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Abstract— A relay based procedure for estimating and controller 

autotuning is addressed. Autotuning principles usually combine a 

relay feedback test with control synthesis. This paper presents some 

results of the first part of this scheme, i.e. relay plant identification 

for continuous-time plants. The estimation of the controlled system 

parameters plays the key role in the quality of control. There are 

many types of relays used in feedback relay schemes. The 

contribution deals with four ones of them, namely unbiased and 

biased relays without or with hysteresis.   

Many industrial plants can be satisfactory estimated by a first or 

second order linear stable system with a time delay term. The main 

relay parameters are the asymmetry, hysteresis and amplitudes. The 

aim of this paper is to study and analyze the influence of these 

parameters for the quality of estimation of the gain, time constant and 

time delay. As a result, some recommendations for settings of relay 

features can be given.   

Then, control synthesis follows in algebraic philosophy. This 

approach brings a tuning positive real parameter which highly 

influences the control behavior. All simulations were performed in 

Matlab and Simulink program environment. A program system for 

automatic estimation, design and simulation was developed. 

 

Keywords—Autotuning, Relay experiment, Limit cycle 

oscillations, Biased and unbiased relay, Hysteresis, Describing 

function.  

I. INTRODUCTION 

HE Åström and Hägglund relay feedback test [1] started in 

1984 an important tool for automatic controller tuning 

because it identifies two main parameters for the Ziegler-

Nichols method [3]. Previously, relay was mainly used as an 

amplifier or as a relay back control. The Åström-Hägglund test 

is based on the observation, when the output lags behind the 

input by - radians, the closed loop oscillates with a constant 

period. Then, the ultimate gain and frequency are identified by 

a simple symmetrical relay feedback experiment proposed in 
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[1]. From the critical values the controller setting was applied 

by the Ziegler-Nichols rule which is simple but it suffers from 

several drawbacks.  

From that time, many studies have been reported to extend 

and improve both, the relay feedback experiment as well as 

tuning and control design principles; see e.g. [2] - [4], [10], 

[18]-[20]. Many of them need an estimation of transfer 

function parameters and the original approach provides no 

explicit parameters of the identified transfer function. During 

the period of almost three decades, the direct estimation of 

transfer function parameters instead of critical values began to 

appear. The extension in relay utilization was performed in 

e.g. [8] - [12], [27] by an asymmetry and hysteresis of a relay. 

Nowadays, almost all commercial industrial PID controllers 

provide the feature of autotuning.  

This paper brings a study how the asymmetry and hysteresis 

influence the quality and accuracy of identification process. 

Also the length of the experiment and the relay amplitude can 

influence the quality of the estimation.  

Probably Luyben in [5] was the first who used the 

approximate describing function (DF) method to estimate the 

process transfer function from limit cycle measurements. 

The main scheme for the relay estimation and/or 

identification is depicted in Fig. 1. 

 

 

Fig. 1 relay based identification 

 

The goal of the original test was to indicate the critical point 

in the Nyquist curve of the open loop. However, there are 

other relays used in identification experiments, e.g. the biased 

(asymmetrical) relay, two positions symmetrical and 

asymmetrical (biased) relay without and with hysteresis 

characteristic are depicted in Fig. 2. A biased (asymmetrical) 

one characteristic is obtained by a simple vertical moving by 

an asymmetry shift. Also, the relay without hysteresis is 

obtained by putting  = 0. 

Many research works have been done to improve and refine 

the effect of fundamental harmonic by using different shapes 

and structures of the relay element, see [6], [7], [24] - [26]. A 

limit cycle oscillation for a stable system with positive steady 

state gain with a biased relay is shown in Fig. 3. 
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Fig. 2 types of relay 

 

 

Fig. 3 biased relay oscillation of stable processes 

 

Many stable industrial processes can be approximated by a 

first or second order linear system with a time delay term. The 

model for first order (stable) systems plus dead time (FOPDT) 

is supposed in the form: 
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The second order model plus dead time (SOPDT) is 

assumed in the form: 
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II. RELAY FEEDBACK ESTIMATION 

A. Critical Values Estimation 

Critical values estimation is based on a simple symmetric 

(unbiased) relay experiment which output is depicted in Fig. 4. 

 

 
Fig. 4 unbiased relay oscillation of stable processes 

The critical gain is then given by the relation (see e.g. [1]) 
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and the ultimate period Tu can be read according to Fig. 3. 

  

B. Unbiased relay experiment 

The relay feedback experiment according to Fig. 1 yields 

stable harmonic oscillations, i.e. it causes rise of the stable 

limit cycles (Fig. 4). The describing function method ([5], 

[11], [14], [29]) is a tool for verification the limit cycle rise.  

The describing function of the relay N(a) is considered as a 

complex gain which depends on the harmonic oscillation 

amplitude a and angular frequency  in the relay input e(t) 

 

( ) sine t a t  (4) 

 

The condition for the limit cycle follows from the critical 

point of non-linear closed-loop system in Fig. 1 which gives 

 

( ) ( ) 1 0PN a G s    (5) 

 

where GP(s) = AP() e
j()

   is the plant transfer function, AP() 

and () are called  the (transfer function)  magnitude and 

phase, respectively.  

For the symmetric relay without or with hysteresis   0,  

the describing function and the critical characteristic have the 

form (see e.g. [8], [12], [29])  
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otherwise N(a) =  . Values A(a) and N(a) represent the 

critical magnitude and critical characteristic phase, 

respectively 
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The frequency transfer function G(j)= AP()e
j

P
()

 for the 

first order system (1) gives 
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Comparing AN(a)  = AP(a)  and N(a) = P(a) in (7) and (8) 

gives two equations for the calculation of  T and Ɵ. The final 

relations for the time constant and time delay terms for 
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FOPDT (1) are given by: 
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where ay and Ty are depicted in Fig. 3 and ε is hysteresis. 

The second order system SOPDT (2) is estimated by 

relations  
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Relations (9), (10) represent a suitable identification tool for 

computing time and time delay terms but a relay unbiased 

experiment is not able to estimate the gain of the controlled 

system. 

 

C. Biased relay experiment 

Asymmetrical relays with or without hysteresis bring further 

progress, see e.g. [2], [6], [7], [14], [27], [28]. After the relay 

feedback test, the estimation of process parameters can be 

performed. A typical data response of such relay experiment is 

depicted in Fig. 5. The relay asymmetry is required for the 

process gain estimation (11) while a symmetrical relay would 

cause the zero division in the appropriate formula. In this 

paper, an asymmetrical relay with hysteresis was used. This 

relay enables to estimate transfer function parameters as well 

as a time delay term. The proportional gain can be computed 

by the relation [11]:  
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when the asymmetric relay is used for the relay feedback test, 

it is shown in Fig. 5, the output y converges to the stationary 

oscillation in one period. These oscillations are characterized 

by equations (see [8]): 

 

 0 1 T T
uA K e e  

 
  

       
 

  (12) 

 0 1 T T
dA K e e  

 
  

       
 

  (13) 

0

1

0

2
ln

T

u

K e K K
T T

K K

   

  



       
 

   
  (14) 

0

2

0

2
ln

T

u

K e K K
T T

K K

   

  



       
 

   
 (15) 

 

The normalized dead time of the process (L=Ɵ/T) is 

obtained from (12) or (13) in the form (see e.g. [8]): 
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Next, the time constant can be computed from (14) or (15) 

by solving these formulas [8]: 
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and a time delay term is T L   . 
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Fig. 5 biased relay oscillation of first order stable system 

 

III. ALGEBRAIC CONTROL DESIGN 

The control design is based on the fractional approach; see 

e.g. [9], [15], [17], [20], [31]. Any transfer function G(s) of a 

(continuous-time) linear system is expressed as a ratio of two 

elements of RPS. The set RPS means the ring of (Hurwitz) stable 

and proper rational functions [31]. Traditional transfer 

functions as a ratio of two polynomials can be easily 

transformed into the fractional form simply by dividing, both 
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the polynomial denominator and numerator by the same stable 

polynomial of the appropriate order. 

Then all transfer functions can be expressed by the ratio: 
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0max(deg( ),deg( )), 0n a b m   (21) 

 

The feedback control loop can be in the traditional structure 

(one degree of freedom – 1DOF), see Fig. 6 or in the two 

degree of freedom (2DOF), see Fig. 7. In both cases, all 

feedback stabilizing controllers for the feedback systems are 

given by a general solution of the Diophantine equation: 

 

1AP BQ   (22) 

 

which can be expressed with Z free in RPS: 
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In contrast of polynomial design, all controllers are proper 

and can be utilized. 

 

 
Fig. 6 one degree of freedom (1DOF) control loop 

 

The Diophantine equation for the design of the feedforward 

controller depicted in Fig.7 is: 
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with parametric solution: 
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Fig. 7 two degree of freedom (2DOF) control loop 

 

Asymptotic tracking is then ensured by the divisibility of the 

denominator P in (23) by the denominator of the reference w = 

Gw / Fw. The most frequent case is a stepwise reference with 

the denominator in the form: 
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The similar conclusion is valid also for the load disturbance 

(Fig. 6, Fig. 7) n = Gn / Fn. The load disturbance attenuation is 

then achieved by divisibility of P by Fn. More precisely, for 

tracking and attenuation in the closed loop the multiple of AP 

must be divisible by the least common multiple of 

denominators of all input signals. The divisibility in RPS is 

defined through unstable zeros and it can be achieved by a 

suitable choice of rational function [15] for details. 

The resulting control law is governed by the equation: 
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in the case of the 1DOF structure and  
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in the case of  the 2DOF controller. The algebraic approach 

mentioned in this section generates a PI controller for the 

1DOF structure and first order system (1) with Ɵ = 0 and a 

PID (realistic one) for the second order system (2). Parameters 

of controllers are nonlinear functions of the tuning parameter 

m0 > 0, e.g. in the simplest case of  (1) the resulting PI 

controller is in the form: 
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where parameters q1 a q0 are given by: 
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More details can be found in [16], [17], [20]. The tuning 

parameter can be chosen e.g. for aperiodic behavior, see [20].  

The control design for systems (1), (2) with a nonzero delay 

term should be treated in a different ways, see e.g. [17]-[20]. 

There are several possibilities, the first one is neglecting of 

this term, the response are acceptable only for normalized 

small time delays L=Ɵ/(T+Ɵ). Another approach utilizes the   

Pade approximation, the simplest case is given by 
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Naturally, this approximation increases the degrees of 

polynomials of the numerator as well as denominator of the 

nominal controlled transfer function. Poles of transfer function 

remain in the left half plane, while zeros are moved to the right 

half plane which can destabilize feedback loops. More details 

can be found in [22]. A different way consists in using of 

Smith predictor structure of the control loop, see [23]. A very 

modern way in the algebraic philosophy utilizes the ring of 

meromorphic function approach with quasipolynomials, see 

e.g. [19], [21]. 

IV. SIMULATION PROGRAM 

A Matlab program system was developed for estimation of 

transfer function, controller design and simulation of feedback 

loop applications of auto-tuning principles. This program 

enables a choice for the relay estimation of the controlled 

system of arbitrary order. The estimated model is of a first or 

second order transfer function with time delay. The user can 

choose three cases for the time delay term. In the first case the 

time term is neglected, in the second one the term is 

approximated by the Pade expansion and the third case utilizes 

the Smith predictor control structure. The program is 

developed with the support of the Polynomial Toolbox. The 

Main menu of the program system can be seen in Fig. 8. 

In the first phase of the program routine, the controlled 

transfer function is defined and parameters for the relay 

experiment can be adjusted. Then, the experiment is performed 

and it can be repeated with modified parameters if necessary. 

After the experiment, an estimated transfer function in the 

form of (1) or (2) is performed automatically and controller 

parameters are generated after pushing of the appropriate 

button. Parameters for experimental adjustment are defined in 

the upper part of the window. 

The second phase begins with the “Design controller 

parameters” button and the actual control design is performed. 

According to above mentioned methodology and identified 

parameters, the controller is derived and displayed. The 

control scheme depends on the choice for the 1DOF or 2DOF 

structure and on the choice of the treatment with the time delay 

term. 

During the third phase, after pushing the “Start simulation” 

button, the simulation routine is performed and required 

outputs are displayed. The simulation horizon can be 

prescribed as well as tuning parameter m, other simulation 

parameters can be specified in the Simulink environment. In 

all simulation a change of the step reference is performed in 

the second third of the simulation horizon and a step change in 

the load is injected in the last third. A typical control loop of 

the case with the Smith predictor in Simulink is depicted in 

Fig. 9. 

Also the step responses can be displayed and the 

comparison of the controlled and estimated systems can be 

depicted. Another versions of the similar program systems 

were developed and they are referred in e.g. [17], [18]. 

 
Fig. 8 main menu of program system 

 

 

Fig. 9 simulation program in Simulink 

V. ANALYSIS AND RELAY SETTING OF ESTIMATION  

In this contribution, the main emphasis was laid on the 

accuracy of estimated parameters. The aim is to conclude how 

to set relay parameters and to give some recommendations. 

In this approach, the identification relations have to estimate 

both, time constant as well as a system gain. The time 

parameters are estimated by a symmetrical relay, while the 

gain is estimated by a biased relay experiment. Then a 

contradictory question is concluded: How to utilize a biased 

relay experiment for estimation of all identified parameters in 

(1) and (2). The main aim of the research work was to 

investigate how a biased relay can be used with satisfactory 

accuracy and how to set up the relay experiment.  

The first test transfer function for the first order system is 

given:  

 

63
( )

4 1

sG s e
s

 
  

(32) 

 

Many relay feedback experiments were performed by the 

simulation program and the following sensitivity was 

investigated. The accuracy of estimated parameters depends on 

main parameters of the relay, namely: 

 

- asymmetry 

- hysteresis 

- relay amplitude 
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Table I shows the influence of the asymmetry of the relay on 

the accuracy of estimation. All entries of Table 1 are in 

differences between the true and estimated values in %. The 

upper value of the relay output was 0.30. 

 

Asymmetry [%] 10 20 30 40 50 60 

 K [%] 1.7 1.3 1.3 0.7 0.7 0.7 

 T [%] 3.5 2.8 2.1 1.2 1.2 1.0 

 Ɵ [%] 1.2 1.0 0.8 0.5 0.7 0.5 

Table I estimation accuracy based on relay asymmetry. 

 

Table II summarizes the sensitivity of the relay hysteresis 

for transfer function (32). All entries are for comparison in 

numerical values. The upper relay output was 1.2 lower value -

1.08. 

 

Hysteresis  0 0.2 0.4 0.6 

Gain K  2.88 2.95 2.95 2.92 

Time constant T 3.70 3.88 3.78 3.78 

Time delay Ɵ 6.12 6.05 6.07 6.12 

Table II estimation accuracy based on relay hysteresis 

 

In a similar way, according to Table 2 also a set of 

experiments were for various values of the lower relay output -

0.96, 0.84, 0.72, 0.60, respectively.  The following 

observations and recommendations can be drawn from the 

obtained analysis: 

 

- bigger values of asymmetry up to 40% caused better 

accuracy of all parameters 

- better accuracy was achieved for smaller values of 

hysteresis  = 0.1;0.2 

- values of relay outputs have no relevant influence on the 

estimation accuracy 

 

VI. EXAMPLES AND SIMULATIONS  

The recommended values for a relay experiment were used 

for the estimation of the higher order system: 
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The relay parameters with  = 0.1; asymmetry 40% with 

upper and lower relay outputs 0.30 and -0.18 were used.  The 

resulting first order estimation takes the form: 
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Comparison of both step responses of systems (33) and 

(34) is depicted in Fig. 10. Other results of estimation and 

autotuning control can be found in [18] - [20]. 
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Fig. 10 step responses of systems (33) and (34) 

  

The quantity of the normalized time delay L=Ɵ 

/(T+Ɵ)=0.70 for (33) indicates the difficulty of controlling. 

The second order approximation is in the form 
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A simpler class of controllers was derived in RPS 

representation (22), (23) with neglecting of time delay and the 

first order controller takes the form (for an appropriate choice 

of the tuning parameter, see [20]) 
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The second order RPS controller gives 

 
2

2 02

0.23 0.16 0.03
( ) 0.30

3.46
R

s s
G s m

s s

 
 


 (37) 

 

Control responses of both feedback systems are shown in 

Fig. 11 and Fig. 12 outlines stability margins of both 

controllers with original control plant (33).  
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Fig. 11 RPS control responses of (33) with (36), (37) 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 233



 

 

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
-3

-2

-1

0

1

2

3

 

 
Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

System w ith f irst order controller

System w ith second order controller

 
Fig. 12 RPS Nyquist plots of (33) and (36), (37) 

 

Further improvement of the control behavior can be 

achieved by introducing Pade approximation of the time delay 

term, see e.g. [17], [22]. The simplest approximation is given 
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This approximation is then used in estimated transfer 

functions of the first and second order (34), (35). The first 

order system is then 

 

1 2

20.38 4.97
( )

14.678 7.68 1

s
G s

s s
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  (39) 

 

According to control synthesis equation (22), the resulting 

controller for asymptotic tracking takes the form  
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  (40) 

 

and it is also parameterized by a tuning parameter  

The second order approximation (35) with (38) yields to the 

following system of the third order 

 

2 3 2

16.78 4.965
( )

16.28 19.65 7.77 1

s
G s

s s s

 


  
  (41) 

 

The resulting controller is no more of the PID structure but 

it has the third order transfer function 
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The control responses are depicted in Fig. 13. The 

improvement of the control behavior is apparent. However, the 

controller structure is more complex and approximation (38) 

brings unstable zeros to transfer functions (39), (41). 

 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (s)

w
, 

y

 

 

Reference

First order model

Second order model

 
Fig. 13 control responses with Pade approximation (38) 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

 
Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

First order model

Second order model

 
Fig. 14 Nyquist plots of (33) and (40), (42) 

 

Fig. 14 shows the Nyquist plots of the connection of the 

controlled system (33) and controllers (40), (42). It is evident 

that the Pade approximation brings evident improvement in the 

stability margin which is a measure of the robustness of 

designed controllers.  

Another principle how to tackle with delay systems can be 

found in meromorphic function approach. There is no 

approximation in delay terms, however, the price is more 

complex controller structure, see e.g. [18], [21]. 

VII. CONCLUSION 

The paper presents some results of research whose aim is to 

develop and analyze main features for improving of single 

input- output autotuners. The first interest is devoted to relay 

parameters for a feedback relay experiment. The proper and 

accurate parameter estimation plays a key role for a control 

design, especially in autotuning utilization. Various relay 

improvements and utilization for control design can be found 
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also in [13], [14], [20], [30]. The goal of the paper is to 

investigate how the estimation is sensitive on the relay settings. 

Main relay characteristics as asymmetry, hysteresis and 

amplitude can be recommended for the correct adjustment for 

the relay experiment. Further, some results of the algebraic 

approach are summarized. The tuning scalar parameter is 

proposed and this parameter can influence control behavior, 

robustness and aperiodicity of the control response. The 

illustrative example for a delay system compares neglecting 

and Pade approximation of the delay term in controller design 

and also a robust performance is outlined.  A Matlab+Simulink 

program was developed for automatic estimation, control 

design and simulation of single input-output continuous-time 

systems.  
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