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Abstract—Competitiveness and rapid expansion of flexiblgromoted new ways of solving problems related to production

manufacturing system (FMS), as one of the industrial alterngcheduling. The newly developed methods have rendered

tives, has attracted the attention of many practitioners and agd;. ; A ;
v - act approaches insufficient to handle complex and changin
demicians. Globalization has further encouraged FMS development PP P ging

into distributed, self-reliant units of production center. Flexiblgnv'ronr_nen_ts of prOdUCt'on_SChed_u“_ng' In general, production
manufacturing system in distributed system (FMSDS) consides§heduling involves allocating a limited amount of resources
multi-factory environments, where jobs are processed by a systéine., machine) to a number of tasks over a time horizon.
of FMSs. Scheduling problems in FMSDS deal with allocatiogyith the many available feasible solutions for different task-

of jobs to factories, independent assignment of job operation {8sqrce assignments, production scheduling problems are
machines, and operations sequencing on a machine. In addition

many previous studies neglect the impact of maintenance as OnélgpSIdered .one of thP-hard prpblems _[1]' Given this 'Ssue’_
the core parts of production scheduling. Maintenance significantipth practitioners and academicians aim to solve production
affects the overall performance of production scheduling. As suctcheduling problems.

maintenance is considered in this paper as part of productionStrong market competition and challenging manufacturing

scheduling. This paper aims to minimize the global makespan oyggyironment a have necessitated the evolution of the ways
all the factories. This paper proposes an improved immune algorithm

(llA) to solve scheduling problems in FMSDS subjects to machin%rga_nizations attain_ success and gqin a competitive e_dge.
maintenance. Antibody encoding is adopted to explicitly represerftéeXible manufacturing system (FMS) is the result of growing
information about a factory, job, and maintenance, while a greedgmand for quantity and quality. FMS combines the efficiency
decoding procedure exploits scheduling flexibility and determinesf a high-production line and the flexibility of job shops,

the job routings. Instead of the traditional mutation operator, hich makes it suitable for mid-volume batch production
improvised mutation operator is used to improve the solutions b

refining the most promising individuals within passing generatio nd mid-variety Pf proc.iuctsl [2]- FMS oﬁers.hlgh lnvestmenF
(iteration). The proposed approach was compared with an ant colof@lué and benefits, which gives it a competitive advantage in
algorithm and several variants of genetic algorithms. The propostatiay’s challenging and globalized market. Such benefits can
I1A improved the global makespan from 4% to 33% compared withe exploited to achieve the best efficiency in this particular
other algorithms. IIA performance has also been tested with sevesdha EMS has been studied extensively since the 1980s, and
adjustments of population sizes, clonal selection rates, and loca . . . . ’
explorative mutation rates. most studies focus on allocation, scheduling, loading, and

control problem. The scheduling problem in FMS can be

Keywords—distributed manufacturing, flexible manufacturing SYSturther defined as an optimization of one or more system
tem, artificial immune system, preventive maintenance, optimization., . . . . . .
criteria with consideration of a limited set of resources while

taking various constraints into account.
Production scheduling of a single-factory is directed toward
[. INTRODUCTION minimization of total operating cost, completion time, and
RODUCTION scheduling problems in the manufacturingrder fulfillment of assigned machine to process the job's
Pindustry have been the subject of research initiatives fgperations. Today’s trend of globalization has cultivated the

several years. Developments in computer technology ha/@ergence of the distributed scheduling (DS) in FMS. DS can
be defined as a multi-factory production system where each

Manuscript received November 19, 2013; revised January 11, 2014. factory is geographically distributed and possesses the ability
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to process product parts independently. Consequently, BS maThe remainder of this paper is organized as follows:
yields different production lead times, operating costs, ar@kction Il discusses previous works that were conducted to
completion times [3], [4]. Thus, exact and heuristic solutiorsolve scheduling problems in FMS. Section Il highlights the
becomes insufficient and unscalable, which makes them ymeblem statement, constraints and parameters of distributed
able to handle scheduling problems in flexible manufacturipgoduction scheduling of an FMS subject to maintenance.
system distributed scheduling (FMSDS) that considers dibection IV discusses the proposed solution in detail. Section V
ferent combinations of process plans. As such, schedulieborates the results of the proposed approach, compares the
in FMSDS has been considered directly in recent workgarameters, and compares the proposed approach with other

including [3], [5], [6], [7]- algorithms. Section VI concludes this paper.
Thus, with respect to available studies intended to solve
scheduling problems in FMSDS, production schedule opti- Il. RELATED WORKS

mization can be concluded to involves three hierarchical prob-

X . Different methods have been proposed to solve scheduling
lems that need to be solved sequentially or simultaneously [%l’oblems in FMS. Lee and DiCesare [11] formulated a Petri

(o1 _ _ _ net model for a single manufacturing environment. The model
1) Allocation of the most suitable factory for the job (aSwas used to model the routing flexibility, resource sharing,
signment problems). lot sizes, and concurrency of a production schedule. Paulli

2) Routing of the most suitable machine for each assigngth] proposed a hierarchical algorithm based on similarities
operations of the job within the given factory (routingyith the job-shop scheduling problem in FMS. Reysal.
problem). [13] further enhanced the Petri net model with a hybrid

3) Sequencing the most suitable assignment of the aRsarch algorithm to mitigate the complexity of the problem.
erations to machines over the time span (sequenciR@imar et al. [14] introduced a different approach that used
problem). an ant colony optimization (ACO) method that applied a

In a real manufacturing environment, machine maintenangeaph-based representation where a collective outcome of all

is unavoidable. Unexpected machine breakdown (stochastétution found by the ant will be the final solution of the
unavailability) and scheduled preventive maintenance (detatgorithm. Jeraldet al. [15] tested genetic algorithm (GA),
ministic unavailability) are the main reasons for machine usimulated annealing, memetic algorithms, and particle swarm
availability for a period of time [10]. Research efforts on maeptimization algorithms. Different problem complexities were
chine maintenance have increased because machine maimeducted on each approach to test their performances. In all
nance directly affects the production rate, product quality, meases of the problems, particle swarm optimization produced
chine availability and utilization ratio [4]. The lack of machinghe best result compared with the others. Wadhetaal.
maintenance disrupts predetermines plan or scheduling afl@] designed a knowledge-based GA that is integrated with
result of process mismatching during machine unavailabilitthe classical genetic algorithm to generate initial popula-
Thus, maintenance policy in production scheduling is vitat®n, selection operator, and crossover operator. Burnwal and
in ensuring machine availability and utilization ratio, whileDeb [17] used cuckoo search-based algorithm to optimize
maximizing the facility with minimum cost and reducingscheduling problems in FMS, which is compared with the
unforeseen breakdowns. To the best of our knowledge, Chaarformance of the GA and the particle swarm algorithm.

et al. [4], who proposed genetic algorithm with dominated Shen [5] proposed a hybrid of agent-based algorithm and
genes (GADG), is the first work that addresses all the featuggsnetic algorithm in the distributed scheduling system. Fea-
of FMSDS and considers machine maintenance. tures such as encapsulation, coordination and negotiation,

Solutions to optimization problems are inspired by severahd decision schemes between agent-based algorithm and

mechanisms that form the building block of a very comple®A were studied to solve scheduling problems in FMSDS.
natural immune systems defense against pathogenic orgAn- adaptive genetic algorithm with dominant genes was
isms. The immune algorithm (IA) is a meta-heuristic which isxtroduced by Chanet al. [3] to solve scheduling prob-
developed based on such system. Explorative powers of hydem in FMSDS. Chanet al. [4], [18] also enhanced ge-
mutation operator, solution diversity through its receptor editetic search performance by using dominant genes, modified
ing operator, and evolutionary capacity of memory cell in I&rossover mechanism, and saturation operator for monitoring
makes this algorithm a suitable alternative in the optimizatidhe similarity of the solution pool. Jiat al. [6] introduced
domain. As such, this paper proposes the use of Al # hybrid of genetic algorithm and Gantt chart to derive
solve scheduling problems in FMSDS subjects to machitige schedules. This study achieved minimum makespan, job
maintenance. The objectives of this study include propositaydiness, or manufacturing cost of small-sized and medium-
an improved IA with guided initialization mechanism andized scheduling problem in FMSDS. Aboutaletial. [7]
yielding optimal or lowest makespan while considering thatroduced a combination of memetic algorithm, particle
impact of machine maintenance. swarm optimization and timed Petri net algorithm to solve
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scheduling problems in FMSDS. In the proposed method, pROBLTEASLN%ITAﬂON

the FMSDS is formulated by timed Petri net. Scheduled

tasks are conducted by memetic algorithm and particle swarm Notation | Description

optimization methods in which reasonable results are obtained f index for factory,f =1, , F,

and compared with available approaches in the literature. whereF is the number of factories
Preventive maintenance (PM) scheduling problems in othef | index for job,i =1, ,1,

problem domains have been explored by previous researchers- wherel is the number of job
Gopalakrishnaret al. [19] developed a tabu search algorithm | '”ﬁex f;r (_’pe;at'on’ Zl’ ’fNi’ o in idb
with the aim to maximize priority tasks subject to resource — ;’:d:(efori r':;cﬁnr:;m: ir °H°pera“°” in j
availability constraints while performing tests with a bench- L

. . where Hy is the number of machine in factofy
mark problem that successfully reduced the optimality gap| index for ime slotk = 1. K

Particle swarm optimization is proposed by Pereiral.[20], whereK is the maximum time horizon
who focused on reliability and cost evaluation by using a| p,; The delivery time required to deliver product from tHe
probabilistic model. PM in FMS equipment was studied by location of factoryf to the location of jobi
Xue et al.[21], who proposed ant colony optimization (ACO) | T;; s operating lead time of operatignof
based on multiple ant colonies. The ant colonies were divideg job i on machineh in factory f
into general-ant colony and core-ant colony. The effectiveness M maximum machine age
and the efficiency of the adaptive strategies applied in thg_Sii starting time of operatio of job i
algorithm were demonstrated through the reasonable resultsZii ending time of operatiof of job i
obtained. C; completion time of jobi

Few studies discuss PM for scheduling problems in| Xif - é’ gt‘hoebrv'vi':ea"ocated to factory
FMSDS. A genetic algorithm with dominant genes was intro- — ————

Oijfhk = 1, if operationj of job i

duced by Charet al. [4], who later enhanced the algorithm occupies time slok on machineh in factory f

with premature avoidance and local search strategy [18] = 0, otherwise

Three separate studies were conducted by Cletray. [22] — = 1, if machineh in factoryf

to prove the influences of PM for scheduling problems in is maintained after operatignof job i
FMSDS by using the same approach as in [3], [4], [18]. = 0, otherwise

Different maintenance models were tested, and the results
were compared with prior research. However, few studies

focus on solving FMSDS-related problems by using IA. The FMSDS problem can be stated as follows: a number of
IA, which is based on the adaptive natural immune systejghs ) are expected to be received in the distributed network,
of vertebra, has been used in various applications, such as B&dq a suitable factoryf (= 1, ..., F) will be assigned to the
chine learning, pattern recognition and detection, scheduling to generate corresponding production scheduling. Each
intrusion detection, data manipulation and analysis, evolutigRgividual factory has a number of machings% 1, 2, ...,
ary computation, and optimization [23], [24], [25], [26], [27], ;) with different efficiencies or operating lead timés )
[28], [29] 1A featu!’es that are not limited to self-orgaanlngi,r] producing various product types_ Each Job has uﬁ\]l;o
adaptivity, and uniqueness have the potential to be usedgiferations, and every operation can be performed by more
developing computational models applied in business [23han one machine (not all), but must be in the same factory.
[25], [29], [30], [31], sciences and engineering [27], [28]The traveling time between factofyand jobi is denoted as
[32], [33], and optimization domain [24], [33], [34], [35]'Dif-

Generally, IA is known for its advantages, such as memory o number of jobs i) are expected to be received in the

cells (reservation of good solutions), high-rate of somatiGqributed network, and a suitable factofy= 1, ..., F) will

mutatioq or hyper-mutation (exp_lprative and/_or diversificat_ioge assigned to the job to generate corresponding production
mechanism), and receptor editing (escaping local optimgyeqyling. Each individual factory has a number of machines
adaptivity) [36]. Despite available studies on IA, this researgh _ 1,2, ....Hy) with different efficiencies or operating lead
was conducted in response to an encouraging yet challenging o (l;jrx) in producing various product types. Each job
opportunity to use a renowned IA as a suitable choice ipg 5 toN, numbers of operations, and every operation can
address underlying problems in FMSDS subject to machigg nerformed by more than one machine (not all), but in the
maintenance. same factory only. The traveling time between the factory
and the jobi is denoted ad;;.

Each machine conforms to a maximum machine age (M),

The notations used to describe the problem studied throug¥hiere the machine age equals the cumulated processing time
out the paper are given in Table I. of operations. A maintenance procedure has to be carried out

IIl. PROBLEM DESCRIPTION
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right after the completion of the current operation when the
machine age reaches the threshold denoted as M, outlined in Ci = Ein,; + ZDiinf- @

[4]. After every maintenance procedure, the machine age oftpe problem is subject to the following constraints:
the particular machine will be reset to 0, as shown in Fig. 1. precedence constraints:

Machine Age M aintenance

Sij 2 Eiyg—1y (1=1,2,...,1;7=2,3,...,N;). 3)
Operating P . t t . t i
y I\ rocessing time constraints:

Eij — Sij = E XifTijen (1=1,2,..,1;5=1,2,...,N;). (4

/

T / fh

/

Idiing // Z(sijfh,k =2XifTijfh (i=12,...0;5=1,2,...,N;). (5

// fhk fh

Time Horizon Operation constraints:

) . . . ) Siipne =1 (G=1,2,..,1;5=1,2,...,N;). 6
Fig. 1. Sample of machine age modeling for a machine when reaching Z Jfhk @@ J ) ©)

maximum machine age adopted from [22]. fhk
Processing operation constraints:

The maintenance model used in this paper is a linear
relationship between the required maintenance time and theN™; <1 _12 .. 5j=1.2. .. Nik=12..K). @
machine age, where maintenance time equals three times thé
machine age. For example, if the machine age is 40 units ofy;ochine capacity constraints:
time, then the maintenance time is 120 units of time. This
maintenance model will simultaneously affect the results of
the FMS distributed production scheduling. The maintenanc

model is shown in Fig. 2. * ]
Factory constraints:

ZX”VZI G=1,2,..1). ©)
f

According to Constraint 3, as given above, every operation
can only begin after the completion of the prior operation.
Constraint 4 states that when an operation commences, it will
continue until it finishes without any disruption. Constraint
o2t s o B TIE IR CH I8 I 5 states that the assigned time slot must be equal to the
required operation time. Constraint 6 requires each operation
to be carried out on a single machine throughout the horizon.
Fig. 2. Relationship between maintenance time and machiedaadinear CfonStramt 7 requires ea(.:h operatlon to t.)e execu'.[ed on a
relationship model adopted from [22]. single machine at each unit of time. Constraint 8 requires each

machine to handle only a single operation at each unit of time.

The objective of the study is to minimize the total maximurfonstraint 9 indicates that each job can only be assigned to
makespan of the last job operation. As such, the objectigesingle factory.
function is defined in (1). Completion tim€’() is defined as
the summation of the completion time of the last operafign
of job i and the delivery time between the factdrand the ) ; ]
job i, as defined in (2). The decision variables are as follows: T further explain how IA can be implemented for opti-
x:; denoted true if jobi is allocated to factory; &, if ~Mization doma|_n, the following section will elaboratpT on the
operationj of job i occupies time slok on machineh in 9enericIA with its standard operators. The propose_dlmproved
factory f; and~;; s if machineh in factoryf is maintained A i then presented. The encoding and decoding process
after operatiorj of job i. Once obtained, the starting time®f the solution, §o|ut|on |n_|t|aI|zat|on and c_IonaI selection,
value of operatior of job i (5;;), ending time of operatiof and hyper-mutation are discussed to clarify the proposed

of job i (E;;), and completion time(;) can be calculated. improved IA differs from the generic IA. Hyper-mutation is
also further divided into two consecutive sections, namely,

ObjectiveZ : min(max{C;}). (1) local and global mutations.

Sijfne <1 (k=1,2,...,K;h=1,2,.. . Hy; f=1,2,..., F). (8)

700

600

500
400

300

Maintenance Time

200

Machine Age

IV. ANIA FORSOLVING SCHEDULING PROBLEMS IN
FMSDS SUBJECTS TOMAINTENANCES
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A. Generic IA threshold will be sustained as long-lasting memory cells [1].

IA is a collection of complex adaptive pattern recognitio € Plasma cells secrete a large number of antibodies, which
systems that mimic the natural immune system that deferff€ distributed randomly throughout the blood and lymph
an organism from foreign antigens (bacteria or viruses) §yStems, and are capable of recognizing and killing foreign
detecting, identifying, and killing pathogens and tumor celfroteins as well as detecting and.recognlz!ng malfunct|on|.ng
(antigens) to protect it against diseases [24]. The system %f-cells. The memory_B-ceIIs with long life spans remain
recognize or identify cells (or molecules) within the organisii the system to effectively accelerate the response of the
as either harmful (non-self-cell) or harmless (self-cell) [i;g]mune systerr_] 'Fo future exposure to S|_m|Ie_1r infection, while
to allow the system to naturally evolve to recognize a e other remaining clones of B-cells will die or be replgced
neutralize threats. In a typical infection process, infestatidly @nother new clone. The overall summary of generic IA
and proliferation of a pathogen within the organism occurdiscussed so far is shown in Fig. 4.
Pathogens and antigens correspond to specific foreign pro-
teins.

When a harmful non-self-cell enters the body, the immune
system responds by providing immediate but nonspecific
defense to protect the organism from any possibilities of

P

1. Population size

If this level of the immune system is penetrated by antigens

an infection (innate immunity) [24]. Phagocyte, which is an 2. Clonal Selection Percentage
antigen-presenting cell, will detect the presence of non-self T 3 Generation Number
cells and fight them by secreting T-cell-activating molecules.

or pathogens, the system initiates adaptive behavior (adaptive

immunity) [1]. The activated T-cells select appropriate B-cells, No
which have receptors that closely resemble the antigenic or Y
pathogenic signatures of the foreign proteins (clonal selection
hypothesis). Then, these B-cells attach to the detected foreign i1

protein’s signature (binding site/epitope); this attachment pro-
cess is known as affinity. Affinity is the measure for evaluating
the successful binding of foreign proteins and B-cells [26].

This scenario is illustrated in Fig. 3.

receptor Stopping
Criterion?

Hyper-mutation

Immune
Memory

I.l

Next Generation
lymphocyte

Ye: END
epitope ~
\k,w affinity Fig. 4. Flowchart of generic IA.
‘ B. Proposed Improved Immune Algorithm (I1A)
To implement the mechanisms explained in Section IV-A to

address scheduling problems in FMSDS, several adaptations
and adjustments are needed. The original IA must metaphor-
ically match the imposed scheduling problems in FMSDS to
Fig. 3. llustration of B-cells attach themselves to the die foreign Meet the objective. For clarity, the analogy of IIA for this
protein’s signature (binding site/epitope) adopted from [37]. particular study is given in Table II.
The overall flows of the proposed IlA are shown in Fig. 5 to

The B-cells then modify themselves (cellular reproductionljustrate the proposed Il1A procedures. The improved version
via somatic hyper-mutation or receptor editing to attain bettef IA operators is highlighted by the thick border in the figure.
affinity against antigens or pathogens by rapidly mutatinthe first procedure involves setting the parameters, where
or randomly changing their receptors’ genetic orientationser-defined parameters, such as population size (),
respectively (affinity maturation). Afterwards, B-cells start tgeneration number, and clonal selection percentagg @re
proliferate to produce clones, with a large number of identicaksigned an individual value. The first step is then followed
B-cells being duplicated. Some of the mature B-cells wilhy the initialization of the populations (see Section I1V-B2
produce new plasma cells while others with high affinitjor details), population ranking, and clonal selection. Simple

structurally
similar-

high affinity
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TABLE Il

I1A ANALOGY

Immunology Terms

Scheduling Terms

=]
=

B-cells Machine available
Antibody Machine assignment
Foreign protein Job allocation
Receptor Assigned job-machine
Affinity Evaluation measures (makespa|
Affinity maturation Improvisation process
Cloning Duplication

Hyper-mutate

Improvisation scheme #1

Receptor editing

Improvisation scheme #2

Binding site/Epitope

Job assigned to a machine

High Affinity

Job assigned to a machine

Volume 8, 2014

1. Population size
2. Clonal Selection Percentage
3. Generation Number

Population Initialization|~---------+ Randomized

Population Evaluation -------- Rank popu ation
descending

Clonal Selection

------- o
‘ Top best
Clone Selected Local Mutation
Population Cell (on cloned cell)

Global Mutation
(on all cell)

¢
| trypernuaton |

1% Hyper-mutation

(with low makespan)

2" Hyper-mutation

encoding during the initialization phase and greedy-based
decoding scheme (see Section IV-B1 for details) during eval-
uation phase are conducted. After the clonal selection phase stopping
a set of individuals are selected from the total population size “<""%”
where cloning is performed first, followed by somatic mu-
tation (hyper-mutation) conducted on the cloned individual.
At this point, only the local mutation operators are involved.
Next, rec_ep_tqr editing (global mu';ation) is performed ON ON&y 5 Flowchart of proposed I1A
or more individuals of the population based on a probabilistic
scheme (see Section IV-B3 for details on both local and global
mutations). Then, the best among cloned individuals will be
retained as an immune memory for the remaining generation
numbers (iterations). If the termination condition (maximurfig- 6. Sample antibody encoding
generation number) is met, the proposed IlA terminates.

1) Antibody Encoding and Decodingnformation encoded
in the antibody of the IIA for FMSDS has to specify theeceptors. Each receptor consists of three types: £2p15”,
allocation of each job to factory, the routing of every jolil,2,< p >", and “1,3< p >" which means that job&V; and
through machine, and the sequence of the operations. Bé-are processed in factody; and N3 is processed in factory
sically, this study reuses the benefit of simple operatiof>. The decoding process exploits the provided information
based encoding method proposed in [8] for the distributéy each antibody to generate a schedule, and the affinity of
scheduling problems without routing flexibility, where releeach antibody is evaluated afterwards. The objective of the
vant extension that includes flexibility issues of the FMSDS &cheduling problems in FMSDS is to minimize the global
considered. The receptor sizg,) within an antibody is equal makespan of the factory network to ensure that the affinity of
to the total number of operations of all jobs. Every recept@n antibody is inversely related to the global makespan.
is represented by a triplet notatiofy {, p), which denotes  Antibodies explicitly represent information of job assign-
the factory {), the assigned jobi), and the PM flag ). ments to factories, and the order of the antibody’s receptor is
Note that all the operations of the same job are representetkvant to determine the priority of each operation, with no
by different receptors within the same antibody, which ai@formation on job routing considered. Instead of complicat-
interpreted according to the order of receptor occurrence iy gene encoding, the flexibility problem is considered in the
the antibody given that the order for the operation of a job #ecoding phase, where it can dispatch job operations to one
fixed. Concerning the adoption of the simple representatiofithe alternative machines within the selected factory. Thus,
as per [8], no information about alternative machine routésformation on job routing is conducted implicitly within
is explicitly encoded into the receptor. This information ishe decoding process. Based on the order determined by the
retrieved during the decoding phase. A sample individual #htibody’s receptors, operations are considered sequentially.
given in Fig. 6. When the respective operation is dispatched to a machine,

Job 1, job 2, and job 3 are assumed have two, two, atite starting time equals the completion time of the last
three operations, respectively, so that an antibody consists afperation assigned to the machine. If the considered operation

Immune
Memory

|.|

Next Generation

Ye: END

( 1,30 )( 1,30 )( 1,21 )( 21,0 )( 1,31 )( 1,20 )( 2,11 )
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requires more than one machine, the decoding process selects
the routing that always guarantees the lowest current local Rm = Round{(1 — Apop, ) * popn'} (10)
makespan where the one that provides the lowest completio

time for the operations assigned so far is selected. Howevr% population, andpopy is the total population size. The

i dlfferent. “’““r.‘gs lead to the same currgnt Ic_)cal r_nakespagbmatic mutation used here can be categorized into local and
the machine with the smallest processing time is chos obal mutations

If the available machines have the same smallest currént a) Local Mutation: Local mutation is involved in ex-

local makespan and processing time, any of them is Selecl:%%nging information of the antibody’s receptor, which is

at random in order to give the optimization algorithm th%onducted on a single antibody where only routing of the

opportunity to search different regions of the solution SPaCherations of jobs are affected (local effects). Local mutation

The decoding process is completed by adding the deIiveé s to enhance the algorithms to better examine the search

time (according to the factory the job is assigned to) as SO ace. Two types of local mutations operator are employed
as all the operations have been scheduled, thus obtainingﬁ ﬁwely uniform and exploration. The uniform mutation '

local and global makespans. operator is conducted repeatedly when the mutation is in
2) Population Initialization and Clonal SelectionThe the somatic mutation loop, whereas the exploration mutation
initial population is determined in three phases: the first phaggerator mutates based on user-defined probabilities within
randomly generates jobs until all the operations of the jolage somatic mutation loop.
are generated; the second phase randomly assigns jobs Simple swapping mechanism (SSM) is a uniform local
factories in which related operations of the respective jolsytation operator that randomly selects a pre-defined number
will be amended to satisfy factory allocation constraints; arg pair of receptors within a single antibody to permute
the third phase generates the maintenance flag at random. Fjhisy positions (Fig. 7). However, an end-to-end swapping
process repeats until all individuals of the populatipoply) mechanism (EESM) is employed as an exploration local
are initialized. Note that these three phases are conducted Wiifation operator that exchanges first and last pairs of every
respect to the encoding and decoding schemes in the previgdtgaptors within a single antibody to permute their positions
section. (Fig. 8). Note that every antibody explicitly encodes only the
During the clonal selection phase, a set of individuals frojab information. However, exchanging the antibody’s receptor
the current population are chosen to apply IIA operators a@gdes not effect the feasibility of scheduled job routing.
generate high affinity memory cell(s) to include in the next
generation. The clonal selection is dependent on the affinity  (T1s0 ){ 130 }((221 )220 ){ 1a1 J(220 )((211)
(makespan) of the antibody. Therefore, a ranking strategy is
conducted by sorting the population by decreasing affinity
(starting from the best to the worst individual). TBe % of (oo J{ pan j(a2r J(2no J{ 230 J(220 J(222 )
the best population will be considered for cloning, in which
each of these cloned cells undergo affinity maturation procesg, 7. Iilustration of SSM.
whereas the rest of the population will be re-initialized with
the three-phase initialization mechanism previously described.
This re-initialization is conducted to give good antibodies
more chances for affinity maturation, while giving even less S
promising individuals the opportunity to participate in the evo- (230 )(130 ) (121 )220 J(231 ) (220 )((211)

r\‘/vhereRm is the mutation rated,,,, is the affinity of the

lution; the search will move toward most promising regions ﬂ
while guaranteeing a certain diversity of the solution pool and
preventing premature convergence of the algorithm. (211 )(Cazo J (a1 (220 )(aer J(Cas0 J(( 130 )

3) Hyper mutation Operatorsin this study, the mutation
operators shares coherent behaviours with GA, where b@il 8. lllustration of EESM.
have a mutation operator that either randomly generates a
string or a decimal, or randomly flips a binary digit of the  b) Global Mutation: Global mutation involves exchang-
individual. However, IIA mutation operator differs in that,ing information of the antibody’s receptor, which is conducted
depending on individual affinity, inferior antibodies mutate ain a single antibody at a time and involves factory assignment
a higher rate compared with superior antibodies. This procedsjobs and the maintenance flag. Global mutation aims to
is known as somatic mutation (hyper-mutation). To complgxplore more solutions of the search space with different
with this requirement, the mutation operator is conducted assignments of jobs to factories and varied scheduled mainte-
a continuous loop in which the loop limit is calculated asance. To maintain consistency with the antibody’s remaining
follows: receptors and meet factory constraints, all receptors have to
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reflect the new job assignments in which all the receptdf38], [39], modified GADG (MGADG) by Chungt al. [41],
related to the selected job in the antibody have to be updatet improved GA (IGA) by De Giovanni and Pezella [9].
(global effects). The updating process is conducted on alhe second experiment compares IIA with other algorithms
antibodies after the last immune operator to maintain thieat were used on the benchmark dataset; these algorithms are
antibody'’s feasibility (receptor editing). modified GA (MGA) by Jieet al.[8] and IGA by De Giovanni

Two types of global mutation are considered (Fig. 9and Pezella [9]. IIA was implemented in C# compiler and run
random factory assignment (RFA) and random schedulediependently on a personal computer equipped with a 2.0
maintenance (RSM). Global mutation has a significant effeGHz Intel Core i5 processor and 2 GB RAM.
on operation scheduling, which is why it is applied at some All datasets considered in this study are summarized in
iterations based on certain probabilities to allow the algorithifable 11l. Both experiments were run independently and
to explore solutions to a given job assignment before changitige best results among five test runs were recorded. IIA
it. As such, two additional parameters are defined based parameters were calibrated for the preliminary test on all
Equations 11 and 12, respectively: the probability of applyindatasets described above. The details of four parameters for
RFA mutation 4:) and the probability of applying RSM each dataset considered are given in Table IV.

mutation , both applied to every generation.
(y2) PP Y9 TABLE IIl

DATASETS PARAMETERSPROPERTIES

Rgy1=(1—Rm)/2 (11)
Experiment 1
Rg2 = (1= Rm)/3 12 Data labels F  Hy i N; Reference
fis01 1 3 5 4 [4], [38], [39]
130 ){ 130 }( 121 21,0 131 ){ 120 }( 211 fjs02 1 10 100 n.a. [38]
Ceze 0 | JEEDIEDEUD G (LD dfisola 2 3 10 4 [4][41]
random factory assignment random scheduled maintenance dfjsolb 2 3 10 4 [4], [41]
( 2,30 )i 23,0 ‘( 121 )( 21,0 )( 231 ): 121 ‘( 211 ) Experiment 2
Data labels F  Hy 7 N; Reference
I____Y__v___|
L Legelization | Mt06 1 6 6 6  [40]

Mt10 1 10 10 10 [40]

Mt20 1 5 20 5 [40]
*a without maintenance integration, *b with maintenancegnétion
*n.a.: not available/no specific numbers of operation (flexible)

Fig. 9. Global mutation: RFA and RSM.

whereR,; is the mutation rate for RFAR, is the mutation
rate for RSM, andR,,, is the mutation rate. As mentioned
previously, global mutation significantly affects operation TABLE IV
scheduling. Whenever a local mutation is not performed, IIA CONTROL PARAMETERS
global mutation is conducted with a reduced probability. For

RFA, the probability is reduced in half}, while the RSM Para_meter fis01,02  dfis01(a) dfisO1(b)  Mt06,10,20
probability is reduced by one-thirdt). As such, the global Sjr’:e,\rlit'on No. goo 5100 gooo 55000
mutation will be applied to some parts of the population’s | o4 Explorative
individual. Note thatR,,, mutation rate is used because the Mutation Rate 0.05 0.1 0.15 0.3
global mutation is directly proportional to the individual's (RE.&Sm)N . . . .
affinity. The use of this mutation rate minimally adjusts the Options No.
available population’s individual and provides diversity within Based on Option: 1 2 3 4
the overall population. Population Size 50 75 150 300
(popnN) .
V. COMPUTATIONAL RESULTS AND DISCUSSION ggga(lcf)elecnon 0.25 0.45 0.6 0.75

The performance of the IIA has been tested in several
experiments was based on dataset that was obtained frigimraple v. The first column reports the dataset name of
Chanet al. [4], [38], [39], while the second experiment wasesting instance, and the following column represents the
based on datasets that were obtained from Fisher and Thom@inpared algorithms consecutively with the relative deviation

son’s benchmark data [40]. The first experiment compares I} makespan with respect to the proposed IIA. The relative
with other algorithms designed for FMSDS (with maintenancgyiation is defined as in 13.

for a specific dataset), in particular, ACO by Kumetr al.
[14], GA with Dominant Gene (GADG) by Chaet al. [4], dev = [((MKcomp — MK114)/MKcomp) * 100% (13)
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MK;r4 is the makespan obtained by the proposed llAive average deviation with increasing. values. Although
and M K..m, is the other algorithm that was presented fdituctuating values were observed with differeé?;,, values,
comparison. As given in Table V, IIA outperforms otheFig. 11(c) suggests tha..s,, andC, value of 0.1 and 0.75,
algorithms by obtaining optimal results for every datasets oaspectively, produce the lowest relative average makespan
both experiments considered in this study. Results that weteviation.
denoted as “n.a” indicate that the algorithm consideration of Arguably, different combinations of parameters 6f,
the datasets is unavailable. The relative deviation obtained Ry...,,, andpop values produced different outputs. However,
IIA compared with that of other algorithms for Experimenthe short-listed parameters provide insight on how IIA may
1 are betweers% < dev < 33%, whereas average relativehave behaved differently. First, a high value@f (e.g., 0.65
deviation for Experiment 2 is betwedi% < dev < 14%. and 0.75) may be coupled with low valpepy (e.g., 50) and
In total, results obtained by IIA relatively deviate betwee,..,, (e.g., 0.1) to consistently produce the best makespan
4% < dev < 33%. Although five runs seems few, IlA value. This scenario is possible as higligr value involves
shares relatively coherent convergence rate with GA (e.gelecting higher percentage of population to be cloned and
[42]), which generally requires a higher number of generatidtyper-mutated (global and uniform local mutation) in small
numbers. However, the optimal solution was achieved comop,, where low number ofR...,, indicates that a small
pared with other algorithms. Thus, few test runs can suppetimber of that population had explored different search
the capabilities of our proposed IIA against those of othgpaces and relatively “escaped” possible local optima. On the
algorithms. In addition, Fig. 10 shows the decrease of tlhwther hand, a high value aR..,,. (e.g., 0.15) may shows
average makespan and the best makespan over five runsstane anomalies at a lower value pfpy (e.g., 75) where
the MtO6 dataset with 6 jobs and 6 machines. The figuiestead of producing the worst output, the best makespan
indicates that our algorithms improved the average makespeasis obtained. This scenario is possible because diversity
very rapidly; the best global makespan (52) was achieved aftérsolution is actively maintained, which drives the IIA to
25 generations. search other regions of the search space that have not been

In addition, IIA considered various parameter combingxplored before. However, stochastic output may not be a
tions. Determining the appropriate parameters has importé@@sible choice in manufacturing settings where the quality
effects on the quality of the solutions and reduces the prot#id productivity is the main concern. Thus, to summarize the
bility of avoiding premature convergence. As such, identifyingest parameters out of the discussed ones, the best values
the appropriate parameter combinations by analyzing differadgre 150 < popy < 300, 0.65 < C, < 0.75, and
parameter combinations, specifically the clonal selection rafe85 < Reesm < 0.1
(C,), local explorative mutation ratesR{.s,,), and popula-  The scheduling problem in FMSDS subject to machine
tion sizes popy), were investigated. The details of differenmaintenance is considered as another alternative to reduce
parameter combination results are graphically shown in Figggst and to increase overall productivity. This outcome is
11(a), (b), and (c). Theopx value used are 50, 75, 150, 300possible because a large number of machines can operate at an
Re.sm Value used are 0.05, 0.1, 0.15, and 0.3; ahdused optimum level, and the possibility of machine breakdown can
0.25, 0.45, 0.65, and 0.75. Figure 11(a) shows the relatibe reduced. Based on the results, we found that amalgamating
average deviation of makespan when different combinatioRd! policy can maintain overall system performance while
of popy and C, values were used. On the other hand, Fi@ptimize production scheduling plan and reduce possible
11(b) shows the relative average deviation of makespan wh@achine unavailability. The obtained results indicate that 1A
different combinations ofopx and R...,» values were used. produced a relatively more satisfactory solution than other
Figure 11(c) shows the relative average deviation of makespagta-heuristic algorithms applied in a similar field. As in the
when different combination oR2...,, and C, values were Wwork of Jiaet al.[8], we observed diversity and quick solution
used. evaluation because of the simplified encoding scheme of llA.
Jhe greedy decoding scheme always guarantees a superior

From the overall view of Fig. 11(a), fluctuation behaviou , X ! . hap X
is observed whepopy value is 50, 150, and 300. However,SC"”t'on' thereby improving solution quality in each evaluation

steady behavior is observed whamp value is 75, in which process. Therefor_e, IIA was f(_)und suitable :_:md competif[ive
higherC,. value resulted in higher deviation values. Howevel? S0Iving scheduling problem in FMSDS subject to machine
suggested’, values are 0.45, 0.65, and 0.75, which werg@ntenance. _ _ _
combined withpop values of 50, 150, and 50, respectively. | "€ applicability and potential of lIA in solving the prob-
On the other hand, Fig. 11(b) revealed stochastic behav{f identified in this paper may be achieved by further
with different values ofpopy. From the overall view of improving the following aspects:

Fig. 11(b), the best values foR..s,, are 0.05 and 0.15 1) Given the stochastic nature of IIA parameters, an exten-
which suitable withpop values of 300 and 75, respectively. sion with an artificial neural-network can be developed

Lastly, Fig. 11(c) shows a steady decreasing trend of rela- to find system-specific parameters or operating strategies
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TABLE V
COMPARISON BETWEEN THE RESULTS OF THE FIRST AND SECOND EXPERIMENTS

Experiment 1
Data Name ACO de %) GADG 1,2,3 de %) MGADG de %) IGA de %) IIA

fisO1 42 +33.33 36 +22.22 35 +20.00 35 +20.0028
fis02 n.a. n.a. 227 +11.01 n.a. n.a. n.a. n.a. 202
dfisOla n.a. n.a. 42 +16.67 n.a. n.a. 37 +5.4135
dfis01b n.a. n.a. 122 +30.33 93 +8.60 n.a. n.a. 85
Experiment 2
Data Name MGA dey(%) IGA dey(%) 1A
Mt06 55 +9.09 55 +9.09 50
Mt10 972 +8.64 930 +4.52 888
Mt20 1207 +24.28 1172 +22.01 914
Average improvement +14.00 +11.87

Makespan results for Mt06 dataset

Makespan

52 |-

| | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 110

Generation No

—e— Average—m— Best

Fig. 10. Makespan results for MtO6 dataset.

or develops an expert system for obtaining scheduling VI. CONCLUSION
knowledge in FMSDS environment.

2) Rescheduling strategies can be incorporated in lIA to This paper proposed the IIA approach to solve scheduling
improve solution quality and system state in a real-timgroblems in FMSDS subject to machine maintenance. The
operation, which can enhance productivity as a resultrelative deviation of the results of the proposed IIA is better

3) Incorporating IIA with an efficient machine maintenancehan that of other algorithms used in a similar situation.
strategy can improve solution reliability and quality.  With a relative deviation in the range of 4% to 33%, the

4) Worst-case scenarios (i.e., machine breakdown) can feposed IIA performs better and has superior optimization
simulated to further test IIA capabilities in a real-timecapabilities. These promising results pave the way for further
environment. extension of this work into a more complex and challenging

5) A systematic methodology can be developed to adghvironment. However, the datasets and benchmarks obtained
additional values to the major IIA operators (e.g., hypefrom literature, merely serve as models of a real-world
mutation, affinity maturation/clonal selection, and adagnanufacturing problem, which is substantially complex and
tive memory) specific to the scheduling problem. challenging in nature. As such, achieving conceivable results

6) Inclusion of other hardware elements of thehat address an actual manufacturing problem remains far
manufacturing system can be considered to develop ®om reality and actual implementation. Future research will
integrated scheduling task. present an extended design of the IIA approach, consider

multi-objective performance, compare different implemented
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(b) Deviation of makespan with different values of Rccsm, against popn
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Fig. 11. Parameter analysis of IIA.

maintenance strategies, include larger jobs and factory dafa} F. Chan, S. Chung, L. Chan, G. Finke, and M. Tiwari, “Solving

and provide comprehensive parameters and analytical results.
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