
 

 

 

Abstract—This work, first part of this study, describes five 

numerical tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The Van Leer, Harten, 

Frink, Parikh and Pirzadeh, Liou and Steffen Jr. and Radespiel and 

Kroll schemes, in their first- and second-order versions, are 

implemented to accomplish the numerical simulations. The Navier-

Stokes equations, on a finite volume context and employing 

structured spatial discretization, are applied to solve the supersonic 

flow along a ramp in two-dimensions. Three turbulence models are 

applied to close the system, namely: Cebeci and Smith, Baldwin and 

Lomax and Sparlat and Allmaras. On the one hand, the second-order 

version of the Van Leer, Frink, Parikh and Pirzadeh, Liou and 

Sreffen Jr., and Radespiel and Kroll schemes is obtained from a 

“MUSCL” extrapolation procedure, whereas on the other hand, the 

second order version of the Harten scheme is obtained from the 

modified flux function approach. The convergence process is 

accelerated to the steady state condition through a spatially variable 

time step procedure, which has proved effective gains in terms of 

computational acceleration (see Maciel). The results have shown that, 

with the exception of the Harten scheme, all other schemes have 

yielded the best result in terms of the prediction of the shock angle at 

the ramp. Moreover, the wall pressure distribution is better predicted 

by the Harten scheme. 

 

Keywords—Laminar and turbulent flows, TVD algorithms, 

Cebeci and Smith turbulence model, Baldwin and Lomax turbulence 

model, Sparlat and Allmaras turbulence model. 

I. INTRODUCTION 

ONVENTIONAL non-upwind algorithms have been used 

extensively to solve a wide variety of problems ([1]). 

Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every 

different case in the same class of problems) artificial 

dissipation terms must be specially tuned and judicially chosen 

for convergence. Also, complex problems with shocks and 

steep compression and expansion gradients may defy solution 

altogether. 

 Upwind schemes are in general more robust but are also 

more involved in their derivation and application. Some 
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upwind schemes that have been applied to the Euler equations 

are, for example, [2-6]. Some comments about these methods 

are reported below: 

 [2] developed a method suggesting an upwind scheme 

based on the flux vector splitting concept. This scheme 

considered the fact that the convective flux vector components 

could be written as flow Mach number polynomial functions, 

as main characteristic. Such polynomials presented the 

particularity of having the minor possible degree and the 

scheme had to satisfy seven basic properties to form such 

polynomials. 

 [3] developed a class of new finite difference schemes, 

explicit and with second order of spatial accuracy for 

calculation of weak solutions of the hyperbolic conservation 

laws. These highly nonlinear schemes were obtained by the 

application of a first order non-oscillatory scheme to an 

appropriately modified flux function. These second order 

algorithms reached high resolution, while preserving the 

robustness of the original scheme. 

 [4] proposed a new scheme, unstructured and upwind, to 

the solution of the Euler equations. They tested the precision 

and the utility of this scheme in the analysis of the inviscid 

flows around two airplane configurations: one of transport 

configuration, with turbines under the wings, and the other of 

high speed civil configuration. Tests were accomplished at 

subsonic and transonic Mach numbers with the transport 

airplane and at transonic and low supersonic Mach numbers 

with the civil airplane, yielding good results. 

 [5] proposed a new flux vector splitting scheme. They 

declared that their scheme was simple and its accuracy was 

equivalent and, in some cases, better than the [7] scheme 

accuracy in the solutions of the Euler and the Navier-Stokes 

equations. The scheme was robust and converged solutions 

were obtained so fast as the [7] scheme. The authors proposed 

the approximated definition of an advection Mach number at 

the cell face, using its neighbour cell values via associated 

characteristic velocities. This interface Mach number was so 

used to determine the upwind extrapolation of the convective 

quantities. 

 [6] emphasized that the [5] scheme had its merits of low 

computational complexity and low numerical diffusion as 

compared to other methods. They also mentioned that the 

original method had several deficiencies. The method yielded 

local pressure oscillations in the shock wave proximities, 

adverse mesh and flow alignment problems. In the [6] work, a 

Laminar and Turbulent Simulations of Several 

TVD Schemes in Two-Dimensions – Part I – 

Theory 

Edisson S. G. Maciel 

C 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 220

mailto:edisavio@edissonsavio.eng.br


 

 

hybrid flux vector splitting scheme, which alternated between 

the [5] scheme and the [2] scheme, in the shock wave regions, 

was proposed, assuring that the resolution of strength shocks 

was clear and sharp. 

 Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the schemes. It has 

been noted that the projection stage, whereby the solution is 

projected in each cell face (i-1/2,j; i+1/2,j) on piecewise 

constant states, is the cause of the first order space accuracy of 

the Godunov schemes ([8]). Hence, it is sufficient to modify 

the first projection stage without modifying the Riemann 

solver, in order to generate higher spatial approximations. The 

state variables at the interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. This method 

for the generation of second order upwind schemes based on 

variable extrapolation is often referred to in the literature as 

the MUSCL (“Monotone Upstream-centered Schemes for 

Conservation Laws”) approach. The use of nonlinear limiters 

in such procedure, with the intention of restricting the 

amplitude of the gradients appearing in the solution, avoiding 

thus the formation of new extrema, allows that first order 

upwind schemes be transformed in TVD high resolution 

schemes with the appropriate definition of such nonlinear 

limiters, assuring monotone preserving and total variation 

diminishing methods. 

 Second order spatial accuracy can also be obtained from 

the use of a modified flux function approach, as suggested by 

[3]. This approach consists in adopting a modified flux to be 

considered in the numerical flux function. A limiter is used to 

consider only smooth variations of the flux function. 

Moreover, this minmod like limiter eliminates high variations 

of the flux function, reducing this one to a constant behaviour 

between the right and left states. This approach also introduces 

TVD like properties into the calculation algorithm. 

 Computational fluid dynamics (CFD) methods have been 

widely used in the design of aircraft. Because of the great 

difficulties in experimental study, CFD demonstrates its great 

importance in the simulation of transonic high-angle-of-attack 

(AOA) flow about realistic configurations, which is dominated 

by extremely complex phenomena such as shock/boundary-

layer interaction, massive flow separation, and complicated 

vortex structures. Until now, numerical prediction of such 

phenomena has been highly dependent on the selection of 

turbulence models. 

 There is a practical necessity in the aeronautical industry 

and in other fields of the capability of calculating separated 

turbulent compressible flows. With the available numerical 

methods, researches seem able to analyze several separated 

flows, three-dimensional in general, if an appropriated 

turbulence model is employed. Simple methods as the 

algebraic turbulence models of [9-10] supply satisfactory 

results with low computational cost and allow that the main 

features of the turbulent flow be detected. 

 More elaborate treatments of turbulent flow, especially 

involving separation, are obtained with one-equation 

turbulence models. Such models are cheaper than their 

counterpart two-equation models and a bit more expensive 

than the algebraic models. One such a model is the [11] one. In 

this model, a transport equation for the turbulent viscosity is 

assembled, using empiricism and arguments of dimensional 

analysis, Galilean invariance and selective dependence on the 

molecular viscosity. The equation includes a destruction term 

that depends on the distance to the wall, related to the one in 

[12] model and to one due to [13]. Unlike early one-equation 

models, the resulting turbulence model is local (i.e., the 

equation at one point does not depend on the solution at others 

points) and therefore compatible with grids of any structure 

and Navier-Stokes solvers in two- and three-dimensions. It is 

numerically forgiving, in terms of near-wall resolution and 

stiffness, and yields rapid convergence to steady state. 

 In 2006, [14] have presented a work that considered first-

order algorithms applied to the solution of an aerospace flow 

problem. The [3] and [6] algorithms, both first order accurate 

in space, were studied. The Navier-Stokes equations written in 

conservative form, employing a finite volume formulation and 

a structured spatial discretization, in two-dimensions, were 

solved. The [10] turbulence algebraic model closed the 

problem. The steady state physical problem of the supersonic 

flow around a simplified version of the VLS configuration was 

studied. The results have demonstrated that the -Cp 

distribution around the geometry generated by the [3] scheme, 

in both solutions laminar and turbulent, was smoother than to 

the one obtained by the [6] scheme, presenting a minor 

pressure increase in the booster initial region. The lift and drag 

aerodynamic coefficients were minimized in the turbulent 

solution generated by the [3] scheme, presenting non-zero 

values. The [6] scheme predicted the same coefficients with 

values practically equal to zero to the laminar case and with 

small values in the turbulent case. The stagnation pressure 

ahead of the configuration was better predicted by the [3] 

scheme. 

 In 2008, [15] has presented a work, the second part of the 

study started in 2006, that considered upwind algorithms 

implemented with the [10] turbulence algebraic model applied 

to the solution of transonic and “cold gas” hypersonic 

problems. The [3] and [6] algorithms, both first order accurate 

in space, were studied. The Navier-Stokes equations written in 

conservative form, employing a finite volume formulation and 

a structured spatial discretization, in two-dimensions, were 

solved. The steady state physical problems of the transonic 

flow along a convergent-divergent nozzle and the “cold gas” 

hypersonic flow around a double ellipse configuration were 

studied. Results were compared with experimental or 

theoretical solutions. The results have shown good agreement 

between the tested algorithms. In the nozzle problem, the [3] 

scheme predicts a more severe shock at the throat than the [6] 

scheme, as well closer wall pressure distribution to 

experimental results, for both laminar and turbulent cases. In 

the double ellipse case, the [6] scheme presented more severe 

pressure field and better prediction of the stagnation pressure 

than the [3] scheme, again to both laminar and turbulent cases. 

 In 2010, [16] has presented a work that was the final part 

of the study that aimed a comparison between the turbulence 

models of [9-10] applied to aeronautical and aerospace 

problems. The [17] algorithm was used to perform the 

numerical experiments. The algorithm was symmetrical, 
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second order accurate in space and time, and the temporal 

integration was accomplished by a Runge-Kutta type method. 

The Reynolds average Navier-Stokes equations were solved, 

using a finite volume formulation and a structured spatial 

discretization, and the models of [9] and [10] were used to 

describe the turbulence effects in the flow properties. The 

physical problems of the transonic flow along a convergent-

divergent nozzle and the “cold gas” hypersonic flow around a 

double ellipse configuration were studied. A spatially variable 

time step was employed to accelerate the convergence of the 

numerical scheme. Effective gains in terms of convergence 

ratio were observed with this technique, as reported in [18-19] 

The numerical results were compared with experimental or 

theoretical solutions. These results have demonstrated that the 

[10] model was more severe in the nozzle problem, while the 

[9] model was more severe in the double ellipse problem and 

more accurate in both examples. 

This work, first part of this study, describes five numerical 

tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The [2-6] schemes, 

in its first- and second-order versions, are implemented to 

accomplish the numerical simulations. The Navier-Stokes 

equations, on a finite volume context and employing structured 

spatial discretization, are applied to solve the supersonic flow 

along a ramp in two-dimensions. Three turbulence models are 

applied to close the system, namely: [9-11]. On the one hand, 

the second-order version of the [2; 4-6] schemes are obtained 

from a “MUSCL” extrapolation procedure, whereas on the 

other hand, the modified flux function approach is applied in 

the [3] scheme for the same accuracy. The convergence 

process is accelerated to the steady state condition through a 

spatially variable time step procedure, which has proved 

effective gains in terms of computational acceleration (see [18-

19]). The results have shown that the [2; 4-6] schemes have 

yielded the best results in terms of the prediction of the shock 

angle at the ramp. Moreover, the wall pressure distribution is  

better predicted by the [3] scheme. 

II. NAVIER-STOKES EQUATIONS 

The flow is modeled by the Navier-Stokes equations, which 

express the conservation of mass and energy as well as the 

momentum variation of a viscous, heat conducting and 

compressible media, in the absence of external forces. The 

integral and conservative form of these equations can be 

represented by: 
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where Q is written for a Cartesian system, V is the cell volume, 

nx and ny are components of the normal unity vector to the flux 

face, S is the flux area, Ee and Fe are the components of the 

convective flux vector and Ev and Fv are the components of the 

diffusive flux vector. The vectors Q, Ee, Fe, Ev and Fv are 

represented by: 
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The components of the viscous stress tensor are defined as: 
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and the components of the Fourier heat flux vector are defined 

as: 

 

 
x

e
dPr

q i

effect
x 








 , 

y
e

dPr
q i

effect
y 








 ,         (4) 

 

where  is the fluid density; u and v are the Cartesian 

components of velocity vector in the x and y directions, 

respectively; p is the static pressure; “e” is the total energy per 

unit volume; the ’s are the viscous stresses; qx and qy are the 

Cartesian components of the heat conduction vector (Fourier 

law);  is the ratio of specific heats; effect is the effective fluid 

viscosity, which is equal to the sum of the molecular viscosity 

with the turbulent viscosity: 

 

                                     TMeffect  ;                            (5) 

 

The  effectdPr  is defined as: 

 

                         TTLMeffect dPrdPrdPr  ,       (6) 

 

where PrdL and PrdT  are the laminar and the turbulent Prandtl 

numbers, respectively, with PrdL = 0.72 and PrdT = 0.9; Re is 

the flow Reynolds number defined as: 

 

                                      MREFluRe  ,                           (7) 

 

where uREF is a characteristic flow speed and l is a 

characteristic configuration length; and the internal energy is 

given by: 

 

                                   22
i vu5.0ee  .                       (8) 

 

The molecular viscosity is estimated by the empiric Sutherland 

formula: 
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                                   TS1bT 21
M  ,                         (9) 

 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([20]). 

 The Navier-Stokes equations are dimensionless in relation 

to the freestream density, the freestream speed of sound and 

the freestream molecular viscosity. The system is closed by the 

state equation for a perfect gas: 

 

                           )vu(5.0e)1(p 22  ,                 (10) 

 

considering the ideal gas hypothesis. The total enthalpy is 

determined by: 

 

                                      peH .                             (11) 

III. TVD ALGORITMOS 

The description of the convective algorithms of [2-6] is 

presented in [21-31] and the reader is encouraged to read these 

papers to become familiar with the numerical schemes. 

Moreover, the second order spatial accuracy, which 

incorporates TVD and high resolution properties, is described 

in [21-22] and in [27-31]. Hereafter, this paper will present the 

viscous formulation of all numerical schemes. 

 The numerical flux vector is defined for the [3] scheme, for 

instance, considering the (i+1/2,j) interface: 
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where: l varies from 1 to 4 (two-dimensional space) and DHarten 

is the Harten’s dissipation function, defined in [21-22] and in 

[25-26]. The Euler vectors are defined by the convective 

contributions of the numerical schemes. 

 The viscous vectors are calculated with the gradients of the 

conserved and primitive variables keeping constant in each 

volume and the application of the Green’s theorem to change 

from a volume integral to a surface integral. 

 The time integration is performed by a time splitting 

method, for the [2-3; 5-6] schemes, which divides the 

integration in two parts, each one associated with a spatial 

coordinate direction. Therefore, to the  direction, one has: 
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and to the  direction, one has: 
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 The [4] scheme uses a Runge-Kutta time steeping method 

to perform time integration. This Runge-Kutta method is a five 

step one. Details in [30-31]. 

IV. TURBULENCE MODELS 

A.  Turbulence Model of Cebeci and Smith 

The problem of the turbulent simulation is in the calculation of 

the Reynolds stress. Expressions involving velocity 

fluctuations, originating from the average process, represent 

six new unknowns. However, the number of equations keeps 

the same and the system is not closed. The modeling function 

is to develop approximations to these correlations. To the 

calculation of the turbulent viscosity according to the [9] 

model, the boundary layer is divided in internal and external. 

 Initially, the (w) kinematic viscosity at wall and the (xy,w) 

shear stress at wall are calculated. After that, the () boundary 

layer thickness, the (LM) linear momentum thickness and the 

(VtBL) boundary layer tangential velocity are calculated. So, 

the (N) normal distance from the wall to the studied cell is 

calculated. The N
+
 term is obtained from: 

 

                       www,xy NReN  ,                (15) 

 

where w is the wall density. The van Driest damping factor is 

calculated by: 

 

                             
)AN( wwe1D
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with 26A   and w  is the wall molecular viscosity. After 

that, the ( dNdVt ) normal to the wall gradient of the 

tangential velocity is calculated and the internal turbulent 

viscosity is given by: 

 

                        dNdVt)ND(Re 2
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where  is the von Kárman constant, which has the value 0.4.
 

The intermittent function of Klebanoff is calculated to the 

external viscosity by: 
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 .                (18) 

 

With it, the external turbulent viscosity is calculated by: 

 

                         KlebLMBLTe gVt)0168.0Re(  .            (19) 

 

Finally, the turbulent viscosity is chosen from the internal and 

the external viscosities: ),(MIN TeTiT  . 

B. Turbulence Model of Baldwin and Lomax 

To the calculation of the turbulent viscosity according to the 

[10] model, the boundary layer is again divided in internal and 

external. In the internal layer, 

 

          2
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 0AN
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In the external layer, 
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Hence, maxN  is the value of N where mixl  reached its 

maximum value and lmix is the Prandtl mixture length. The 

constant values are: 4.0 , 0168.0 , 26A0  , 

6.1Ccp  , 3.0CKleb   and 1C wk  . KlebF  is the intermittent 

function of Klebanoff given by: 
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  is the magnitude of the vortex vector and difU  is the 

maximum velocity value in the boundary layer case. To free 

shear layers, 
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C. Turbulence Model of Sparlat and Allmaras 

The purpose of the [11] one-equation model was overcome the 

algebraic model limitations and, at the same time, to avoid the 

difficulties in the implementation of the two-equation models 

or the Reynolds stress equations. This model employs a 

transport turbulent viscosity to solve the turbulence scaling. 

Such model takes naturally into account the turbulence and 

diffusion histories, which improves its accuracy. 

 The transport equation to the work turbulent kinematic 

viscosity is described by: 
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In this equation, the first term of the right-hand-side is the 

production contribution to the work kinematic viscosity; the 

second term is the viscosity diffusion; and the last term is the 

destruction of the work kinematic viscosity. The turbulent 

viscosity is defined by: 
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With the purpose of assuring that ~  becomes equal to 

ww,xyNK   in the logarithmic layer and in the 

viscous sub-layer, the 1vf damping function is defined by: 
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as function of the  ~ variable. The S
~

 function, 

representing the deformation work of the mean flow, is 

determined as follows: 
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in which 2vf  has the following expression: 
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 The destruction term should disappear at the external 

region of the boundary layer. [11] purpose the following 

function to reproduce such behavior: 
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with the r argument and the wf function reaching the value 1.0 

at the logarithmic layer and decreasing at the external region. 

The g function is merely a limiter to prevent wf  high values. 

The [11] model constants are: 

 

1,7c,3,0c,622,0c,1355,0c 1v2w2b1b  ; 
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The [11] model is marched in time using a LU-SGS (“Lower-

Upper Factorization – Symmetrical Gauss-Seidel”) implicit 

method. Details of the implicit implementation in two-

dimensions are found in [11]. The extension to three-

dimensions is straightforward. 

 In this work, the term referent to the diffusion of the work 

kinematic viscosity was not implemented. The studied model 

considers only the production and dissipation terms of the 

work kinematic viscosity. 

V. SPATIALLY VARIABLE TIME STEP 

The basic idea of the spatially variable time step procedure 

consists in keeping constant the CFL number in all calculation 

domain, allowing, hence, the use of appropriated time steps to 

each specific mesh region during the convergence process. In 

this work, a convective + diffusive option of spatially variable 

time step calculated at each iteration was studied and is 

described below: 

 To a viscous simulation and according to the work of [32], 

it is possible to write: 
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with tc being the convective time step and tv being the 

viscous time step. These quantities are defined as: 
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where interface properties are calculated by arithmetical 

average, M is the freestream Mach number,  is the fluid 

molecular viscosity and Kv is equal to 0.25, as recommended 

by [32]. 

VI. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [17] and [33]. 

Therefore, the vector of conserved variables is defined as: 
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B. Boundary Conditions 

The boundary conditions are basically of three types: solid 

wall, entrance, and exit. These conditions are implemented in 

ghost cells. 

 

Wall Condition. Considering the viscous case, it imposes the 

non-permeability and non-slip wall conditions. Therefore, the 

tangent velocity component of the ghost volume at wall has the 

same magnitude as the respective velocity component of its 

real neighbor cell, but opposite signal. In the same way, the 

normal velocity component of the ghost volume at wall is 

equal in value, but opposite in signal, to the respective velocity 

component of its real neighbor cell. These procedures lead to 

the following expressions to ughost and vghost: 

 

                   realghost uu     and   
 

realghost vv                (36)
         

 The pressure gradient normal to the wall is assumed to be 

equal to zero, following a boundary-layer like condition. The 

same hypothesis is applied to the temperature gradient normal 

to the wall, considering adiabatic wall. The ghost volume 

density and pressure are extrapolated from the respective 

values of the real neighbor volume (zero order extrapolation), 

with these two conditions. The total energy is obtained by the 

state equation of a perfect gas. 

 

Entrance Condition. The entrance condition considers 

subsonic and supersonic flow. They are detailed below: 

 

(a) Subsonic flow: Three properties are specified and one 

extrapolated. This approach is based on information 

propagation analysis along characteristic directions in the 

calculation domain (see [33]). In other words, for subsonic 

flow, three characteristic propagate information pointing into 

the computational domain. Thus three flow properties must be 

fixed at the inlet plane. Just one characteristic line allows 

information to travel upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet boundary. The 

pressure was the extrapolated variable from the real neighbor 

volumes, for the studied problem. Density and velocity 

components adopted values of freestream flow. 

(b) Supersonic flow: In this case no information travels 

upstream; therefore all variables are fixed with their freestream 

values. 

 

Exit Condition. Again, two flow situations are analyzed. They 

are detailed below: 

(a) Subsonic flow: Three characteristic propagate information 

outward the computational domain. Hence, the associated 

variables should be extrapolated from interior information. 

The characteristic direction associated to the “(qnormal-a)” 

velocity should be specified because it points inward to the 

computational domain (see [33]). In this case, the ghost 

volume pressure is specified from its initial value. Density, and 

velocity components are extrapolated. The total energy is 

obtained from the state equation of a perfect gas. 

(b) Supersonic flow: All variables are extrapolated from 

interior grid cells, as no flow information can make its way 

upstream. In other words, nothing can be fixed. 

VII. CONCLUSIONS 

This work, first part of this study, describes five numerical 

tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The [2-6] schemes, 

in its first- and second-order versions, are implemented to 

accomplish the numerical simulations. The Navier-Stokes 

equations, on a finite volume context and employing structured 

spatial discretization, are applied to solve the supersonic flow 

along a ramp in two-dimensions. Three turbulence models are 

applied to close the system, namely: [9-11]. On the one hand, 

the second-order version of the [2; 4-6] schemes are obtained 

from a “MUSCL” extrapolation procedure, whereas on the 

other hand, the modified flux function approach is applied in 

the [3] scheme for the same accuracy. The convergence 

process is accelerated to the steady state condition through a 

spatially variable time step procedure, which has proved 

effective gains in terms of computational acceleration (see [18-

19]). The results have shown that the [2; 4-6] schemes have 

yielded the best results in terms of the prediction of the shock 

angle at the ramp. Moreover, the wall pressure distribution is 

also better predicted by the [3] scheme. 

 It is important to emphasize that the study of the present 

turbulence models aims a verification of their potentialities to 
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be used in re-entry flows in Earth and entry flows in Mars, to 

perform turbulent reactive simulations on the future. Some 

references to the reader become familiar with such line of 

research of the present author are: [34-38]. 
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