
 

 

 
Abstract—This article proposes an alternate way for resolving 

classical computational geometry problems. The particularity is the 
integration of Range Tree data structures in solving problems like: 
segment intersections, orthogonal queries and calculation of 
rectangular areas. For particular scenarios complexity improvements 
can be observed. Given that these three algorithms were implemented 
relying on range trees, the research opens the door for introducing 
similar computational structures in related geometry problems. 
 

Keywords—computational geometry, orthogonal queries, 
rectangular area problem, segment intersections 

I. INTRODUCTION 
HEN presenting computational geometry classical 
problems for pure scientific or educational purposes, a 

huge number of approaches, data structures, algorithms and 
languages is employed. From teaching by means of using 
UML diagrams [1] to complex structures like Regions of 
Point-free Overlapping Circles [2] there are very few areas of 
the currently available knowledge that are not used. The 
purpose of this paper is to fill another possible gap by 
employing the Range-Trees into solving some well-known 
computational geometry problems. 

A Range tree [3] is a balanced (each sub-tree is balanced 
and the height of the two sub-trees differ by at most one) 
binary search tree (the largest element from the left sub-tree is 
smaller than the smallest element from the right sub-tree) 
where each node can have an auxiliary structure associated to 
it. An example of a visual representation for a range tree may 
be seen in Fig. 1. 

Throughout this paper, the following notations will be used: 
- ],[ ba , to be read as “the range a  to b  “, represents the 

set of all integer values between a  and b  
- ][N , corresponding to the floor function, denoting the 

largest integer no larger than N  
- ( )baT , , the range tree corresponding to ],[ ba  

A ( )rlT ,  range tree, with rl <  is defined as follows: 

- the root of the tree has the range l  to r  associated with it 
- if rl < , the current interval is split into two nodes that 

have the associated sub-trees ( )mlT ,  and 

( )rmT ,1+ , respectively, where m is the median of 

the elements of the range l  to r  

 
An important property of range trees is that they are 

balanced binary trees (the absolute difference between the 
height of the left and right sub-trees is no greater than 1). The 
depth of a range tree that contains N intervals will be 

( )1log2 +N . Fig. 1 depicts a range tree for the range 0 to 
11. 

 

A. Updating an Interval in a Range Tree 
The most efficient method for storing a range tree is using a 

vector. The storing method is identical to the one for storing a 
heap. Below is presented the pseudocode for updating a range 
a to b in a range tree T: 
 
Update (node, l, r, a, b) 
  if (a <= l) and (r <= b) 
    modify the auxiliary structure for node 
  else 
    m = median for elements in [l, r] 
    if (a <= m) 
      Update (2 * node, l, m, a, b) 
    if (b > m) 
      Update (2 * node + 1, m + 1, r, a, b) 
  update the auxiliary structure for node 

based on its children's structures 
 

B. Query 
Query operation for the auxiliary information on the node 

responsible for the range a to b in the range tree whose root is 
node is presented in pseudocode below: 

 

Three Classical Computational Geometry 
Problems Approached Using Range Trees 

Antonio G. Sturzu, Costin A. Boiangiu 

W 

 

 
Fig. 1 graphical representation of a range tree 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 116



 

 

Query (node, l, r, a, b) 
  if (a <= l) and (r <= b) then 
    return the auxiliary information from the 

node 
  else 
    m = median for elements in [l, r] 
    if (a <= m) 
      Query (2 * node, l, m, a, b) 
    if (b > m) 
      Query (2 * node + 1, m + 1, r, a, b) 

 
It is possible, for certain nodes, to end up calling the update 

procedure for both of its children, which will incur an 
additional cost. But the good news is that this will happen only 
once so the time complexity of both operations will be 
( )NO 2log  since the height of the tree is [ ] 1log2 +N . 

In order to maintain a range tree for N  values in memory, 
the number of necessary memory locations is 

12...42 −=+++ NNNN . Because the tree is not 

complete, it is necessary to check every time if a node’s child 
actually exists. 

II. COMPUTATIONAL GEOMETRY PROBLEMS 
In the following, a series of well known computational 

geometry problems [5] will be treated using the range-trees for 
reducing the time complexity. 

 

A. A Segment Intersection Problem 
Terms of the Problem: Given N segments in a 2D plane, 

parallel with the OX and the OY axes, one must determine the 
number of intersections between them. 

This problem is the orthogonal version of the problem 
described in [6]. 

The approach is to divide this problem into two distinct sub-
problems [3], [4]. The first subproblem consists of determining 
the number of intersections between horizontal and vertical 
segments. For the second one, the intersections between 
horizontal segments are counted follow by counting the 
intersections between vertical segments. 

A sweep line algorithm (Fig. 2) solves the first sub-problem, 
which is a classical technique for solving computational 
geometry problems [7]-[9]. Sweep line algorithms maintain 
two sets of data: 

- the sweep line list: a collection of segments that intersect 
the sweep line 

- the point-event list: a sequence of coordinates, sorted 
from left to right (or from top to bottom – depending on 
the particularities of the problem), where the contents of 
the sweep line list is updated 

The sweep line, an imaginary vertical element, is moved 
from left to right (swept), guided by the contents of the point-
event list. The aforementioned list contains the end points of 
the horizontal segments as well as the x-coordinate of the 
vertical segments. As the line is swept, the following 
operations are performed: 

- all segments whose left endpoints have the current 
coordinate are added to the sweep line list 

- all segments whose tight endpoints have the current 
coordinate are removed from the sweep line list 

- all vertical segments whose x-coordinates are the same as 
the current coordinate are checked against the segments 
in the sweep line list for intersections (more precisely, 
check whether the y-coordinate of the horizontal 
segments is between the y-coordinates of the vertical 
segment) 

For performance reasons, the above mentioned algorithm is 
slightly modified. The sweep line list is implemented as a 
structure that supports the following operations: 

- Insert(y), insert the y coordinate 
- Delete(y), delete the y coordinate 
- Query(y1, y2), returns the number of segments that have 

their coordinates in the interval ]2,1[ yy  
Adding a segment to the sweep line list actually means 

adding the y coordinate of the segment to the structure. 
Also, two particular cases deserve extra attention. In the 

first one, the vertical segment can intersect the left endpoint of 
a horizontal segment. In the second case the vertical segment 
can intersect the right endpoint of a horizontal segment. So, 
given the sorted x coordinates of all the segments, in case of 
equality the points must be distinguished by their type. In 
order to obtain correct results the order of evaluating the 
points must be the following: first the coordinates of the left 
end-points of a horizontal segment, then the coordinates of the 
vertical segments and last the x coordinates of the right end-
points of the horizontal segments. 

Given the available operations for the sweep line list, it is 
implemented as a range tree indexed by the y coordinates of 
the horizontal segments. Each range tree node stores the 
number of horizontal segments that have their y coordinates in 
the corresponding range. The Insert(y) operation can be easily 
implemented using the update procedure described in section 
I.A for the interval [y, x]. For each updated node the number of 
contained horizontal segments is incremented by one. For the 
delete procedure, the number of contained horizontal segments 
is decreased by one, using the same update procedure as for 
the Insert(y) procedure. The Query(y1, y2) operation is 
implemented based on the query procedure described in 
section I.B. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 117



 

 

 
If the maximum y coordinate of the horizontal segments is 

MAXY , and NMAXY > ,the total time complexity of the 
algorithm will be ( )MAXYNO 2log . This time complexity 

can be reduced to ( )NNO 2log  by observing that it is not 
needed to take into account all the coordinates in the interval 
[ ]MAXY,0  but only the ones of the horizontal segments. So, 

the [ ]MAXY,0  interval can be compressed to [ ]1,0 −N  by 
sorting in increasing order all the y coordinates at the 
beginning of the algorithm and assigning to each y coordinate 
a value from [ ]1,0 −N that represents the position of the y 
coordinate in the sorted vector. With the help of this 
optimization, the number of queries is reduced to 
( )NO 2log , which in turn leads to an overall complexity of 

( )NNO 2log . 
The solution for the second subproblem is also based on 

the sweep line algorithm. The subproblem is equivalent to 
several instances of the following one: Given N closed 
intervals determine the number of intersections between the 
intervals. 

Firstly, the endpoints of the intervals are sorted from left to 
right. The endpoints will be distinguished by their type: left 
(beginning) or right (end). A counter is maintained that 
represents the number of segments that currently intersect the 
sweep line, so called active segments. For each left endpoint 
the number of intersections is increased by the number of 
active segments, and the value of the counter that maintains the 
number of active segments is incremented by one. For each 
right endpoint the aforementioned counter is decremented by 
one. 

To solve the general problem of determining the total 
number of intersections between the horizontal segments a 
counter is maintained for each distinct y coordinate of the 
horizontal segments. With this small change, the problem is 
reduced to the problem previously discussed. 

The vertical segments intersections can be counted the same 
way; by switching the meanings of the two axes, the algorithm 
can be applied once again. In the end, the time complexity of 
the algorithm is ( )NNO 2log . 

The “Segment Intersection” problem described here is a 
particular problem of the more general problem of determining 
the total number of intersections between arbitrary oriented 
segments which has a larger time complexity. These types of 
problems are useful in collision detection between different 
physical objects [10], [11]. 

 

B. An Orthogonal Range Query Problem 
Terms of the Problem: Given N points in a 2D plane with 

natural coordinates determine the number of points situated 
within the rectangle with the top left corner in (x1, y1) and 
bottom right corner in (x2, y2). 

This is almost a classic in the field of computer science, 
having been analyzed from different points of view for quite a 
long time [12]-[14]. Firstly, the points are sorted by their x 
coordinate; then, a range tree indexed by this coordinate is 
built. The range for the root of the tree contains all the points. 
Its two child nodes contain the first and second half of the 
range respectively. The same rule applies for each father node 
and its children. Every node of the tree contains the y 
coordinates of the points for which it is responsible, sorted in 
increasing order. 

The total memory occupied by the tree will be 
( )NNO 2log  because for every level down the range tree 

the ranges are split into two equal pieces. Also, because the 
only relevant points are those specified by the problem, the 
tree does not have to contain all the values between x1 and x2. 
The focus for this part is the order in which the points appear 
on the OX axis, as a result, instead of dealing with the range x1 
to x2, the indexes of these points, as indicating by the sorting, 
are used as the range 0  to 1−N . 

In the new context of the problem, before a query is 
executed, corresponding indexes for the bounding rectangle 
must be determined. With the help of binary search, 
appropriate positions are determined for the x coordinates in 
the 0  to 1−N  range. The bounding points could have just 
as well been introduced as elements to be sorted, which would 
have led to a 2+N  length list. 

In order to compute the number of points situated in the 
interior of the bounding rectangle the range tree is inspected. 
For every interval in the tree included in the [ ]2,1 xx  interval, 
the global counter will be incremented by the number of points 
whose y-coordinate falls inside [ ]2,1 yy  interval. 

 

 
Fig. 2 Graphic representation of the sweep line algorithm for the first 

subproblem. The sweep line (interrupted) currently has in its 
associated list the vertical and horizontal segments that it intersects 

(ended with circle markers). 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 118



 

 

Determining the number of points situated in the [ ]2,1 yy  
interval can be done by using two binary searches because 
every node of the tree stores the y coordinates sorted. 

The first binary search will retain the position of the first 
point whose y coordinate is greater than or equal to 1y  and 
the second binary search will retain the position of the last 
point whose y coordinate is less than or equal to 2y . The 

number of points in the [ ]2,1 yy  interval will be the 
difference between the two positions mentioned above. 

One more problem remains, and that is: how to efficiently 
construct the range tree in order to have all the y coordinates in 
all the nodes sorted in increasing order. The idea is similar to 
the merge-sort algorithm. So the construction starts with the 
leaves of the tree which contain a single element. Afterwards, 
for each new level, the existing, two adjacent trees are merged 
together, keeping in mind that the final tree must be balanced, 
until a single tree remains. 

The time complexity for constructing the initial range tree is 
( )NNO 2log  and the time complexity for a query is 

( )( )2
2log NO , where N  is the number of points given in 

the XOY plane. 
For applications whose only aim is to determine the number 

of points within a specified segment a single time, this 
approach is far from efficient, as building the tree is rather 
costly. However, if the number of queries is quite large and the 
data do not change too often, querying the tree structure 
becomes the essential operation. Such an application could be 
a navigation system of a car where the driver can view on a 
screen the density of towns from a given zone on a map. 

 

C. An Area Calculation Problem and a Related Problem 
Terms of the Problem: Given N rectangles in a 2D plane, 

each having their edges parallel to the OX, OY axes, 
determine the total area occupied by them. 

In order to simplify the explanations, the coordinates will be 
natural numbers only. However this should not affect any 
computation on real values, as previous examples indicate that 
switching from real values to integers can be easily done by 
sorting and then referencing by index. 

Firstly, the left and right edges of all the rectangles are 
sorted in increasing order. Afterwards, a sweep line algorithm 
(Fig. 3) is run from left to right. The two possible events that 
can occur are encountering a left rectangle edge or a right 
rectangle edge. When a left rectangle edge is encountered, it is 
added to the sweep line set, while the right side determines the 
removal of the rectangle. 

The main problem is that for each event, the length of the 
intersection between the sweep line and the set of active 
rectangles must be known. In order to compute the area 
between the current event and the previous one it is sufficient 
to multiply the length of the intersection between the sweep 
line and the set of active rectangles with the difference 

between the x coordinate of the current event and the x 
coordinate of the previous event. So, by going from left to 
right through all the events, the total area is calculated 
incrementally, step by step. 

In order to compute the length of the intersection between 
the sweep line and the set of active rectangles there could be 
used a second sweep line that would go through the set of 
active rectangles from top to bottom. The events in this case 
are the horizontal edges of the active rectangles and are 
tracked through a counter that indicates how many rectangles 
overlap. While the counter remains positive, the length of the 
intersection is increased by the difference between the y 
coordinate of the previous event and the y coordinate of the 
current event. The downside is that this algorithm has large 
time complexity ( )2NO . 

The solution would be to replace the inner loop sweep line 
algorithm with something more efficient that could be 
executed in logarithmic time. The basic idea is to use a range 
tree that stores the following information for each unit interval: 

- the number of times the interval has been marked 
- the number of active units in the interval 
Based on the information, the following three operations 

will be required: 
- marking an interval [ ]ba,  

- unmarking an interval [ ]ba,  
- returning the total number of active units in the range tree 
The first two operations can be implemented in logarithmic 

time using the update procedure described in section I.A, with 
minor modifications. The last operation can be performed in 
constant time by returning the number of active units in the 
root of the range tree. The length of the intersection between 
the sweep line and the set of active rectangles will be the total 
number of active units in the range tree. Thus, the total time 
complexity of the algorithm becomes ( )MAXCNO 2log  or 

( )NNO 2log , where MAXC  represents the index of the 
maximum y coordinate of all the rectangles. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 119



 

 

 
The main problem consists of correctly determining the 

intersections [15]-[17]. 
A similar problem is that of determining the perimeter of the 

rectangles. The only difference is that when a new event takes 
place, the range tree gets updated and the total perimeter is 
increased by the absolute difference between the current total 
number of active units and the total number of active units 
before the update took place. 

III. RESULTS 
The system on which the problems were solved was an 

Athlon 64 3200+ at 2GHz and 1 GB RAM with Windows XP. 
1) For the segment intersection problem for 100.000 

segments the execution time was between 2.3 and 2.4 
seconds. 

2) For the orthogonal range query problem for 100.000 
points and 100.000 queries the total execution time was 
4.5 seconds. It must be mentioned that a good part of the 
execution time was occupied by the reading and writing 
part in a file and not by the effective algorithm 
implementation. 

3) For the area calculation problem for 100.000 rectangles 
the execution time was about 2.1 seconds 

IV. CONCLUSION 
This article analyzed how range trees can be used to 

efficiently optimize some practical computational geometry 
problems. It is important to say that they are also useful in 
other kinds of problems like the range minimum query 
problem on a vector and other vector-related problems. 

REFERENCES 
[1] A. Iordan, M. Panoiu, “Modeling of an educational informatics system 

for the study of computational geometry elements using UML 
diagrams,”  in Proc. 9th WSEAS International Conference on 
Telecommunications and Informatics (TELE-INFO'10), Catania, Italy, 
May 29-31, 2010, pp. 232-237. 

[2] T. Iwaszko, M. Melkemi, L. Idoumghar, “A theoretical structure for 
computational geometry: regions of point-free overlapping circles,” in 
Proc. 9th WSEAS International Conference on Signal Processing, 
Computational Geometry and Artificial Vision (ISCGAV'09), 2009, pp. 
117-122. 

[3] M. de Berg, O. Cheong, M. van Kreveld, M. Overmans, “Computational 
geometry, algorithms and applications,” Springer-Verlag Berlin 
Heidlberg, Berlin, 2008. 

[4] T. H. Cormen, C. E. Leierson, R. L. Rivest, C. Stein, Introduction to 
algorithms (Third Edition), MIT Press, 2009. 

[5] A.-G. Sturzu, C.-A. Boiangiu, “Range Tree Applications in 
Computational Geometry,” in Proc. 18th WSEAS International 
Conference on Applied Mathematics (AMATH '13), Budapest, 
Hungary, December 10-12, 2013, pp. 250-255. 

[6] S. Sioutas, A. Tsakalidis, J. Tsaknakis. V. Vassiliadis, “Applications of 
the exponential search tree in sweep line techniques,” in Proc. 3th 
WSEAS Multi-Conference on Circuits, Systems, Communications and 
Computers (CSCC'99) , Athens, Greece, October 26-28, 2000, pp.2261-
2266. 

[7] O. Nurmi, “A fast line-sweep algorithm for hidden line elimination,” 
BIT Numerical Mathematics, vol. 25, no. 3, 1985, pp. 466-472. 

[8] D. S. Franzblau, “Performance guarantees on a sweep-line heuristic for 
covering rectilinear polygons with rectangles,” SIAM Journal on 
Discrete Mathematics, vol. 2, no. 3, 1989, pp. 307-321. 

[9] S. Fortune, “A sweepline algorithm for Voronoi diagrams,” 
Algorithmica, November 1987, vol. 2, no. 1-4, pp. 153-147. 

[10] P. Volino, N. Magnenan-Thalmann, “Resolving surface collisions 
through intersection contour minimization,” ACM Transactions on 
Graphics, vol. 25, no. 3, July 2006, pp. 1154-1159. 

[11] S. Cameron, “Collision detection by four-dimensional intersection 
testing,” IEEE Transactions on Robotics and Automation, vol. 6, no. 3, 
1990, pp. 291-302. 

[12] G. S. Lueker, “A data structure for orthogonal range queries,” 19th 
Annual Symposium on Foundations of Computer Science, 1978, pp. 28-
34. 

[13] S. Alstrup, G. Stolting Brodal, T. Rauhe, “New data structures for 
orthogonal range searching,” in Proc. 41st Annual Symposium on 
Foundations of Computer Science, 2000, pp. 198-207. 

[14] B. Chazelle, “Lower bounds for orthogonal range searching: I. The 
reporting case,” Journal of the ACM, vol. 37, no. 2, April 1990, pp. 
200-2012. 

[15]  H. Edelsbrunner, M. H. Overmars, “On the equivalence of some 
rectangle problems,” Information Processing Letters, 1982, vol. 14, no. 
3, pp. 124-127. 

[16] R. Hartmut Güting, W. Schilling, “A practical divide-and-conquer 
algorithm for the rectangle intersection problem”, Information Sciences, 
vol. 42, no. 2, 1987, pp. 94-112. 

[17]  T. M. Chan, “A note on maximum independent sets in rectangle 
intersection graphs,” Information Processing Letters, vol. 89, no. 1, 
2004, pp. 19-23. 

 

 
Fig. 3 Graphic representation of the sweep line algorithm. The 

interrupted line represents the intersection between the sweep line 
and the set of active rectangles. The rectangles with interrupted 

edges represent the active ones 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 8, 2014

ISSN: 1998-0159 120




