
 

 

  
Abstract— In this paper, evolutionary technique Differential 

Evolution (DE) is used for the evolutionary tuning of controller 
parameters for the stabilization of chaotic Burgers map system. The 
novality of the approach is that the identical selected discrete 
dissipative chaotic system is used also as the chaotic pseudo random 
number generator to drive the mutation and crossover process in the 
DE. The optimization was performed for two types of case studies 
and developed cost functions. 
 
Keywords— Differential Evolution, Optimization, Chaos control, 

Evolutionary algorithms, Burgers map.  

I. INTRODUCTION 

HESE days the methods based on soft computing such as 
neural networks, evolutionary algorithms (EA’s), fuzzy 

logic, and genetic programming are known as powerful tool 
for almost any difficult and complex optimization problem. 

The interest about the interconnection between evolutionary 
techniques and control of chaotic systems is spread daily. First 
steps were done in [1], [2], [3] where the control law was 
based on Pyragas method: Extended delay feedback control – 
ETDAS [4], [5], [6]. These papers were concerned to tune 
several parameters inside the control technique for chaotic 
system. The big advantage of the Pyragas method for 
evolutionary computation is the amount of accessible control 
parameters, which can be easily tuned by means of EA’s. 

This paper is aimed at investigating the chaos driven 
Differential Evolution (DE). Although a number of DE 
variants have been recently developed, the focus of this paper 
is the embedding of chaotic systems in the form of chaos 
pseudo random number generator (CPRNG) for DE and its 
application to optimization of chaos control. 

Firstly, the problem design is proposed. The next sections 
are focused on the description of used cost functions, 
evolutionary algorithm DE and the concept of chaos driven 
DE. Results and conclusion follow afterwards. 
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II. MOTIVATION 

This paper extends the research of evolutionary chaos 
control optimization by means of DE algorithm [3]. 

In this paper the DE/rand/1/bin strategy driven by Burgers 
chaotic map (system) was utilized to solve the issue of 
evolutionary optimization of chaos control for the very same 
chaotic system. Thus the idea was to utilize the hidden chaotic 
dynamics in pseudo random sequences given by chaotic 
Burgers map system to help Differential evolution algorithm 
in searching for the best controller settings for the very same 
chaotic system. 

Recent research in chaos driven heuristics has been fueled 
with the predisposition that unlike stochastic approaches, a 
chaotic approach is able to bypass local optima stagnation. 
This one clause is of deep importance to evolutionary 
algorithms. A chaotic approach generally uses the chaotic map 
in the place of a pseudo random number generator [7]. This 
causes the heuristic to map unique regions, since the chaotic 
map iterates to new regions. The task is then to select a very 
good chaotic map as the pseudo random number generator. 

The initial concept of embedding chaotic dynamics into the 
evolutionary algorithms is given in [8]. Later, the initial study 
[9] was focused on the simple embedding of chaotic systems 
in the form of chaos pseudo random number generator 
(CPRNG) for differential evolution (DE) [10] and SOMA [11] 
in the task of optimal PID tuning 

Several papers have been recently focused on the 
connection of heuristic and chaotic dynamics either in the 
form of hybridizing of DE with chaotic searching algorithm 
[12] or in the form of chaotic mutation factor and dynamically 
changing weighting and crossover factor in self-adaptive 
chaos differential evolution (SACDE) [13]. Also the PSO 
(Particle Swarm Optimization) algorithm with elements of 
chaos was introduced as CPSO [14] or CPSO combined with 
chaotic local search [15]. 

The focus of our research is the embedding of chaotic 
systems in the form of chaos pseudo random number 
generator for evolutionary algorithms.  

This research was later extended with the successful 
experiments with chaos driven DE [16], [17] with simple test 
functions in low dimensions and in the task of chemical 
reactor geometry optimization [18]. 
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The concept of Chaos DE proved itself to be a powerful 
heuristic also in combinatorial problems domain [19], [20]. 

At the same time the chaos embedded PSO with inertia 
weigh strategy was closely investigated [21] and more 
experiments were performed with the concept of chaos driven 
DE in higher dimensions and with more complex benchmark 
functions [22].  

The interconnection between PSO algorithm and pure 
CPRNGs was intensively studied within the PID controller 
optimization issue [23], followed by the introduction of a PSO 
strategy driven alternately by two chaotic systems [24] and 
novel chaotic Multiple Choice PSO strategy (Chaos MC-PSO) 
[25]. 

Recently, it was proven that the evolutionary algorithms do 
not require random processes at all and works well and even 
better with simple deterministic sequences [26], [27]. 

III. SELECTED CHAOTIC SYSTEM 

The chosen example of discrete dissipative chaotic system 
used both as a CPRNG and within the evolutionary 
optimization of chaos control problem was the two-
dimensional Burgers map system. 

The Burgers mapping is a discretization of a pair of coupled 
differential equations which were used by Burgers to illustrate 
the relevance of the concept of bifurcation to the study of 
hydrodynamics flows. The map equations are given in (1) 
with control parameters a = 0.75 and b = 1.75 as suggested in 
[28].  

For these value, the system exhibits chaotic behavior. The 
example of this behavior is depicted in x-y plot (Fig. 1) and 
numerical simulation of direct system output (x or y) in the 
uncontrolled state (Fig. 2 and Fig. 3). 
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Fig. 1. x, y plot of the Burgers map 

 

Fig. 2. Iterations of the uncontrolled Burgers map (variable x) 

 

 
Fig. 3. Iterations of the uncontrolled Burgers map (variable y) 

IV. ORIGINAL ETDAS CHAOS CONTROL METHOD 

This work is focused on the utilization of the chaos driven 
DE for tuning of parameters for ETDAS control method to 
stabilize desired Unstable Periodic Orbits (UPO). In the 
described research, desired UPO was p-1 (stable state). The 
original control method – ETDAS in the discrete form suitable 
for Burgers map has the form (2). 
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Where: K and R are adjustable constants, which have to be 

evolutionary tuned. F is the perturbation; S is given by a delay 
equation utilizing previous states of the system, m is the 
period of m-periodic orbit to be stabilized. The perturbation 

nF  in equations (2) may have arbitrarily large value, which 

can cause diverging of the system outside the output interval 
of Burgers map system {-1.2, 1.2}. Therefore, nF  should 

have a value between < maxF− , maxF >. The suitable maxF  value 

was also obtained from evolutionary optimization process. 

V. COST FUNCTIONS 

This research utilizes and compares two cost function 
design. 
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The proposal of the first basic cost function (CF) is in 
general based on the simplest CF, which could be used 
problem-free only for the stabilization of p-1 orbit. The idea 
was to minimize the area created by the difference between 
the required state and the real system output on the whole 
simulation interval – τi. The simple CF is given in (3). 
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Nevertheless this simple approach has one big 

disadvantage, which is the including of initial chaotic transient 
behavior of not stabilized system into the cost function value. 
As a result of this, the very tiny change of control method 
setting for extremely sensitive chaotic system causing very 
small change of CF value, can be suppressed by the above-
mentioned including of initial chaotic transient behavior. 

Another universal cost function had to be used for securing 
the stabilization of either p-1 orbit (stable state) or higher 
periodic orbit and having the possibility of adding 
penalization rules. It was synthesized from the simple CF and 
other terms were added. 

This CF is in general based on searching for desired 
stabilized periodic orbit and thereafter calculation of the 
difference between desired and found actual periodic orbit on 
the short time interval - τs (approx. 20 - 50 iterations) from the 
point, where the first min. value of difference between desired 
and actual system output is found (i.e. floating window for 
minimization – see Fig. 4). The CFUNI has the form (4). 
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Where:   
TS - target state, AS - actual state 
τ1 - the first minimal value of difference between TS and AS 
τ2 – the end of optimization interval (τ1+ τs) 
pen1= 0 if τi - τ2 ≥ τs;  
pen1= 10*( τi - τ2) if τi - τ2 < τs (i.e. late stabilization) 
 

 
Fig. 4. Floating window for optimization 

VI. DIFFERENTIAL EVOLUTION 

DE is a population-based optimization method that works 
on real-number-coded individuals [10]. For each individual 

Gix ,


 in the current generation G, DE generates a new trial 

individual Gix ,′


 by adding the weighted difference between 

two randomly selected individuals Grx ,1


 and Grx ,2


 to a 

randomly selected third individual Grx ,3


. The resulting 

individual Gix ,′


 is crossed-over with the original 

individual Gix ,


. The fitness of the resulting individual, referred 

to as a perturbed vector 1, +Giu


, is then compared with the 

fitness of Gix ,


. If the fitness of 1, +Giu


 is greater than the fitness 

of Gix ,


, then Gix ,


 is replaced with 1, +Giu


; otherwise, Gix ,


 

remains in the population as 1, +Gix


. DE is quite robust, fast, 

and effective, with global optimization ability. It does not 
require the objective function to be differentiable, and it 
works well even with noisy and time-dependent objective 
functions. Description of used DERand1Bin strategy is 
presented in (5). Please refer to [10], [29], for the description 
of all other strategies. 

 
( )GrGrGrGi xxFxu ,3,2,11, −⋅+=+  (5)  

VII. CHAOS DRIVEN DE 

The main principle of this concept is the embedding of 
chaotic systems in the form of chaos pseudo random number 
generator (CPRNG) for DE. In this research, direct output 
iterations of the chaotic map were used for the generation of 
real numbers in the process of crossover based on the user 
defined CR value and for the generation of the integer values 
used for selection of individuals. This concept is described in 
details in [30]. The initial concept of embedding chaotic 
dynamics into the evolutionary algorithms is given in [31]. 

VIII. EXPERIMENTAL RESULTS 

Within the research a total number of 50 simulations with 
chaos driven DE by means of Burgers map system were 
carried out for each CF design. All simulations were 
successful and have given new optimal settings for ETDAS 
control method securing the fast stabilization of the chaotic 
system at required behaviour (p-1 orbit). 

Following Tables 2 and 4 contain the simple statistical 
overview of optimization/simulation results. Tables 3 and 5 
contain the best founded individual solutions of parameters set 
up for ETDAS control method, corresponding final CF value, 
also the Istab. Value representing the number of iterations 
required for stabilization on desired UPO and further the 
average error between desired output value and real system 
output from the last 20 iterations. 

Graphical simulation outputs of the best individual 
solutions for both case studies are depicted in Fig. 5 and Fig. 
7, whereas the Fig. 6 and Fig 8 shows the simulation output of 
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all 50 runs of CHAOS DE, thus confirm the robustness of this 
approach. 

For the illustrative purposes, all graphical simulations 
outputs are depicted only for the variable x of the chaotic 
Burgers map system. 

Settings of EA parameters for both processes were based on 
performed numerous experiments with chaotic systems (Table 
1). Based on the mathematical analysis, the real p-1 UPO for 
unperturbed Burgers map system has following value:  
xS = 0.7499. 

 
The ranges of all estimated parameters were these: 

 -2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.9 and 0 ≤ R ≤ 0.99, 

TABLE I.  CHAOS DE SETTINGS  

DE Parameter Value 
PopSize 25 
F 0.8 
CR 0.8 
Generations 250 
Max. CF Evaluations (CFE) 6250 

 

A. Case study 1 – Simple cost function 

From the results presented in the Tables 2 and 3, it follows 
that the CF-simple is very convenient for evolutionary 
process, which means that repeated runs of EA are giving 

identical optimal results (i.e. very close to the possible global 
extreme). This is graphically confirmed in the Figure 6 when 
all 50 simulations are basically merged into the one line. 

On the other hand the disadvantage of including of initial 
chaotic transient behavior of not stabilized system into the 
cost function value and resulting very tiny change of control 
method setting for extremely sensitive chaotic system is 
causing suppression of stabilization speed and numerical 
precision. 

TABLE II.  CF-SIMPLE VALUES STATISTIC 

Statistical data CF Value 
Min 2.16199 
Max 2.16199 
Average 2.16199 
Median 2.16199 
Std.Dev. 5.58·10-11 
Avg. Full Stab. (Iteration) 45 

 

TABLE III.  CHARACTERISTICS OF THE BEST SOLUTION 

Parameter Value 
K 1.22847 
Fmax 0.9 
R 0.574997 
CF Value 2.16199 
Istab. Value 45 
Avg. error per iteration 5.86·10-5 

 
 
 

 

Fig. 5. Simulation of the best individual solution –Burgers map system CHAOS DE - CF Simple 
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Fig. 6. Simulation of the all 50 solutions – Burgers map system CHAOS DE - CF Simple 

 
 

B. Case study 2 – Universal cost function 

TABLE IV.  CF-UNIVERSAL VALUES STATISTIC 

Statistical data CF Value 
Min 1.05·10-6 
Max 0.0103 
Average 6.67·10-4 
Median 5.32·10-7 
Std.Dev. 1.89·10-3 
Avg. Stab. (Iteration) 35 

 
Results obtained in this case study lend weight to the 

argument, that the technique of pure searching for periodic 

orbits is advantageous for faster and more precise stabilization 
of chaotic system. 
 

TABLE V.  CHARACTERISTICS OF THE BEST SOLUTION 

Parameter Value 
K 0.732498 
Fmax 0.48495 
R 0.811742 
CF Value 1.05·10-6 
Istab. Value 25 
Avg. error per iteration 1.21·10-8 

 

 
 

Fig. 7. Simulation of the best individual solution – Burgers map system CHAOS DE - CF Universal 
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Fig. 8. Simulation of the all 50 solutions – Burgers map system CHAOS DE - CF Universal 

IX. CONCLUSION 

Based on obtained results, it may be claimed, that the 
presented Chaos DE driven by selected discrete dissipative 
chaotic system has given satisfactory results in the chaos 
control optimization issue. 

The results show that embedding of the chaotic dynamics in 
the form of chaotic pseudo random number generator into the 
differential evolution algorithm may help to improve the 
performance and robustness of the DE. Thus to obtain optimal 
solutions securing the very fast and precise stabilization for 
both convenient CF surface in case of the CF-simple and very 
chaotic and nonlinear CF surface in case of the CF-universal. 

When comparing the both CF designs, the CF-simple is 
very convenient for evolutionary process (i.e. repeated runs 
are giving identical optimal results), but it has many 
limitations.  

The second universal CF design brings the possibility of 
using it problem free for any desired behavior of arbitrary 
chaotic systems, but at the cost of the highly chaotic CF 
surface. Nevertheless the embedding of the chaotic dynamics 
into the evolutionary algorithms helped to deal with such an 
issue.  

The primary aim of this work was not to develop any new 
pseudo random number generator, which should normally 
pass many statistical tests, but to show that through 
embedding the hidden chaotic dynamics into the evolutionary 
process in the form of chaotic pseudo random number 
generators may help to obtain better results and avoid 
problems connected with evolutionary computation such as 
premature convergence and stagnation in local extremes. 

Future plans include testing of different chaotic systems, 
either manually or evolutionary tuning of chaotic maps 
parameters, comparisons with different heuristics and 
obtaining a large number of results to perform statistical tests. 

The future research will include the development of better 
cost functions, testing of different AP data sets, and 
performing of numerous simulations to obtain more results 
and produce better statistics, thus to confirm the robustness of 
this approach. 
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