

Abstract—The pyramidal layer format's main purpose is to store

images in an efficient manner for both transfer rate control and
compression purposes. It involves lossless compression and is
elegantly designed to ensure a proper balance between the user
experience and the bandwidth constraints, as well as between texture
information and edge quality.

Keywords— frequency separation, image compression, PLF
image file format, progressive transfer.

I. INTRODUCTION
VER the last decade wired networks have become
extremely advanced, being able to satisfy the needs of

even the most demanding clients. However, with the surge of
smart-phones, tablets and other mobile devices, the attention
has shifted towards wireless networks. People expect to be
able to read the news or check their social media account any
time and any place. Yet, coverage is not uniform and available
bandwidth varies greatly, even with the high-end services.

Delivering all the content over this relatively unreliable
medium can be challenging, especially when talking about
multimedia. Users may accept that streaming videos to
handheld devices is under certain circumstances unfeasible,
but they probably would not have the same attitude towards
viewing images. Still, the latter can be as demanding as the
former, especially in the case of social media sites where
image sharing is the central activity of the users.

Fortunately, given that most mobile devices have relatively
small screens, it is usually impossible for a user to see the
details contained in images; therefore, initially it would suffice
to transfer to the client only a reduced version of the images.
Later, if the user requires it, details can be obtained. However,
the browser should not request a whole new image; instead it
should build upon the information it already has to limit the
bandwidth consumption as much as possible.

The pyramidal layer format aims to solve the problems
described above. By repeatedly down-sampling and up-
sampling a bitmap image and compressing the resulting
residual images a relatively compact image format can be
obtained from which increasingly more detailed images can be
computed.

The rest of the paper is structured as follows. Section 2 is
dedicated to previous work. The next section covers the
Pyramidal Layer Format construction algorithm and the image
format. Section 4 describes the results and performance

evaluation, whereas the last sections are reserved for future
work and conclusions.

II. BACKGROUND
The pyramidal layer format is built upon research performed

in the field of image down-sampling and pyramidal
representations [1]-[5]. In many instances it is required to
obtain reduced versions of a certain image, either for technical
or aesthetic reasons. Deciding how to select or combine pixels
of the original image to obtain a version as accurate as
possible is in itself a challenging task. But restoring the down-
sampled image to its original size is where the things really
become interesting. For the pyramidal layer format, the
reconstruction is done with the help of residual layers that
preserve the difference between the original layer and the
artificially up-sampled version of the reduced layer.

Modern image data formats include some form of data
compression for a better management of the relatively large
data volumes. This may be done in a lossless manner, as it is
the case of the PNG format, or lossy, like in JPEG [6]. No
matter what the case is, they all take advantage of the
redundancy displayed in most images. The compression
techniques are also diverse, such as LZV in the case of PNG or
TIFF and Huffman for JPEG. The PLF also employs
compression to save space, encoding the residual layers where
there is more likelihood for redundancy.

In visual applications, data transfer of images should allow
the display of partially received contents, as this offers the
feeling of responsiveness from the application [7]. With the
advent of progressive image formats such as JPEG 2000 [6]
and Progressive Graphics File, this is now possible. Just like in
the case of these two formats, it is not necessary to have access
to the entire file to display an image; displaying a reduced
version of the image becomes possible as soon as the bottom
layer is available, while the full image can only be displayed
once the last residual layer arrives.

III. PROBLEM SOLUTION
Bitmap images are large compared to the text that is usually

transferred during http communication. Also, with today’s
relatively high resolution phone cameras, it means that the
average uploaded image is in the megabyte size range. This is
indeed a problem from the bandwidth point of view, but it also
offers some opportunity. Large images will most likely have
highly redundant regions, areas where pixel values are

Efficient Image Transfer Rate Control and
Compression Using Pyramidal Layer Format

Andrei Tigora, Mihai Zaharescu

O

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 82

identical or vary only slightly. Each such region could be
represented as a reference value and each individual pixel as
variation from the reference. In the end, the image will be
made up of relatively different reference values, and low
ranging differences, which compression algorithms handle the
best.

This is performed in a manner similar to the Laplacian
Pyramid [8], in the current paper the focus being set on the
study of downsampling-upsampling successive operation for
residue computation and on the discussion about the
importance of the filters used in the resample process [9].

A. Bitmap Conversion to PLF
When including a subsection, the pyramidal layer format

presented here defines a region as a group of four neighboring
pixels. The algorithm for obtaining such an image is described
below.

Step I
A given bitmap image becomes the first layer of the format.
Step II
The current layer, C, is down-sampled, resulting a new

layer, N, half the length and half the width of its predecessor.
Step III
The previously down-sampled layer, N, is up-sampled,

resulting an up-sampled layer, U, that is a rough
approximation of the C layer.

Step IV
The residual layer R[i] is obtained by subtracting the values

of U from C.
Step V
If the size of the layer N image is not beneath a certain

threshold, then N becomes the current layer, and the process
restarts from Step II. Otherwise all the residual layers are
analyzed, compressed and the image in its pyramidal layer is
written to the disk.

Fig. 1 illustrates actual image decomposition.

B. File Format
The pyramidal layer format comes in two forms: permanent

and temporary. The permanent format stores the entire data,
starting from the lowest uncompressed layer and all residual
layers. This file would normally be stored on a server. The
temporary counterpart contains only one layer, corresponding
to the data that is to be displayed in the browser, the
decompression key and various metadata. In the following
paragraphs, a more detailed description of the two formats is
presented.

The PLF is split into a header and a body section. The body
is the more simple structure of the two; for the permanent
form, it contains, in order, a serialization of the Huffman tree
used for compressing the residual layers, the raw base layer
and a sequence of encrypted residual layers starting from the
one corresponding to the smallest residual all the way to the
largest. The temporary form lacks the encrypted residual layers
as it is only used to display the bitmap contained within and to
construct more detailed images with the help of residual layers
it might receive from the server.

The header contains a magic field, a distinct value for each
form, the dimensions of the full sized image, the start and end
layer, a numeric identifier of the up-sampling method and a list
of offsets relative to the beginning of the file for the serialized
Huffman tree, bottom layer and encoded residual images. The
number of bytes assigned to each of these fields is detailed in
Fig. 2.

 =

 + +

 +
Fig. 1 128 x 128 grayscale Lena; residual image used for

reconstruction and the down-sampled 64 x 64 version; residual image
used for reconstructing the 64x64 image and down-sampled 32 x 32

version

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 83

It should be noted that once the image has been encoded in

PLF, the down-sampling method used to obtain this is no
longer relevant. One of the reasons why the down-sampling
field was introduced was to keep track of different down-
sampling methods therefore which would allow comparing
storage requirements later. The other one would be symmetry
with the up-sampling field.

The ‘reserved’ field is currently not used. As a side effect of
its usage, it allows access to the fields as 4 byte aligned
entities.

In the case of a temporary form, the “start layer” specifies
which of the layers it is currently storing as a full image,
whereas the ‘end layer’ indicates the index of the maximum
layer that may be obtained to expand the image. For the full
permanent form, the start layer field is set to 1 and the ‘end
layer’ to the number of residuals plus one, the base unencoded
layer.

Another difference is that temporary forms do not contain
offset entries for encoded residuals, because they do not store
encoded residual layers. Therefore, in this particular case, only
three offset are stored: the offset to the serialized Huffman
tree, the offset to the base layer, and the file size.

The ‘file size’, or ‘offset to the end of file’ was introduced
for symmetry reasons, to allow for a uniform reading of all
residual layers, from its starting offset and to the offset of the
next layer.

C. Usage Scenario
When including a subsection, the way these two forms are

used is described in the following usage scenario. A client with

a handheld device connects to the server and asks for a certain
page and all its resources. The text content is transferred in its
original form, but the images, being stored as PLF are only
partially transferred. As a result of the initial transfer, the
client will receive an image in temporary form, containing only
the base layer of the permanent form of the image stored on
the server. This way, the impact on the server is minimized,
with very little computation required. On the client side, the
browser now has access to a file that has the image stored
directly in bitmap format that it only needs to load.

If the connection is good enough, and perhaps there is no
cost penalty to the user, the browser could continue
downloading more data to improve the quality of the image. If
however this is not the case, more data could be loaded as a
result of direct user interaction such as zooming in; after all,
images are not necessarily displayed at their true size in html
pages and, on the relatively small displays, the details are not
always visible. In order to improve the quality of an image, the
browser has to request more residual layers from the
permanent PLF image from the server. One or more layers
may be requested at a time and it is the client’s duty to
compute the more detailed image. The newly computed layer
is stored in the temporary PLF image. Once again, the server
has minimum involvement, other than reading a specific
section of the requested file and delivering that section to the
client.

IV. EXPERIMENTAL RESULTS
Two sets of tests were run to evaluate the Pyramidal Layer

Format: one focused on storage size, the other on image
transfer and display performance.

The tests were performed on a machine with a 2GHz Intel
Core2 Dup processor, 2GB of RAM running 32bit Ubuntu.

A. Size Measurements
The size measurements were performed on grayscale images

of the following sizes: 256x256, 512x512 and 1024x1024. The
images were converted to permanent PLF, with 4 layers.

The down-sampling phase was done by halving the images’
width and height, and choosing the value of a single pixel for
each down-sampled group of four pixels. For up-sampling,
several interpolation variants were chosen: box, triangle,
Hermite, Bell, B-Splines, Lanczos and Mitchell.

As can be seen in Table 1, up-sampling methods based on
triangle filter and Hermite interpolation produce the best
results in terms of image size. Although the files have the same
size for the two up-sampling methods, the actual contents in
the two cases is different.

It should be noted that file sizes vary quite a lot, depending
on the chosen up-sampling method. Also, there is no way to
predict how strong the size reduction will be for any particular
method. For example, through Hermite interpolation, the data
compression ratios obtained are 1.651, 2.112 and 1.677
respectively. This is not as efficient as the compression
obtained by the original Laplacian Pyramid [8], but the

 0 1 2 3
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | MAGIC |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | FULL IMAGE HEIGHT |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | FULL IMAGE WIDTH |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | UPS | DOWNS | RESERVED |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | START LAYER | END LAYER |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | OFFSET HUFFMAN TREE |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | OFFSET BASE LAYER |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | OFFSET ENCODED RESIDUAL 1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | OFFSET ENCODED RESIDUAL 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | OFFSET ENCODED RESIDUAL N |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | FILE SIZE (OFFSET END OF FILE)|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 2 PLF Header Byte Allocations

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 84

original image can be accurately recovered without incurring
any penalty to image quality.

B. Transfer Measurements
In order to evaluate the performance of both the transfer and

display time of the images a test setup was created consisting
of a browser, a proxy server and the actual http server in
charge of delivering the required resources.

The proxy server and the browser were meant to be used as
a single entity, with the proxy simply forwarding most of the
requests to the actual server, and only intervening to interpret
special requests related to PLF images. More exactly, the
proxy ran as a browser extension, correctly interpreting the
PLF and delivering to the browser contents that it can actually
display.

Whenever the browser asks for a certain layer, the proxy
will determine if the requested layer or a higher already exists.
If that is the case, then an equivalent representation of the
layer in an displayable image format already exists and it is
read and returned to the browser. If the required layer does not
exist, the proxy asks the server to deliver the missing
compressed residual layers. When the answer arrives, the
layers are decompressed and with the help of the bitmap layer
already present on the proxy, larger layers are computed one
by one. The last layer is written to the temporary form image
and also written in a displayable image format. The web
browser eventually receives this latter file which it can display
straight away.

The tests were performed on 1024x1024 grayscale images,
with the number of layers, including the bottom uncompressed
layer ranging from 2 to 9. Column 2 of Table 2 illustrates how
big a temporary form PLF has to be to store an initial image of
the specified size. The last column indicates the size of the
compressed residual layer that is used following an up-
sampling to obtain a layer of the specified dimensions.

Based on these measurements, it was decided not to create

PLF images with a base layer smaller than 32x32. This is the
last dimension for which using another down-sampled layer
does not make it more efficient in terms of storage
requirements. Moreover, going any lower would result in
producing an image having hardly distinguishable contents.

The first thing that can be observed in Table 3 is that of the

total time, the time spent on the server is the least significant,
being up to two orders of magnitude smaller than the time
spent on the client side for reconstructing the image. In fact, as
the size of compressed residual layer grows, the image
reconstruction ends up becoming the most time consuming
part, even more so that displaying the image, which is the case
for the smaller layers. Another thing that should be noticed is
that the transfer time also has limited impact, but this is only
due to the fact that all components were running on the same
machine; in a real environment, this would probably consume
the most time.

Se
nt

 c
on

te
nt

B
ro

w
se

r
R

es
po

ns
e

Ti
m

e
(m

s)

Pr
ox

y
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Se
rv

er

Ex
tra

ct
io

n
Ti

m
e

(m
s)

Tr
an

sf
er

Ti

m
e

(m
s)

Initial Temp.
PLF 5 0.9 0.1 0.4

Residual
64x64 8 1.7 0.1 0.5

Residual
128x128 30 5.6 0.1 0.6

Residual
256x356 37 15.3 0.2 0.7

Residual
512x512 70 56.4 0.4 1.5

Residual
1024x1024 221 203.3 1.4 9.6

Table III Distribution of response times between the various
components of the experimental setup

Base Layer

Size
Temporary PLF

size
Compressed Residual

Size
4 x 4 753 -
8 x 8 785 65

16 x 16 993 216
32 x 32 1761 764
64 x 64 4833 2778

128 x 128 17121 10300
256 x 256 66273 37916
512 x 512 262881 138248

1024 x 1024 1049313 493160
Table II Temporary PLF form sizes and corresponding compressed

residuals necessary for obtaining original image

Upsampling Image Resolution
256x256 512x512 1024x1024

Box 40885 147914 684455
Hermite 39689 124100 625235
Triangle 39689 124100 625235

Bell 52310 153951 701230
B-Spline 54654 163092 719755
Lanczos 47313 126926 633700
Mitchell 50021 138617 665004

Table I PLF image sizes with 4 layers and various up-sampling
approaches

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 85

V. FUTURE WORK
The main focus in the near future will be to improve the

compression ratio of the image. Rough initial tests show that
by simply changing the choice made during the down-
sampling phase image size can be reduced by approximately
10%. More algorithms should be tested and evaluate how
image contents impact compression rates. Alternatives to the
compression mechanism and filtering [10] should also be
studied, as here too could be room for improvement.

A lossy compression mechanism can be inferred without
interfering with the file format or the decompression stages.
The residual layers from the pyramid hold data necessary to
reconstruct details in the higher resolution layer. Very faint
details can then be eliminated just by thresholding elements
with small amplitude in the residues. Having fewer values, the
residues can therefore be compressed better using Huffman.
Blocking artifacts, like those generated in jpg compression, are
not a problem, since the image is not split in regions. With an
intelligent combination between residue pixel amplitude and
placement in space, the lossy compression mechanism can
prove to offer visually good quality. This has to be tested, as
pixels of greater value can be eliminated from regions with
high variance, as their neighbors will mask them, whilst in
uniform regions even faint residues are noticeable.

Another potential research topic would be using multi-
channel images. Although both the encoding and decoding
algorithms should be easily extendable to multi-channel
images, it would be interesting to determine whether using a
single compression key for all channels or one for each
channel is the better choice. We also did a similar test using
hypercubes for video encoding with encouraging results[11].

It may be useful to try to split the image first using
segmentation or binarization[12], in order to obtain similar
regions, or even using a locality-globality approach [13]
(relative to how much information is in a region) and compress
each region separately using the pyramidal approach. The
residual images contain high frequency detail elements. These
residual images could themselves be filtered in order to send
sharp edges from the start and texture details at a later time.
This would mean splitting the residual images in two. Such a
filtering can be done in Radon space [14], [15], in order to
separate connected edges from uniform noise (texture)
background.

Despite performing decently, the current implementation
only proves that it is feasible to use PLF. For better
performance and a more accurate picture of the true potential
of the format, it should be implemented so that it can be
integrated with current technologies. More precisely,
managing the PLF images should be done by plugins or Native
Client applications on the browser side and Apache modules
on the server side.

VI. CONCLUSION
This paper introduced a new image storage format: the

pyramidal layer format. This format has relatively low storage
requirements, with a potential for improvement. The main
advantage is that it can be used as a progressive data format,
allowing the recipient of the file to evaluate its content while it
is being transferred. This also allows for selective transmission
of the content, responding strictly to the end user’s
requirements: initially only a small portion of the file is sent,
and if there is a requirement for a more detailed version,
additional data may be sent. With these features in mind, the
pyramidal layer format presents itself as a strong contender for
image representation in the client server paradigm.

REFERENCES
[1] X. Song, Y. Neuvo, “Image compression using nonlinear pyramid vector

quantization,” Multidimensional Systems and Signal Processing, vol. 5,
1994, pp. 133-149.

[2] M. S. Kishore, K. V. Rao, “A study of correlation technique on pyramid
processed images,” Sadhana, vol. 25, 2000, pp. 37-43.

[3] J. B. T. M. Roerdink, “Morphological pyramids in multiresolution MIP
rendering of large volume data: survey and new results,” Journal of
Mathematical Imaging and Vision, vol. 22, 2005, pp. 143-157.

[4] V. Swathi M. Tech, K. Ashok Babu, “Low bit-rate image compression
using adaptive down-sampling technique,” International Journal of
Computer Technology and Applications, vol. 15, 2002, pp. 1679-1689.

[5] L. Williams, “Pyramidal parametrics,” Computer Graphics, vol. 17, no.
3, July 1983, pp. 1-11.

[6] M. Rabbani, R. Joshi, “An overview of the JPEG 2000 still image
compression standard,” Signal Processing: Image Communication, vol.
17, 2002, pp. 3-48.

[7] L. Vandendorpe, B. Macq, “Optimum quality and progressive resolution
of video signals,” Annales Des Télécommunications, vol. 45, 1990, pp.
487-502.

[8] P. J. Burt, E. H. Adelson, “The Laplacian pyramid as a compact image
code,” Communications, IEEE Transactions on, vol. 31, no. 4, pp. 532-
540.

[9] A. Tigora, M. Zaharescu, “Pyramidal layer format – transfer rate control
and compression”, in Proc. 1st WSEAS International Conference on
Image Processing and Pattern Recognition (IPPR '13), Budapest,
Hungary December 10-12, 2013, pp. 110-115.

[10] C.-A. Boiangiu, A. I. Dvornic, “Methods of bitonal image conversion
for modern and classic documents,” WSEAS Transactions on
Computers, vol. 7, no. 7, July 2008, pp. 1081–1090.

[11] A. Enache, C.-A. Boiangiu, “Adaptive video streaming using residue
hypercubes,” in Proc. 12th International Conference on Circuits,
Systems, Electronics, Control & Signal Processing (CSECS '13),
Budapest, Hungary, December 10-12, 2013, WSEAS Publishing
Volume “Recent Advances in Circuits, Systems and Automatic
Control”, pp. 173-179.

[12] C.-A. Boiangiu, A. I. Dvornic, “Bitonal image creation for automatic
content conversion,” in Proc. 9th WSEAS International Conference on
Automation and Information, Bucharest, Romania, June 24-26, 2008,
WSEAS Press, pp. 454–459.

[13] C.-A. Boiangiu, A. Olteanu, A. V. Stefanescu, D. Rosner, A. I. Egner,
“Local thresholding image binarization using variable-window standard
deviation response,” in Proc. 21st International DAAAM Symposium,
20-23 October 2010, Zadar, Croatia, pp. 133-134.

[14] C.-A. Boiangiu, B. Raducanu, “Robust line detection methods,” in
Proc. 9th WSEAS International Conference on Automation and
Information, WSEAS Press, Bucharest, Romania, June 24-26, 2008, pp.
464–467.

[15] C.-A. Boiangiu, B. Raducanu, “Effects of data filtering techniques in
line detection”, in Proc. 19th International DAAAM Symposium,
DAAAM International, Vienna, Austria, 2008, pp. 0125–0126.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 86

