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Abstract—Constrained portfolio selection (optimization) 

problem extends the classical mean-variance portfolio problem by 

adding constraints. Such problem becomes computationally 

intractable which makes the traditional optimization techniques 

inadequate. Nondeterministic optimization metaheuristics are more 

appropriate, where swarm intelligence is in the focus of recent 

research. This paper presents novel krill herd (KH) nature-inspired 

metaheuristic applied to the constrained portfolio optimization 

problem. Portfolio selection problem was not much researched by the 

swarm intelligence algorithms and this is the first application of the 

krill herd algorithm to this problem. Experimental results show that 

the krill herd algorithm is a promising technique for portfolio 

optimization problem since krill herd algorithm results were better 

compared to other state-of-the-art optimization metaheuristics. 
 

Keywords—Constrained portfolio optimization, krill herd 

algorithm, nature inspired algorithms, metaheuristic optimization, 
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I. INTRODUCTION 

ORTFOLIO optimization problem is one of the most studied 

research topics in the field of finance and economics. In 

the literature, this task is also known as portfolio selection 

problem. Financial portfolio is collection of financial 

instruments (investments), all owned by the same organization 

or by an individual. It usually includes bonds (investments in 

debts), stocks (investments in individual businesses), and 

mutual funds (pools of money from many professional 

investors). Portfolio structure is generally designed according 

to the investor’s risk sensitivity, objectives of an investment 

and a time frame.  

One of the most important portfolio optimization issues is 

the risk. Investors are always trying to balance between 

portfolio’s gains and risk. Thus, the goal is to select a portfolio 

with minimum risk at defined minimal expected returns. This 

further means reducing non-systematic risks to zero.  
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In its basic definition, portfolio optimization problem refers 

to dealing with the selection of portfolio’s assets (or securities) 

that minimizes the risk subject to the constraint that guarantees 

a given level of returns. Individual and institutional investors 

prefer to invest in portfolios rather than in a single asset 

because by doing this, the risk is mitigated with no negative 

impact on the expected returns [1]. In other words, portfolio 

optimization problem seeks for an optimal way to distribute a 

given budget on a set of available assets [2]. 

Portfolio optimization problem can also be defined as multi-

criteria optimization in which risk has to be minimized, while, 

on the other hand, return has to be maximized. Unfortunately, 

this approach to the problem has several drawbacks [3]. 

Firstly, it might be difficult to gather enough data for accurate 

estimation of the risk and returns. Secondly, when estimating 

return and risks using covariance, errors can frequently occur 

[4]. Thirdly, and finally, this model is considered to be too 

simplistic for practical purposes because it does not capture 

essential properties of the real-world trading, such as 

maximum size of portfolio, transaction costs, preferences over 

assets, cost management, etc. These properties can be modeled 

by adding additional constraints to the basic problem 

definition which transform unconstrained portfolio 

optimization problem into the constrained one. Constrained 

problem is more complex, and belong to the class of NP-

Complete problems [5]. 

With the addition of real-world requirements to the basic 

portfolio optimization problem formulation, the problem is 

being transformed into constrained, and as such it becomes 

intractable in a reasonable amount of computational time. In 

these cases, exact methods can not obtain results, and the use 

of approximate algorithms, and in particular metaheuristic is 

necessary. Modern metaheuristics algorithms are typically high 

level strategies which guide an underlying subordinate 

heuristic to the desired objective. Metaheuristics methods can 

find satisfying feasible solution in a reasonable amount of 

computational time.  

Many formulations of portfolio optimization problem were 

solved using nature-inspired metaheuristisc. One well-known 

representative is genetic algorithm (GA). GA simulates the 

process of natural evolution by employing selection, crossover 

and mutation operator. 

GA approach was proposed for solving portfolio 

optimization problem constrained to cardinality and linear 

holding weights constraints (HWC) within the risk-aversion 

Krill herd (KH) algorithm applied to the 

constrained portfolio selection problem 
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formulation [6]. Three additional risk measures, besides the 

variance, were adopted: mean absolute deviation, semi 

variance and variance with skew ness. The two latter risk 

measures are improvement of the variance by taking into 

account only the returns below the mean for semivariance and 

by including skewness for variance with skewness. Proposed 

GA used binary tournament selection and modified 

replacement strategy and proved to be effective algorithm for 

tackling portfolio optimization problem.  

The GA based technique was used for solving portfolio 

optimization problem in terms of multi-state continuous 

optimization over time, where the objective, in addition to 

increasing the return and decreasing the risk, is to minimize 

transaction costs [7]. Costs are minimized between each two 

consecutive time periods. Each GA’s chromosome was 

represented by two arrays, one binary which indicates which 

asset is present in the portfolio, and second that stores real-

valued assets’ weights. The authors used an indirect approach 

for modeling costs as Euclidean distance of the weight vectors 

of the current position (time 1t ) and the desired position 

(time t ). The algorithm was tested on real case data sets of 

monthly historical returns from the NIKKEI and the NASDAQ 

indexes. The results were satisfying.  

GA with RAR operator was implemented for solving Mean-

Variance (M-V) portfolio optimization, where cardinality 

constraints, minimum transaction lots and constraints on sector 

capitalization are taken account [8]. The sector capitalization 

constraints suppose that some assets belong to sectors (sets of 

assets) and state that the capital invested in sector 1 is greater 

than the one invested in sector 2 and so on. The advantage of 

these constraints is to let investors invest in some sectors with 

high-value in a manner to reduce the overall risk. GA was 

compared with LINGO, an optimization modeling software.  

Swarm intelligence employs principles of the collective 
behavior of social insect colonies and other animal groups in 

the search process. Swarm intelligence can be classified in the 

group of population based metaheuristics. These metaheuris-

tics start with initial (usually random) population of candidate 

problem solutions and iteratively improve them. The key 

concept of swarm intelligence lies in the effect of emergent 

behavior of many individuals which exhibit extraordinary 

collective intelligence without any centralized supervision 

mechanism. Entire swarm intelligence system is fully adaptive 

to internal and external changes, and it is established on four 

basic properties on which self-organization rely: positive 

feedback, negative feedback, multiple interactions and 

fluctuations. Positive feedback refers to a situation when one 

individual directs behavior of the others by some directive. 

Negative feedback discourages individuals to pursuit bad 

solution to the problem. Multiple interactions are the basis of 

the tasks to be carried out by certain rules, while fluctuations 

refer to the random behaviors of individuals by which the new 

regions are being explored.  Swarm intelligence approach has 

obvious advantages over other optimization methods and 

techniques: scalability, adaptation, fault tolerance, parallelism 

and speed. 

Ant colony optimization (ACO) showed satisfying perfor-

mance in solving many hard optimization problems [9], [10], 

[11], [12], [13]. This metaheuristics was inspired by the 

foraging behavior of ants who deposit pheromone trails which 

help them in finding the shortest path between food sources 

and their nests. The basic philosophy of the ACO algorithm 

involves the movement of an ant colony which is directed by 

two local decision policies: pheromone trails and its 

attractiveness. ACO adaptations for portfolio optimization 

problem were found in the literature. The algorithm was tested 

on real-scenario portfolio benchmark problems [14]. 

Particle swarm optimization (PSO) is a swarm intelligence 

algorithm that imitates social behavior of fish schooling or bird 

flocking. PSO was successfully applied on portfolio 

optimization problem [15], [16]. 

Artificial bee colony (ABC) metaheristics is one of the latest 

simulations of the honey bee swarm. The simulated bee colony 

consists of employed, onlooker and scout bees. ABC showed 

outstanding results in global optimization problems [17], [18], 

[19] and engineering problems [20]. ABC and its modifica-

tions were tested on cardinality constrained portfolio 

optimization [21], [22]. 

Seeker optimization algorithm (SOA) is based on human 

search process which uses human reasoning, memory, past 

experience and human interactions. Seeker operates in the 

larger environment of candidate solutions called search popu-

lation. The total population is divided into three equally-sized 

subpopulations according to the sequence of the seekers. All 

the agents in the same population form a social unit called 

neighborhood, and each population performs search in its do-

main of the search space. SOA was not applied to portfolio 

optimization problem, but it was adapted for wide variety of 

other optimization problems [23]. 

Firefly algorithm (FA) is one of the latest swarm 

intelligence metaheuristics. It is inspired by the flashing 

behavior of fireflies. The main algorithm’s principle is that 

each firefly moves towards the brighter firefly. FA was first 

proposed for unconstrained optimization problems [24], image 

processing [25] with entropy criteria [26]. FA was also applied 

on portfolio optimization [27], [28]. Bat algorithm is the latest 

SI algorithm [29]. 

In this paper, we present the krill herd (KH) algorithm for 

portfolio optimization problem. KH was recently proposed by 

Gandomi and Alavi [30]. The implementation of the KH for 

portfolio optimization problem was not found in the literature.  

The paper is organized as follows. After Introduction, in 

Section 2, this paper presents mathematical formulation of the 

portfolio optimization models. In this section, we show 

different problem formulations that can be found in the 

literature. Section 3 introduces KH metaheuristic and explains 

its search process. Experimental data, problem establishments 

and experimental results are presented in Section 4. In this 

section, we also show comparative analysis between KH and 

GA and FA. Final conclusion is given in Section 5. 
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II. PORTFOLIO OPTIMIZATION DEFINITIONS 

The main principle when making financial investments 

decisions is diversification where investors invest into 

different types of assets. Portfolio diversification minimizes 

investors’ exposure to the risks, while maximizing returns on 

portfolios. 

Many methods can be applied to solving multiobjective 

optimization problems such as portfolio optimization. One 

essential method is to transform the multi-objective 

optimization problem into a single objective optimization 

problem. This method can be further divided into two sub-

types. In the first approach, one important objective function is 

selected for optimization, while the rest of objective functions 

are defined as constrained conditions. Alternatively, only one 

evaluation function is created by weighting the multiple 

objective functions. 

The first method is defined by Markowitz and is called the 

standard mean-variance model [31]. It was first introduced 

more than 50 years ago and its basic assumptions are a rational 

investor with either ultivariate normally distributed asset 

returns, or, in the case of arbitrary returns, a quadratic utility 

function [1]. If those assumptions hold, then the optimal 

portfolio for the investor lies on the mean-variance efficient 

frontier. 

In this model, the selection of risky portfolio is considered 

as one objective function and the mean return on an asset is 

considered to be one of the constraints [16]. It can be 

formulated as follows:  
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where N is the number of available assets, iR is the mean 

return on an asset i and )( ji RRCov  is covariance of returns of 

assets i and j respectively. Weight variable i  controls the 

proportion of the capital that is invested in asset i, and 

constraint in (3) ensures that the whole available capital is 

invested. In this model, the goal is to minimize the portfolio 

risk
2

p , for a given value of portfolio expected return 
pR . 

In the presented standard mean-variance model, variables 

are real and they range between zero and one, as they represent 

the fraction of available money to invest in an asset. This 

choice is quite straightforward, and has the advantage of being 

independent of the actual budget.  

The second method refers to the construction of only one 

evaluation function that models portfolio selection problem. 

This method comprises two distinct models: efficient frontier 

and Sharpe ratio model [14].  

In efficient frontier model, the goal is to find the different 

objective function values by varying desired mean return R. 

The best practice is to introduce new parameter ]1,0[ which 

is called risk aversion indicator. In this case, the model is 

approximated to only one objective function: 
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  controls the relative importance of the mean return to the 

risk of the investor. When   is zero, mean return of the 

portfolio is maximized regardless of the risk. Contrary, when 

  equals 1, risk of the portfolio is being minimized regardless 

of the mean return. Thus, with the increase of  , the relative 

importance of the risk to the investor increases, and 

importance of the mean return decreases, and vice-versa. 

With the change of the value of  , objective function value 

changes also. The reason for this change is that the objective 

function is composed of the mean return value and the 

variance (risk). The dependencies between changes of   and 

the mean return and variance intersections are shown on a 

continuous curve which is called efficient frontier in the 

Markowitz theory. Since each point on this curve indicates an 

optimum, portfolio optimization problem is considered as 

multi-objective, but   transforms it into single-objective 

optimization task. 

Sharpe ratio (SR) model combines the information from the 

mean and variance of an asset. This simple model is risk-

adjusted measure of mean return and can be described with the 

following equation [32]: 
 

                           ,
)( pStdDev

RR
SR

fp 
               (8) 

 

where p denotes portfolio, Rp is the mean return of the 

portfolio p, and Rf is a test available rate of return on a risk-

free asset. StdDev(p) is a measure of the risk in portfolio 

(standard deviation of Rp). By adjusting the portfolio 

weights i , portfolio’s Sharpe ratio can be maximized. 

The models we talked about so far refer only to the basic 

problem definitions. Those definitions do not seem realistic 

because they do not consider several aspects, such as [33]: 

 the existence of frictional aspects like the transaction 

costs, sectors with high capitalization and taxation; 
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 the existence of specific impositions arising from the 

legal,economic, etc. environment; 

 the finite divisibility of the assets to select. 
 

Taking into account all above mentioned additional portfolio 

optimization constraints, new portfolio optimization problem 

can be established [16]. This model is called extended mean-

variance model and it is classified as a quadratic mixed-integer 

programming model necessitating the use of efficient 

heuristics to find the solution. It can be formulated as follows: 
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where M represents the number of selected assets among 

possible N assets. B is the total available budget, while 

ilowB and 
iupB  are lower and upper limits respectively of the 

budget that can be invested in asset i. S is the total number of 

sectors. ci represents the minimum transaction lot for asset i, 

and xi denotes the number of ci that is purchased. According to 

this, xici are integer values that show the units of asset i in the 

portfolio. 

Decision variable zi is defined for modeling cardinality 

constraint. It is equal to 1 if an asset i is present in the 

portfolio, otherwise it is equal to 0. Equation (11) represents 

the cardinality constraint and inequality (12) is the same as (2). 

In order to make the search process easier, budget constraint in 

(13) is converted to inequality. Equation (14) shows lower and 

upper bounds of budget constraint. 

Sector capitalization constraint improves portfolio’s 

structure decisions by preferring investments in assets that 

belong to the sector with higher capitalization value. The 

assets which belong to the sector with more capitalization 

should have more shares in the final portfolio. This constraint 

is held only if securities from the corresponding sectors are 

selected Equation (15) introduces sector capitalization 

constraint into extended mean-variance model. Despite the fact 

that a certain sector has high capitalization, security from this 

sector that has low return and/or high risk must be excluded 

from final portfolio’s structure. To make such exclusion, 

variable ys is defined and it has a value of 1 if the 

corresponding sector has at least one selected asset, and 0 

otherwise. In (15) is is a set of assets which can be found in 

sector S. Sectors are sorted in descending order by their 

capitalization value. Sector 1 has the highest capitalization 

value, while sector S has the lowest value. 

III. KH ALGORITHM OVERVIEW 

Zooplankton aggregation occurs as the result of biological 

and physical processes [34]. In the ocean environment, the 

density distribution of plankton depends on the irculation 

patterns, such as musicale vertices and fronts [34]. The 

behavior of individuals responding to their environment also 

plays a significant role in the generation of dense, quasi 

horizontal patches of zooplankton commonly called swarms. 

With pysical and chemical cues, collective movements and the 

formation of groups in the population can be triggered, and 

this is referred to as social behavior.  

Antarctic krill is one of the best-studied species of marine 

animal. Krill herds exist on a space scales of 10 to 100 meters. 

In the last three decades, many studies have been conducted 

for the sake of understanding the ecology and distribution of 

the krill.  

Although there are yet notable uncertainties about the forces 

determining the distribution of the krill herd, conceptual 

models have been proposed to explain the observed formation 

of the krill herds.  

When predators attack krill, they remove only individual 

krill, and the krill density is reduced. The formation of the krill 

after the attack depends on several parameters. The herding of 

the krill individuals is a multi-objective process including two 

main goals: (1) increasing krill density, and (2) seaching food. 

The position of an individual krill that is timedependent in 

2D surface is govern by the following factors: movement 

induced by other krill individuals, foraging activity and 

random diffusion. 

The Lagrangian model is generalized to an n dimensional 

decision space [30]: 

                         ,iii
t

i DFN
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where iN is the motion induced by other krill individuals, iF is 
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foraging motion, and iD is the physical diffusion of the i -th 

krill.  
 

The movement of krill individual is defined by: 
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where 
maxN is the maximum induce speed, n

is the inertia 

weight of the motion in the range [0, 1], 
old
iN

is the last 

motion induced, 
local
i

is the local effect provided by the 

neighbors, 
target
i

is the target direction provided by the best 

krill individual. 

The sensing distance for each krill individual can be 

determined using different heuristic methods. Here, it is 

determined using the following formula for each iteration [30]: 

 

                                


N

j
jisi XX

N
d

1
, ||,||

5

1
                   (20) 

where sid , is the sensing distance for the i -th krill individual 

in the population, and N is the number of krill individuals. 

The factor 5 in the denominator is empirically calculated [30]. 

If the distance between two krill individuals is less than the 

defined sensing distance, they are considered to be neighbors 

(Eq. (20)).  

The known target vector of each krill individual is the 

lowest fitness of an individual krill. The global optimum is 

defined as followed: 
 

                   bsetibesti
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i xKC ,,
target
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where 
bestC  is the effective coefficient of the krill individual 

with the best fitness of the i -th krill individual. The value of 
bestC  can be defined as follows: 

                     
max

1
(2

l
randCbest  ),                            (22) 

where rand is a random number between 0 and 1, l is the 

current iteration number, and maxl is the maximum number of 

iterations.  

As mentioned above, the krill motion consists of foraging 

motion, motion influenced by other individuals, and the 

physical diffusion. The foraging motion formulation is based 

on two main effective parameters: the food location, and the 

previous experience about the food location. Foraging motion 

of the i-th krill individual is formulated as follows: 
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where fV is the foraging speed, f is the inertia weight of the 

foraging motion, and it is defined in range [0,1], 
food

i is the 

food attractiveness, and best
i  is the effect of the best krill 

found in the population so far.  According to empirical test, the 

best value for the fV is 0.02 ms-1. 

The effect of the food depends on its location. The center of 

the food is discovered first and it is used for formulation of 

food attraction. This can only be estimated. In [30], the virtual 

center of food concentration is estimated according to the 

fitness distribution of the krill individuals, which is inspired 

from the “center of mass”. This center of food in each iteration 

is defined as: 
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The food attraction of the i-th krill individual is defined as: 

                       foodifoodi
foodfood

i XKC ,,             (26) 

where 
foodC  is the food coefficient, and it is defined as 

follows: 

                                  )1(2
maxl

l
C food                   (27) 

Physical diffusion of the krill individuals is a random 

process, and it is used for exploration of the search space. It is 

formulated using maximum diffusion speed and a random 

directional vector: 
 

                                        ,maxDDi                            (28) 

where maxD is the maximum diffusion speed,  is a random 

directional vector. Empirically calculated maximum diffusion 

speed is in the range [0.002, 0.010] ms−1 [30]. 

Above defined motions frequently change the position of a 

krill individual towards the best fitness. Motions contain two 

global and two local strategies, which make KH very powerful 

algorithm [30]. The position of a krill individual in the time 

interval ],[ ttt   is given below: 

                     
dt

dX
ttXttX i

ii  )()(                      (29) 

 

Pseudo-code of the KH algorithm is given below [30]: 
 

  I Definition: defining algorithm parameters, bounds 
of the problem, etc. 
 

 II Initialization: creation of the initial 

population of solutions 
 

 III Fitness evaluation: evaluate all krill based on 

its current position 
 

 IV Motion calculation:  

    based on the position of other individuals  

    foraging motion  

    physical diffusion 
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 V Updating: update the krill individual position in 

the population 
 

VI Repeating: go to step III until termination 

criteria is met 
 

VII End 

 

We should note that in implementation presented in [30], 

genetic operators were used. In our demonstration, no genetic 

operators were employed. 

IV. PRACTICAL APPLICATION AND EXPERIMENTAL RESULTS 

In this section, we present mathematical model of portfolio 

optimization problem used in testing KH approach, data used 

in the experiments and experimental results. We used the same 

problem formulation and data set as in [35].  

A. Problem formulation 

The main objective of the applied portfolio optimization 

mathematical model used to test KH algorithm is to select 

weights of the each asset in the portfolio in order to maximize 

the portfolio’s return and to minimize the portfolio’s risk. We 

transformed multi-objective problem into single one with 

constraints. 

The expected return of each individual security i is 

presented as follows: 
 

                                                   ,)( iii wE                                 (30) 

where i denotes the weight of individual asset i, and i is 

the expected return of i. Total expected return of the portfolio 

P can be formulated as follows: 
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where n is the number of securities in the portfolio P. 

In our problem formulation, first goal is to maximize 

portfolio’s expected return, and thus, the expression shown in 

(31) is objective function for the portfolio’s return and it 

should be maximized. 

The objective function of the portfolio variance (risk) is 

presented as a polynomial of second degree: 
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where )(2
i is variance of asset i, and ),( jiCov  is 

covariance between securities i and j. 

According to (31) and (32), the multi-objective function to 

be minimized is transformed into single-objective in the 

following form: 
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Alternatively, considering individual asset i, not the whole 

portfolio P, (33) can be formulated as: 
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To make sure that the portfolio’s return is positive in all test 

cases, we used the following constraint: 
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

n

i
ii

1

,0            (37) 

where min
i  and max

i are minimum and maximum weights 

of asset i respectively. 

B. Data used in the experiments 

For testing purposes, we used simple historical data set from 

[35]. Data set is shown in Table 1. The mean return on each 

asset and covariance matrix are given in Tables 2 and 3 

respectively.  

TABLE I 

HISTORICAL DATA SET FOR THE EXPERIMENTS 

Year Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

2007 -0.15 0.29 0.38 0.18 -0.10 

2008 0.05 0.18 0.63 -0.12 0.15 

2009 -0.43 0.24 0.46 0.42 0.15 

2010 0.79 0.25 0.36 0.24 0.10 

2011 0.32 0.17 -0.57 0.30 0.25 
 

 

TABLE II 

MEAN RETURNS FOR EACH ASSET 

Stock 1 0.116 

Stock 2 0.226 

Stock 3 0.252 

Stock 4 0.204 

Stock 5 0.11 

 
 

TABLE III 

COVARIANCE MATRIX 

 Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 

Stock 1 0.21728 -0.003376 -0.053492 -0.009264 0.01064 

Stock 2 -0.003376 0.00253 0.008468 0.002376 -0.00456 

Stock 3 -0.053492 0.008468 0.22247 -0.31128 -0.02392 

Stock 4 -0.009264 0.002376 -0.031128 0.04068 0.00276 

Stock 5 0.01064 -0.00456 -0.02392 0.00276 0.01675 

C. Algorithm settings 

In this subsection, we show experimental results for testing 

KH for constrained portfolio optimization problem (see 

Subsection A for problem formulation). Tests were performed 

on Intel Core 3770K processor @4.2GHz with 8GB of RAM 

memory, Windows 8 x64 operating system and Visual Studio 

2012  with .NET 4.5 Framework. Number of krills in the 

population KN was set to 40, while maximum iteration number 

IN was set to 6000, yielding total of 240,000 objective 
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function evaluations (40*6000). The same number of objective 

function evaluations was used in [35]. The algorithm was 

tested on 30 independent runs. Each run starts with a different 

random number seed.  

We also ran additional test where we wanted to see whether 

our algorithm could perform better if it used more function 

evaluations. For this additional test we set maximum iteration 

number IN to 8000 while keeping solution number KN on the 

previous value. In this way, we employed 320.000 function 

evaluations (40*8000) which is 33.3% more than in the first 

experiment.  

Since the data set used in the experiment consists  of five 

portfolio’s assets, dimension D of a problem is 5. Each krill in 

the population is a 5-dimensional vector. In initialization 

phase, krill x is created using the following expression: 
 

                  ,))(1,0( minmaxmin
iiii randx          (38) 

 

where rand(0, 1) is a random number uniformly distributed 

between 0 and 1. 

To guarantee the feasibility of solutions, we used the 

following pseudo code: 
 

while(true)  

   
  

D

i

D

i

D

i
iiiiiii xxxxx

1 1 1

minmax
),0max(),,0max(,/, 

  if ( 0  and 0 )then exit the pseudo-code 

 if (
max
iix  ) then (

max
iix  ) 

 if (
min
iix  ) then ( )min

iix   

end while 
 

We set the foraging speed 
f

V to 0.02 like in [30], and 

diffusion speed maxD  to 0.006 (the aritmetic average of the 

range of recommended paramters, see Section 3).  

 Moreover, we also used constraint handling techniques to 

direct the search process towards the feasible region of the 

search space. Equality constraints decrease efficiency of the 

search process by making the feasible space very small 

compared to the entire search space. For improving the search 

process, the equality constraints can be replaced by inequality 

constraints using the following expression [36]: 
 

                                    ,0|)(| xh           (39) 
 

where 0 is very small violation tolerance. The   was 

dynamically adjusted according to the current algorithm’s 

iteration: 
 

                                
dec

t
t

)(
)1(


   ,         (40) 

 

where t is the current iteration, and dec is a value slightly 

larger than 1. When the value of   reaches the predetermined 

threshold value, (33)  is no longer applied. 

Summary of all parameters is given in Table IV. 
 

TABLE IV 

FA PARAMETER SET 

Parameter Value 

Number of  krills in the population (KN) 40 

Number of iterations (IN) 6000 

Foraging speed Vf 0.02 

Diffusion speed Dmax 0.006 

Initial violation tolerance (ε) 1.0 

Decrement (dec) 1.002 

ωmin 0 

ωmax 1 
 

D. Experimental results and comparative analysis 

In experimental results, we show best, mean and worst 

results for objective function value, variance (risk) and 

average return of portfolios (Table 5). In Table 6, we show 

portfolio weights for the best and worst results.  

 
TABLE V 

EXPERIMENTAL RESULTS WITH 240.000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.582 4.702 4.682 

Variance 0.039 0.069 0.075 

Return 0.209 0.183 0.195 

    

 

TABLE VI 

PORTFOLIO WEIGHTS FOR BEST AND WORST RESULTS IN 240.000 

EVALUATIONS TEST 

 ω1 ω2 ω3 ω4 ω5 

Best 0.072 0.415 0.287 0.226 0.079 

Worst 0.035 0.188 0.259 0.232 0.286 

 
According to the experiment results presented in Tables V 

and VI, KH for portfolio optimization performs similar like 

GA approach in [35]. In [35], three variants of GA were 

shown: single-point, two-point and arithmetic. Arithmetic 

variant performed significantly better than other two variants, 

and also better than the KH presented in this paper. But, at the 

other hand, KH showed better performance than singlepoint 

and two-point variants of the GA presented in [35]. GA results 

are shown in Table VII. 

 

TABLE VII 

GA EXPERIMENTAL RESULTS 

Objective function Variance Return 

Single-point variant 

4.900 0.019 0.204 

Two-point variant 

4.598 0.080 0.221 

Arithmetic variant 

4.532 0.0325 0.222 

 

FA presented in [27] was tested on the same data set as KH 

shown in this paper. Moreover, FA also employed 240.000 

function evaluations. FA results are shown in Table VIII. 
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TABLE VIII 

FA EXPERIMENTAL RESULTS WITH 240,000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.542 4.698 4.615 

Variance 0.036 0.072 0.059 

Return 0.218 0.198 0.205 

    

Comparative analysis of KH and FA results (Table V vs. 

Table VIII) showed that the FA algorithm performs 

significantly better in all – best, worst and mean categories. 

FA’s bests, worsts and means results are better than KH’s 

results for 0.9%, 0.8% and 1.4% respectively.   

We also wanted to see how KH algorithm performs when 

the number of function evaluations is slightly greater. So, we 

ran additional test, but this time, we set the number of 

iterations (IN) to 8000, while the number of krill agents (KN) 

remained the same as in the first experiment. This parameter 

set gives 320.000 (40*8000) function evaluations which is 

33.3 % higher than in the first experiment. The results are 

shown in the tables below. 

 

TABLE IX 

EXPERIMENTAL RESULTS WITH 320,000 EVALUATIONS 

 Best Worst Mean 

Objective function 4.563 4.690 4.672 

Variance 0.036 0.058 0.045 

Return 0.238 0.215 0.221 

    

TABLE X 

PORTFOLIO WEIGHTS FOR BEST AND WORST RESULTS IN 320,000 

EVALUATIONS TEST 

 ω1 ω2 ω3 ω4 ω5 

Best 0.039 0.368 0.391 0.067 0.135 

Worst 0.064 0.341 0.363 0.187 0.045 

 

As can be seen from Table IX, with higher number of 

function evaluations, our KH algorithm still performs worse 

than arithmetic variant of GA [35] and FA [27] with 240.000 

function evaluations.  

V. CONCLUSION 

In this paper, KH for constrained portfolio optimization 

problem was presented. The algorithm was tested on a 

standard benchmark set of five assets.  

Two experiments were conducted with different number of 

function evaluations. In the first experiment (240,000 

evaluations), KH performed better than single-point and two-

point variant of GA, while the arithmetic variant of GA 

outperformed our KH approach. FA also outscored KH 

algorithm. 

In the second experiment (320,000 evaluations), KH 

generated better results than in 240,000 evaluations tests, but 

still worse than the arithmetic variant of GA and FA. 

 KH was applied only to the basic portfolio optimization 

problem definition. It has potential with some modification. 

There is a large potential for applying metaheuristic techniques 

to this class of problems, because they appear not to be 

investigated enough.  
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