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Abstract—This work, third of this study, describes three 

numerical tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The Roe, Steger and 

Warming, and Hughson and Beran schemes, in their TVD (“Total 

Variation Diminishing”) formulations, are implemented to 

accomplish the numerical simulations. The Navier-Stokes equations, 

on a finite volume context and employing structured spatial 

discretization, are applied to solve the supersonic flow along a ramp 

in two-dimensions. Three turbulence models are applied to close the 

system, namely: Cebeci and Smith, Baldwin and Lomax and Sparlat 

and Allmaras. The second-order versions of the Roe and Steger and 

Warming schemes are obtained from a “MUSCL” extrapolation 

procedure. The convergence process is accelerated to the steady state 

condition through a spatially variable time step procedure, which has 

proved effective gains in terms of computational acceleration (see 

Maciel). The results have shown that the Roe scheme yields the best 

results in terms of the prediction of the shock angle at the ramp. 

Moreover, the wall pressure distribution is better predicted by the 

Steger and Warming scheme. 

 

Keywords—Laminar and turbulent flows, TVD algorithms, 

Cebeci and Smith turbulence model, Baldwin and Lomax turbulence 

model, Sparlat and Allmaras turbulence model. 

I. INTRODUCTION 

ONVENTIONAL non-upwind algorithms have been used 

extensively to solve a wide variety of problems ([1]). 

Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every 

different case in the same class of problems) artificial 

dissipation terms must be specially tuned and judicially chosen 

for convergence. Also, complex problems with shocks and 

steep compression and expansion gradients may defy solution 

altogether. 

Upwind schemes are in general more robust but are also 

more involved in their derivation and application. Some 

upwind schemes that have been applied to the Euler equations 

are, for example, [2-4]. Some comments about these methods 

are reported below: 

[2] presented a work that emphasized that several numerical 

schemes to the solution of the hyperbolic conservation 

equations were based on exploring the information obtained in 
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the solution of a sequence of Riemann problems. It was 

verified that in the existent schemes the major part of these 

information was degraded and that only certain solution 

aspects were solved. It was demonstrated that the information 

could be preserved by the construction of a matrix with a 

certain “U property”. After the construction of this matrix, its 

eigenvalues could be considered as wave velocities of the 

Riemann problem and the UL-UR projections over the 

matrix’s eigenvectors would be the jumps which occur 

between intermediate stages. 

[3] developed a method that used the remarkable property 

that the nonlinear flux vectors of the inviscid gasdynamic 

equations in conservation law form were homogeneous 

functions of degree one of the vector of conserved variables. 

This property readily permitted the splitting of the flux vectors 

into subvectors by similarity transformations so that each 

subvector had associated with it a specified eigenvalue 

spectrum. As a consequence of flux vector splitting, new 

explicit and implicit dissipative finite-difference schemes were 

developed for first-order hyperbolic systems of equations. 

[4] proposed an explicit, second order accurate in space, 

TVD scheme to solve the Euler equations in axis-symmetrical 

form, applied to the studies of the supersonic flow around a 

sphere and the hypersonic flow around a blunt body. The 

scheme was based on the modified flux function 

approximation of [5] and its extension from the two-

dimensional space to the axis-symmetrical treatment was 

developed. Results were compared to the [6] algorithm’s 

solutions. High resolution aspects, capability of shock capture 

and robustness properties of this TVD scheme were 

investigated. 

This work, third of this study, describes three numerical 

tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The [2], the [3], and 

the [4] schemes, in its TVD versions, are implemented to 

accomplish the numerical simulations. The Navier-Stokes 

equations, on a finite volume context and employing structured 

spatial discretization, are applied to solve the supersonic flow 

along a ramp in two-dimensions. Three turbulence models are 

applied to close the system, namely: [7-9]. The second-order 

versions of the [2-3] schemes are obtained from a “MUSCL” 

extrapolation procedure. The convergence process is 

accelerated to the steady state condition through a spatially 

variable time step procedure, which has proved effective gains 
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in terms of computational acceleration (see [10-11]). The 

results have shown that the [2] scheme yields the best results in 

terms of the prediction of the shock angle at the ramp. 

Moreover, the wall pressure distribution is better predicted by 

the [3] scheme. 

  For an introduction about the motivation of this work, third 

part of this study, the reader is encouraged to read the first part 

of this work [12]. 

II. NAVIER-STOKES EQUATIONS 

The flow is modeled by the Navier-Stokes equations, which 

express the conservation of mass and energy as well as the 

momentum variation of a viscous, heat conducting and 

compressible media, in the absence of external forces. These 

equations are described in detail in [12]. The reader is 

encouraged to read this reference aiming better understand of 

the present study. 

III. TVD ALGORITHMS 

The description of the convective algorithms of [2-4] is 

presented in [13-16] and the reader is encouraged to read these 

papers to become familiar with all numerical schemes, and 

with the MUSCL approach. Hereafter, this paper will present 

the viscous formulation of both numerical schemes. 

 The viscous vectors are calculated with the gradients of the 

conserved and primitive variables keeping constant in each 

volume and the application of the Green’s theorem to change 

from a volume integral to a surface integral. 

 The time integration is performed by a time splitting 

method, which divides the integration in two parts, each one 

associated with a spatial coordinate direction. 

 The numerical flux vector of the [2] scheme, for instance, is 

defined by, at the (i+1/2,j) interface: 
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where: Ee and Fe are the convective or Euler flux vectors, Ev 

and Fv are the viscous flux vectors, l varies from 1 to 4 (two-

dimensional space), hx and hy are the metric terms, Vi+1/2,j is 

the interface volume, and DRoe is the Roe’s dissipation 

function, defined in [14, 16]. The Euler vectors are defined by 

the convective contributions of the numerical schemes. 

 The viscous vectors are calculated with the gradients of the 

conserved and primitive variables keeping constant in each 

volume and the application of the Green’s theorem to change 

from a volume integral to a surface integral. 

 The time integration is performed by a time splitting 

method, which divides the integration in two parts, each one 

associated with a spatial coordinate direction. Therefore, to the 

 direction, one has: 
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and to the  direction, one has: 
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IV. TURBULENCE MODELS 

The problem of the turbulent simulation is in the calculation of 

the Reynolds stress. Expressions involving velocity 

fluctuations, originating from the average process, represent 

six new unknowns. However, the number of equations keeps 

the same and the system is not closed. The modeling function 

is to develop approximations to these correlations. In this 

work, three turbulence models are studied: [7-8], algebraic 

ones, and [9], an one-equation model. To details of the present 

implementation, the reader is encouraged to read [12, 17]. 

V. SPATIALLY VARIABLE TIME STEP 

The basic idea of the spatially variable time step procedure 

consists in keeping constant the CFL number in all calculation 

domain, allowing, hence, the use of appropriated time steps to 

each specific mesh region during the convergence process. In 

this work, a convective + diffusive option of spatially variable 

time step calculated at each iteration was studied. Details of 

the present implementation, see [12]. 

VI. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [18]. 

B. Boundary Conditions 

 The boundary conditions are basically of three types: solid 

wall, entrance, and exit. These conditions are implemented in 

ghost cells. Details of the present implementation, see [12]. 

VII. RESULTS 

One problem was studied in this work, namely: the viscous 

supersonic flow along a ramp geometry. The ramp 

configuration is detailed as also the type of boundary contours. 

These configuration characteristics are described in Figs. 1 and 

2. 

 Numerical experiments were run on a Notebook computer 

with Intel Core i7 processor of 2.3GHz of clock and 8.0 

GBytes of RAM. The criterion adopted to reach the steady 

state was to consider a reduction of three (3) orders of 

magnitude in the value of the maximum residual in the 

calculation domain, a typical CFD community criterion. The 

maximum residual is defined as the maximum value obtained 

from the discretized equations in the overall domain, 

considering all conservation equations. The initial conditions 

to the ramp problem are described in Tab. 1. 
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Figure 1. Ramp Configuration. 

 

 
Figure 2. Ramp Computational Domain. 

 

Table 1. Initial Conditions to the Studied Problem. 

 

 

 

 

 

 

Table 2. Cells and Nodes of the Mesh. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Ramp Viscous Mesh. 

 

Figure 3 exhibits the mesh employed in the calculation of 

the viscous flow to the ramp problem. An exponential 

stretching of 10.0% was applied close to the wall, in the  

direction, to capture the viscous phenomena. 

 
Table 2. Number of Cells and Nodes for the Ramp Problem. 

 

The Reynolds number is equal to 1.613x10
5
, a turbulent 

flow. Three turbulence models will be studied, namely: [7-9]. 

Two algebraic and an one-equation models are implemented. 

The number of cells and nodes for the ramp problem are 

presented in Tab. 2. A mesh of 61x60 nodes, in a finite 

difference context, is employed. 

A. Laminar Viscous Results 

TVD Results. For the TVD results, a minmod non-linear 

limiter was employed in the [2-3] schemes. Figures 4 to 6 

exhibit the pressure contours obtained by the [2-4] schemes. 

The [2] solution presents a weak shock ahead of the ramp 

corner. This shock wave is formed far ahead the ramp corner. 

The [3-4] solutions also present a weak shock wave, but less 

extent than the [2] scheme. 

 
Figure 4. Pressure contours (Roe-TVD). 

 
Figure 5. Pressure contours (SW-TVD). 

Problem: Property: Value: 

 Freestream Mach, M∞ 2.0 

Ramp Attack angle,  0.0 

 Ratio of specific heats,  1.4 

Problem: Number of 

rectangular cells: 

Number of 

nodes: 

Ramp 3,540 3,660 
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The pressure field is more severe in the solution obtained by 

the [3] scheme, indicating this one as more conservative. 

 
Figure 6. Pressure contours (HB-TVD). 

 
Figure 7. Mach number contours (Roe-TVD). 

 
Figure 8. Mach number contours (SW-TVD). 

 

Figures 7 to 9 show the Mach number contours obtained by 

the [2-4] algorithms. All solutions present a significant region 

of the detached boundary layer. However, the [2] solution 

indicates a largest region of detached boundary layer. 

 Figure 10 shows the wall pressure distributions generated by 

the [2-4] schemes in their TVD versions. All solutions capture 

the circulation bubble formation, resulting from the boundary 

layer detachment. The [3] solution presents a more discrete 

circulation bubble formation. 

 
Figure 9. Mach number contours (HB-TVD).  

 
Figure 10. Wall pressure distributions. 

 
Figure 11. Circulation bubble (Roe-TVD). 

 

 Figures 11 to 13 presents the formation of circulation 

bubble closes to the ramp corner obtained by [2-4] schemes. 

The circulation bubble obtained by the [2] scheme is the 

largest. 

As a resume of the present simulations, the [3] scheme was 

more conservative, although the [2] scheme was more correct 

in physical terms, representing more accurately the flow 
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physics. 

 
Figure 12. Circulation bubble (SW-TVD). 

 
Figure 13. Circulation bubble (HB-TVD). 

B. Turbulent Viscous Results 

Cebeci and Smith TVD Results. Figures 14 to 16 show the 

pressure contours obtained by the [2-4] schemes, respectively, 

as using the [7] turbulence model. All solutions practically 

ignore the existence of the weak shock ahead of the ramp 

corner. It indicates that the boundary layer detachment is 

negligible in all solutions and that the circulation bubble is 

reduced in size. The pressure field generated by the [4] scheme 

is the most severe. 

 
Figure 14. Pressure contours (Roe-CS). 

 

 
Figure 15. Pressure contours (SW-CS). 

 
Figure 16. Pressure contours (HB-CS). 

 
Figure 17. Mach number contours (Roe-CS) . 

 

 Figures 17 to 19 exhibit the Mach number contours 

generated by the [2-4] numerical algorithms, as using the [7] 

turbulence model. As can be observed, the boundary layer 

detachment is reduced in relation to the other results 

aforementioned for all algorithms. The circulation bubble is 

much more reduced. 

 Figure 20 exhibits the wall pressure distributions obtained 

by the [2-4] algorithms, as using the [7] turbulence model. As 

can be observed, all solutions are very similar and agree better 
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with the theoretical solution than in the laminar cases. The 

expansion fan pressure is better predicted by the [4] algorithm. 

 
Figure 18. Mach number contours (SW-CS). 

 
Figure 19. Mach number contours (HB-CS). 

 
Figure 20. Wall pressure distributions. 

 

 Figures 21 to 23 show the circulation bubble formation 

close to the ramp corner. All solutions predicted a small 

circulation bubble, although that generated by the [2] scheme 

is the largest. In resume, as can be observed the [7] turbulence 

model predicts a more energized boundary layer. With it, the 

weak shock wave ahead of the ramp corner is negligible and 

the circulation bubble presents a discrete formation. 

 
Figure 21. Circulation bubble (Roe-CS). 

 
Figure 22. Circulation bubble (SW-CS). 

 
Figure 23. Circulation bubble (HB-CS). 

 

Baldwin and Lomax TVD Results. Figures 24 to 26 exhibit 

the pressure contours obtained by the [2-4] schemes, 

respectively, as using the [8] turbulence model. A weak shock 

wave is formed ahead of the ramp corner in all solutions. It is 

important to remember that such weak shock wave is due to 

the boundary layer detachment which induces a false thick 

geometry at the ramp and the flow only see this thick 

geometry, originating the oblique shock wave. So, it is 

possible to distinguish that the effect of increasing boundary 
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layer thickness is more pronounced in the [2] solution than in 

the other solutions. It also induces the expected behavior of a 

larger circulation bubble formed at the former than at the 

latter. In terms of the pressure field, the [3] scheme again 

presents the most severe pressure field, characterizing this 

algorithm as more conservative. 

 
Figure 24. Pressure contours (Roe-BL). 

 
Figure 25. Pressure contours (SW-BL). 

 
Figure 26. Pressure contours (HB-BL). 

 

Figures 27 to 29 show the Mach number contours obtained 

by the [2-4] numerical algorithms, respectively, as using the 

[8] turbulence model. It is possible to observe that the 

boundary layer detachment is bigger in the [2] solution, with 

the consequent formation of a bigger circulation bubble than 

the other solutions. The Mach number field of all solutions is 

the same in quantitative terms, although in qualitative terms 

they differ substantially. 

 
Figure 27. Mach number contours (Roe-BL). 

 
Figure 28. Mach number contours (SW-BL). 

 
Figure 29. Mach number contours (HB-BL). 

 

Figure 30 presents the wall pressure distributions generated 

by all algorithms. As noted, all solutions capture the 

circulation bubble formation closes to the ramp corner, but all 

solutions differs from the theoretical solution (both under-

predict the shock plateau). 

Figures 31 to 33 exhibit the circulation bubble formed close 

to the ramp corner generated by the [2-4] algorithms. The [2] 
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scheme presents the largest circulation bubble. In resume, the 

[8] turbulence model predicts a great extent region of 

boundary layer detachment and, consequently, bigger bubble 

size. The [8] model predicts bigger separation than the [7] 

model. 

 
Figure 30. Wall pressure distributions. 

 
Figure 31. Circulation bubble (Roe-BL). 

 
Figure 32. Circulation bubble (SW-BL). 

 
Figure 33. Circulation bubble (HB-BL). 

 

Sparlat and Allmaras TVD Results. Figures 34 to 36 present 

the pressure contours obtained by the [2-4] schemes, 

respectively, as using the [9] turbulence model. Only the [2] 

solution captures the weak shock ahead of the ramp corner. 

The [3] solution captures a small boundary layer detachment, 

as also the [4] solution, which results in a negligible weak 

shock wave. The pressure field generated by the [3] scheme is 

again more severe than those generated by the [2, 4] schemes. 

 
Figure 34. Pressure contours (Roe-SA). 

 
Figure 35. Pressure contours (SW-SA). 
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Figure 36. Pressure contours (HB-SA). 

 
Figure 37. Mach number contours (Roe-SA). 

 
Figure 38. Mach number contours (SW-SA). 

 

Figures 37 to 39 show the Mach number contours obtained 

by the [2-4] numerical schemes, respectively. The [2] solution 

again captures a bigger circulation bubble than the other 

solutions. In quantitative terms the solutions are the same, the 

difference existing in qualitative terms. 

Figure 40 shows the wall pressure distributions obtained by 

the [2-4] algorithms. All solutions capture the circulation 

bubble at the ramp corner. Moreover, the pressure peak is 

close to the theoretical pressure plateau. 

 
Figure 39. Mach number contours (HB-SA). 

 
Figure 40. Wall pressure distributions. 

 

It is important to be mentioned here that the best behavior to 

the pressure plateau was obtained by the [7] turbulence model 

in spite of the loss of physical meaning of the flow (loss of the 

circulation bubble formation). 

Figures 41 to 43 exhibit the circulation bubble captured by 

the [2-4] schemes, respectively, as using the [9] turbulence 

model. As can be seen, the [2] solution generates larger bubble 

region than the [3-4] solutions. 

 
Figure 41. Circulation bubble (Roe-SA). 
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Figure 42. Circulation bubble (SW-SA). 

 
Figure 43. Circulation bubble (HB-SA). 

 

In resume, the [9] turbulence model predicts a less extent 

region of boundary layer detachment and, consequently, minor 

bubble size. The [9] model, an one-equation model, predicts 

less severe separation than the [8] model. 

C. Quantitative Analysis 

One way to quantitatively verify if the solutions generated by 

each scheme are satisfactory consists in determining the shock 

angle of the oblique shock wave, , measured in relation to the 

initial direction of the flow field. [19] (pages 352 and 353) 

presents a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is determined as 

function of the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To  = 20º (ramp 

inclination angle) and to a freestream Mach number equals to 

2.0, it is possible to obtain from this diagram a value to  

equals to 53.0º. Using a transfer in Figures 4 to 6 (laminar, 

TVD), Figs. 14 to 26 (CS), Figs. 24 to 26 (BL), Figs. 34 to 36 

(SA), it is possible to obtain the values of  to each scheme 

and to each studied case, as well the respective errors, shown 

in Tab. 3. It is possible to distinguish that the [2] scheme using 

the [8-9] turbulence models yields the best result with a zero 

value to the error. Hence, in terms of accuracy the [2] scheme 

is better than the other schemes. 

 

Table 3. Values of the oblique shock wave angle. 

 

 

Table 4. Computational data. 

 

 

 Table 4 presents the computational data of the 

simulations. All schemes converged in three (3) orders. All 

second order solutions obtained from the use of MUSCL 

approach converged with a CFL number of 0.1. Oscillations 

and the non-convergence of the numerical scheme have 

occurred when numbers of CFL above 0.1 were used. It is 

important to highlight the excellent convergence of the [4] 

scheme, converging in all cases in less than 4,200 iterations. 

VIII. CONCLUSIONS 

 This work, third of this study, describes three numerical 

tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The [2-4] schemes, 

in its TVD versions, are implemented to accomplish the 

numerical simulations. The Navier-Stokes equations, on a 

finite volume context and employing structured spatial 

discretization, are applied to solve the supersonic flow along a 

ramp in two-dimensions. Three turbulence models are applied 

to close the system, namely: [7-9]. The second-order versions 

of the [2-3] schemes are obtained from a “MUSCL” 

extrapolation procedure. The convergence process is 

accelerated to the steady state condition through a spatially 

variable time step procedure, which has proved effective gains 

in terms of computational acceleration (see [10-11]). The 

results have shown that the [2] scheme yields the best results in 

terms of the prediction of the shock angle at the ramp. 

Moreover, the wall pressure distribution is better predicted by 

the [3] scheme. 
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