection, and adap-
tive memory) specific to the scheduling problem.

6) Inclusion of other hardware elements of the
manufacturing system can be considered to develop an
integrated scheduling task.

VI. CONCLUSION

This paper proposed the IIA approach to solve scheduling
problems in FMSDS subject to machine maintenance. The
relative deviation of the results of the proposed IIA is better
than that of other algorithms used in a similar situation.
With a relative deviation in the range of 4% to 33%, the
proposed IIA performs better and has superior optimization
capabilities. These promising results pave the way for further
extension of this work into a more complex and challenging
environment. However, the datasets and benchmarks obtained
from literature, merely serve as models of a real-world
manufacturing problem, which is substantially complex and
challenging in nature. As such, achieving conceivable results
that address an actual manufacturing problem remains far
from reality and actual implementation. Future research will
present an extended design of the IIA approach, consider
multi-objective performance, compare different implemented
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Fig. 11. Parameter analysis of IIA.

maintenance strategies, include larger jobs and factory data,
and provide comprehensive parameters and analytical results.
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