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Abstract—This work presents a numerical tool implemented to 

simulate inviscid and viscous flows employing the reactive gas 

formulation of thermochemical non-equilibrium. The Euler and 

Navier-Stokes equations, employing a finite volume formulation, on 

the context of structured and unstructured spatial discretizations, are 

solved. These variants allow an effective comparison between the 

two types of spatial discretization aiming verify their potentialities: 

solution quality, convergence speed, computational cost, etc. The 

aerospace problem involving the hypersonic flow around a blunt 

body, in three-dimensions, is simulated. The reactive simulations will 

involve an air chemical model of seven species: N, O, N2, O2, NO, 

NO+ and e-. Eighteen chemical reactions, involving dissociation, 

recombination and ionization, will be simulated by the proposed 

model. This model was suggested by Blottner. The Arrhenius formula 

will be employed to determine the reaction rates and the law of mass 

action will be used to determine the source terms of each gas species 

equation. In this work is only presented the structured formulation 

and solutions. The unstructured formulation and solutions are 

presented in the second part of this study, which treats exclusively 

the unstructured context. 
 

Keywords—Thermochemical non-equilibrium, Reentry flow, 

Seven species chemical model, Arrhenius formula, Structured and 

unstructured solutions, Euler and Navier-Stokes equations, Three-

Dimensions. 

I. INTRODUCTION 

HYPERSONIC flight vehicle has many applications for 

both military and civilian purposes including reentry 

vehicles such as the Space Shuttle and the Automated 

Transfer Vehicle (ATV) of the European Space Agency 

(ESA). The extreme environment of a hypersonic flow has a 
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major impact on the design and analysis of the aerodynamic 

and thermal loading of a reentry or hypersonic cruise vehicle. 

During a hypersonic flight, the species of the flow field are 

vibrationally excited, dissociated, and ionized because of the 

very strong shock wave which is created around a vehicle. 

Because of these phenomena, it is necessary to consider the 
flow to be in thermal and chemical non-equilibrium. 

 In high speed flows, any adjustment of chemical 

composition or thermodynamic equilibrium to a change in 

local environment requires certain time. This is because the 

redistribution of chemical species and internal energies require 

certain number of molecular collisions, and hence a certain 

characteristic time. Chemical non-equilibrium occurs when the 

characteristic time for the chemical reactions to reach local 

equilibrium is of the same order as the characteristic time of 

the fluid flow. Similarly, thermal non-equilibrium occurs when 

the characteristic time for translation and various internal 

energy modes to reach local equilibrium is of the same order 

as the characteristic time of the fluid flow. Since chemical and 

thermal changes are the results of collisions between the 

constituent particles, non-equilibrium effects prevail in high-

speed flows in low-density air. 

 In chemical non-equilibrium flows the mass conservation 

equation is applied to each of the constituent species in the gas 

mixture. Therefore, the overall mass conservation equation is 

replaced by as many species conservation equations as the 

number of chemical species considered. The assumption of 

thermal non-equilibrium introduces additional energy 

conservation equations – one for every additional energy 

mode. Thus, the number of governing equations for non-

equilibrium flow is much bigger compared to those for perfect 

gas flow. A complete set of governing equations for non-

equilibrium flow may be found in [1-2]. 

 Analysis of non-equilibrium flow is rather complex 

because (1) the number of equations to be solved is much 

larger than the Navier-Stokes equations, and (2) there are 

additional terms like the species production, mass diffusion, 

and vibrational energy relaxation, etc., that appear in the 

governing equations. In a typical flight of the NASP (National 

AeroSpace Plane) flying at Mach 15, ionization is not 

expected to occur, and a 5-species air is adequate for the 

analysis (see [3]). Since the rotational characteristic 

temperatures for the constituent species (namely N, O, N2, O2 

and NO) are small, the translational and rotational energy 

modes are assumed to be in equilibrium, whereas the 
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vibrational energy mode is assumed to be in non-equilibrium. 

[4] has simplified the thermodynamic model by assuming a 

harmonic oscillator to describe the vibrational energy. Ionic 

species and electrons are not considered. This simplifies the 

set of governing equations by eliminating the equation 

governing electron and electronic excitation energy. [4] has 

taken the complete set of governing equations from [1], and 

simplified them for a five-species two-temperature air model. 

 The problems of chemical non-equilibrium in the shock 

layers over vehicles flying at high speeds and high altitudes in 

the Earth’s atmosphere have been discussed by several 

investigators ([5-8]). Most of the existing computer codes for 

calculating the non-equilibrium reacting flow use the one-

temperature model, which assumes that all of the internal 

energy modes of the gaseous species are in equilibrium with 

the translational mode ([7-8]). It has been pointed out that such 

a one-temperature description of the flow leads to a substantial 

overestimation of the rate of equilibrium because of the 

elevated vibrational temperature [6]. A three-temperature 

chemical-kinetic model has been proposed by [9] to describe 

the relaxation phenomena correctly in such a flight regime. 

However, the model is quite complex and requires many 

chemical rate parameters which are not yet known. As a 

compromise between the three-temperature and the 

conventional one-temperature model, a two-temperature 

chemical-kinetic model has been developed ([10-11]), which is 

designated herein as the TTv model. The TTv model uses one 

temperature T to characterize both the translational energy of 

the atoms and molecules and the rotational energy of the 

molecules, and another temperature Tv to characterize the 

vibrational energy of the molecules, translational energy of the 

electrons, and electronic excitation energy of atoms and 

molecules. The model has been applied to compute the 

thermodynamic properties behind a normal shock wave in a 

flow through a constant-area duct ([10-11]). Radiation 

emission from the non-equilibrium flow has been calculated 

using the Non-equilibrium Air Radiation (NEQAIR) program 

([12-13]). The flow and the radiation computations have been 

packaged into a single computer program, the Shock-Tube 

Radiation Program (STRAP) ([11]). 

 A first-step assessment of the TTv model was made in [11] 

where it was used in computing the fAlow properties and 

radiation emission from the flow in a shock tube for pure 

nitrogen undergoing dissociation and weak ionization 

(ionization fraction less than 0.1%). Generally good agreement 

was found between the calculated radiation emission and those 

obtained experimentally in shock tubes ([14-16]). The only 

exception involved the vibrational temperature. The theoretical 

treatment of the vibrational temperature could not be validated 

because the existing data on the vibrational temperature behind 

a normal shock wave ([16]) are those for an electronically 

excited state of the molecular nitrogen ion 
2N  instead of the 

ground electronic state of the neutral nitrogen molecule N2 

which is calculated in the theoretical model. The measured 

vibrational temperature of 
2N  was much smaller than the 

calculated vibrational temperature for N2. 

 This work, first of this study, describes a numerical tool to 

perform thermochemical non-equilibrium simulations of 

reactive flow in three-dimensions. The [17] scheme, in its first- 

and second-order versions, is implemented to accomplish the 

numerical simulations. The Euler and Navier-Stokes equations, 

on a finite volume context and employing structured and 

unstructured spatial discretizations, are applied to solve the 

“hot gas” hypersonic flow around a blunt body in two-

dimensions. The second-order version of the [17] scheme is 

obtained from a “MUSCL” extrapolation procedure in a 

context of structured spatial discretization. In the unstructured 

context, only first-order solutions are obtained. The 

convergence process is accelerated to the steady state 

condition through a spatially variable time step procedure, 

which has proved effective gains in terms of computational 

acceleration (see [18-19]). In this paper only the structured 

formulation and results are presented. 

 The reactive simulations involve an air chemical model of 

seven species: N, O, N2, O2, NO, NO
+
 and e

-
. Eighteen 

chemical reactions, involving dissociation, recombination and 

ionization, are simulated by the proposed model. This model 

was suggested by [46]. The Arrhenius formula is employed to 

determine the reaction rates and the law of mass action is used 

to determine the source terms of each gas species equation. 

 The results have demonstrated that the shock position is 

closer to the geometry as using the reactive formulation, the 

stagnation pressure is better estimated by the [17] scheme, in 

its first-order, viscous, structured formulation, and the standoff 

distance is better predicted by its second-order, viscous, 

structured formulation. 

II. FORMULATION TO REACTIVE FLOW IN THERMOCHEMICAL 

NON-EQUILIBRIUM  

A. Reactive Equations in Three-Dimensions 

The reactive Navier-Stokes equations in thermal and chemical 

non-equilibrium were implemented on a finite volume context, 

in the three-dimensional space. In this case, these equations in 

integral and conservative forms can be expressed by: 

 

  




V V

CV

S

dVSdSnFQdV
t


, with 

         kGGjFFiEEF veveve


 ,      (1) 

 

where: Q is the vector of conserved variables, V is the volume 

of a computational cell, F


 is the complete flux vector, n


 is the 

unity vector normal to the flux face, S is the flux area, SCV is 

the chemical and vibrational source term, Ee, Fe and Ge are the 

convective flux vectors or the Euler flux vectors in the x, y and 

z directions, respectively, Ev, Fv and Gv are the viscous flux 

vectors in the x, y and z directions, respectively. The i


, j


 

and k


 unity vectors define the Cartesian coordinate system. 

Twelve (12) conservation equations are solved: one of general 

mass conservation, three of linear momentum conservation, 

one of total energy, six of species mass conservation and one 

of the vibrational internal energy of the molecules. Therefore, 

one of the species is absent of the iterative process. The CFD 
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(“Computational Fluid Dynamics”) literature recommends that 

the species of biggest mass fraction of the gaseous mixture 

should be omitted, aiming to result in a minor numerical 

accumulation error, corresponding to the biggest mixture 

constituent (in the case, the air). To the present study, in which 

is chosen a chemical model to the air composed of seven (7) 

chemical species (N, O, N2, O2, NO, NO
+
 and e

-
) and eighteen 

(18) chemical reactions, being fifteen (15) dissociation 

reactions (endothermic reactions), two (2) of exchange or 

recombination, and one (1) of ionization, this species can be 

either the N2 or the O2. To this work, it was chosen the N2. The 

vectors Q, Ee, Fe, Ge, Ev, Fv, Gv and SCV can, hence, be defined 

as follows ([4]): 
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in which:  is the mixture density; u, v and w are Cartesian 

components of the velocity vector in the x, y and z directions, 

respectively; p is the fluid static pressure; e is the fluid total 

energy; 1, 2, 4, 5, 6, 7 are densities of the N, O, O2, NO, 

NO
+
 and e

-
, respectively; H is the mixture total enthalpy; ev is 

the sum of the vibrational energy of the molecules; the ’s are 

the components of the viscous stress tensor; qf,x, qf,y and qf,z 

are the frozen components of the Fourier-heat-flux vector in 

the x, y and z directions, respectively; qv,x, qv,y and qv,z are the 

components of the Fourier-heat-flux vector calculated with the 

vibrational thermal conductivity and vibrational temperature; 

svsx, svsy and svsz represent the species diffusion flux, 

defined by the Fick law; x, y and z are the terms of mixture 

diffusion; v,x, v,y and v,z are the terms of molecular 

diffusion calculated at the vibrational temperature; s  is the 

chemical source term of each species equation, defined by the 

law of mass action; *
ve  is the molecular-vibrational-internal 

energy calculated with the translational/rotational temperature; 

and s is the translational-vibrational characteristic relaxation 

time of each molecule. 
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 The viscous stresses, in N/m
2
, are determined, according to 

a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. 

 The frozen components of the Fourier-heat-flux vector, 

which considers only thermal conduction, are defined by: 
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where kf is the mixture frozen thermal conductivity. The 

vibrational components of the Fourier-heat-flux vector are 

calculated as follows: 
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in which kv is the vibrational thermal conductivity and Tv is the 

vibrational temperature, what characterizes this model as of 

two temperatures: translational/rotational and vibrational. 

 The terms of species diffusion, defined by the Fick law, to 

a condition of thermal non-equilibrium, are determined by 

([4]): 
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with “s” referent to a given species, YMF,s being the molar 

fraction of the species, defined as: 
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and Ds is the species-effective-diffusion coefficient. 

 The diffusion terms x, y and z which appear in the 

energy equation are defined by ([20]): 
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being hs the specific enthalpy (sensible) of the chemical 

species “s”. Details of the calculation of the specific enthalpy, 

see [21-22]. The molecular diffusion terms calculated at the 

vibrational temperature, v,x, v,y and v,z which appear in the 

vibrational-internal-energy equation are defined by ([4]): 
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with hv,s being the specific enthalpy (sensible) of the chemical 

species “s” calculated at the vibrational temperature Tv. The 

sum of Eq. (12), as also those present in Eq. (5), considers 

only the molecules of the system, namely: N2, O2, NO, and 

NO
+
. 

B. Thermodynamic Model/Thermodynamic Properties 

Definition of general parameters. 

 


ns

1s

ss

ns

1s

ss

ns

1s

ss McMRTMRTp  

                                  




ns

1s

ss Mc ,                                 (13) 

 

in which:  is the mixture number in kg-mol/kg and cs is the 

mass fraction (non-dimensional), defined by  ssc . 

 

sss

ns

1s

s Mc 


; 






ns

1s

ssmixtmixt Mc1M1M ; 

                                   )TT(ee vs,v
*

s,v  ,                           (14) 

 

with: s being the number of kg-mol/kg of species “s” and 

Mmixt is the mixture molecular mass, in kg/kg-mol. 

 

Thermodynamic model. 

(a) Mixture translational internal energy: 

 

          s

ns

1s

0
T

0
s,T,v

ns

1s

ss,TT h'dT)'T(Cee 







  



,       (15) 

 

where: eT,s is the translational internal energy per kg-mol of 

species “s”, in J/kg-mol. The specific heat at constant volume 

per kg-mol of species “s” due to translation, in J/(kg-mol.K), is 






ns

1s

ssysy hv
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defined by: 

 

                                    R5.1)T(C s,T,v  .                          (16) 

Hence, 

 

           




ns

1s

0
sT

0
s,T hRT5.1)T(ehRT5.1)T(e ,    (17) 

 

with: eT being the translational internal energy per unity of the 

gaseous mixture mass, in J/kg, and h0 being the formation 

enthalpy of the species “s” per kg-mol of species, J/kg-mol. It 

is important to note that: 

 

  













 



ns

1s s

0

s
s

ns

1s

0
sT

M

h
T

M

R
5.1chRT5.1)T(e  

            




ns

1s

0
sssT

ns

1s

0
sss hTR5.1c)T(ehTR5.1c ,  (18) 

with: Rs being the gas constant of species “s” and 0
sh  being 

the formation enthalpy of species “s” in J/kg. The species 

formation enthalpy per g-mol of species is specified in Tab. 1. 

 

Table 1 Species formation enthalpy. 

 

Species h0 (J/g-mol) 

N 470,816.0 

O 246,783.0 

N2 0.0 

O2 0.0 

NO 90,671.0 

NO
+
 992,963.2 

e
-
 0.0 

 

As can be noted, dividing each above term by the species 

molecular mass and multiplying by 10
3
, it is possible to obtain 

the formation enthalpy in J/kg. 

 

(b) Mixture rotational internal energy: 

 









  

 mols

s

T

o
s,R,v

ns

1s

ss,RR 'dT)'T(Cee  

                                




mols

T

o
s,R,vs 'dT)'T(C ,                     (19) 

 

where: eR,s is the rotational internal energy per kg-mol of 

species “s”, in J/kg-mol. The specific heat at constant volume 

per kg-mol of species “s” due to rotation, in J/(kg-mol.K), is 

defined by: 

 






mols

sRs,Rs,R,v RT)T(eRT)T(eRC  

                             or  




mols

ssR TRc)T(e ,                         (20) 

with eR being the rotational internal energy per unity of 

gaseous mixture mass, in J/kg. 

(c) Mixture vibrational internal energy: 

 

'dT)'T(Cee

mols

T

o
s,V,vs

mols

ss,vV

V

 


 ;   with 

                

 

2

v

s,v

2T

T

vs,V,vs,V,v
T

1e

e
R)T(CC

Vs,V

Vs,V













 








,      (21) 

in which: eV is the vibrational internal energy per unity of 

gaseous mixture mass, in J/kg; ev,s is the vibrational internal 

energy per kg-mol of species “s”, in J/kg-mol; Cv,V,s is the 

specific heat at constant volume per kg-mol of species “s” due 

to vibration, in J/(kg-mol.K); v,s is the characteristic 

vibrational+ temperature of species “s”, in K; and Tv is the 

vibrational temperature, in K. The characteristic vibrational 

temperature to each molecule is specified in Tab. 2, obtained 

from [4]. It is important to note that eV is also directly 

obtained from the vector of conserved variables. 

 
Table 2 Characteristic vibrational temperature of the molecular species. 

 

Species N2 O2 NO NO
+
 

v,s (K) 3,390.0 2,270.0 2,740.0 2,740.0 

 

 It is important to note that the modes of translational and 

rotational internal energy are assumed completely excited and, 

hence, the specific heats at constant volume to these modes are 

temperature independent. The vibrational-internal-energy 

mode is admitted not be completely excited, and, hence, the 

vibrational specific heat at constant volume is function of the 

vibrational temperature. The expression above to Cv,V,s is due 

to [23] and is the result of the hypothesis that the molecules 

can be considered as harmonic oscillators. Note that when the 

mode of vibrational internal energy is completely excited, i.e., 

when s,vvT  , Cv,V,s = R. 

 

(c) Mixture internal energy: 

 

                                 VRTint eeee  ,                          (22) 

 

which is the internal energy per unity of mixture mass, in J/kg. 

 

(d) Frozen speed of sound: 

 

 
 

 









ns

1s

ns

1s

ss,TR,vsTR,v
eandatomsR5.1

moleculesR5.2
CC ; 

                                                p1a f .                (23) 

 

The frozen speed of sound, in a thermochemical non-

equilibrium model, should be employed in the calculation of 

the convective flux of the [17] scheme. Cv,TR,s is the specific 

heat at constant volume due to translation and rotation; in 

other words, Cv,TR,s is the sum of Cv,T,s with Cv,R,s. 

 

TR,vCR
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(e) Determination of the translational/rotational temperature: 

 

           
 




ns

1s

222
ns

1s

V
0
sss,TR,vs wvu

2

1
ehcTCc

e
,   (24) 

 

to the three-dimensional case. Hence, noting that T is constant 

at the right hand side of Eq. (24), it is possible to write: 

 

 
















 
 



222
ns

1s

V
0
ssns

1s

s,TR,vs

wvu
2

1
ehc

e

Cc

1
T ,  (25) 

 

to the three-dimensional case; 

 

(f) Determination of the vibrational temperature: 

 

 The vibrational temperature is calculated through an 

interactive process employing the Newton-Raphson method (a 

version to the five species model is found in [24]). 

 

(g) Species pressure: 

 

 Applying the equation of a thermally perfect gas to each 

species: 

 

                                       TRp sss  ,                                (26) 

 

where:  ss c  is the density of species “s”, Rs is the gas 

constant to species “s” and T is the translational/rotational 

temperature. 

C.  Transport Model/Transport Physical Properties 

Collision integrals to species i and j. In Table 3 are presented 

values of  )1,1(
j,i10Log   and  )2,2(

j,i10Log   to temperature 

values of 2,000 K and 4,000 K. The indexes i and j indicate, in 

the present case, the collision partners; in other words, the pair 

formed by one atom and one atom, one atom and one 

molecule, etc. These data obtained from [1]. 

 The data aforementioned define a linear interpolation to 

values of  )k,k(
j,i10Log   as function of Ln(T), with k = 1, 2, 

through the linear equation: 

 

     )K000,2T(Log)T(Log
)k,k(

j,i10
)k,k(

j,i10  

                                     000,2TLnslope ,                   (27) 

 

in which: 

 

   )K000,4T(Logslope
)k,k(

j,i10  

                                   2Ln)K000,2T(Log
)k,k(

j,i10  .    (28) 

The value of 
)k,k(

j,i
  is obtained from: 

 

     10Ln000,2TLnslope)K000,2T(Log)k,k(

j,i

)k,k(
j,i10e)T(


 ,      (29) 

with the value of 
)k,k(

j,i  in m
2
. 

 

Table 3 Collision integrals to five chemical species: N, O, 

N2, O2, NO, NO
+
 and e

-
. 

 

Pairs  )1,1(
j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

N N -14.08 -14.11 -14.74 -14.82 

N O -14.76 -14.86 -14.69 -14.80 

N N2 -14.67 -14.75 -14.59 -14.66 

N O2 -14.66 -14.74 -14.59 -14.66 

N NO -14.66 -14.75 -14.67 -14.66 

N NO
+
 -14.34 -14.46 -14.38 -14.50 

N e
-
 -15.30 -15.30 -15.30 -15.30 

O N -14.76 -14.86 -14.69 -14.80 

O O -14.11 -14.14 -14.71 -14.79 

O N2 -14.63 -14.72 -14.55 -14.64 

O O2 -14.69 -14.76 -14.62 -14.69 

O NO -14.66 -14.74 -14.59 -14.66 

O NO
+
 -14.34 -14.46 -14.38 -14.50 

O e
-
 -15.94 -15.82 -15.94 -15.82 

N2 N -14.67 -14.75 -14.59 -14.66 

N2 O -14.63 -14.72 -14.55 -14.64 

N2 N2 -14.56 -14.65 -14.50 -14.58 

N2 O2 -14.58 -14.63 -14.51 -14.54 

N2 NO -14.57 -14.64 -14.51 -14.56 

N2 NO
+
 -14.34 -14.46 -14.38 -14.50 

N2 e
-
 -15.11 -15.02 -15.11 -15.02 

O2 N -14.66 -14.74 -14.59 -14.66 

O2 O -14.69 -14.76 -14.62 -14.69 

O2 N2 -14.58 -14.63 -14.51 -14.54 

O2 O2 -14.60 -14.64 -14.54 -14.57 

O2 NO -14.59 -14.63 -14.52 -14.56 

O2 NO
+
 -14.34 -14.46 -14.38 -14.50 

O2 e
-
 -15.52 -15.39 -15.52 -15.39 

NO N -14.66 -14.75 -14.67 -14.66 

NO O -14.66 -14.74 -14.59 -14.66 

NO N2 -14.57 -14.64 -14.51 -14.56 

NO O2 -14.59 -14.63 -14.52 -14.56 

NO NO -14.58 -14.64 -14.52 -14.56 

NO NO
+
 -14.18 -14.22 -14.38 -14.50 

NO e
-
 -15.30 -15.08 -15.30 -15.08 

NO+ N -14.34 -14.46 -14.38 -14.50 

NO+ O -14.34 -14.46 -14.38 -14.50 

NO+ N2 -14.34 -14.46 -14.38 -14.50 

NO+ O2 -14.34 -14.46 -14.38 -14.50 

NO+ NO -14.18 -14.22 -14.38 -14.50 

NO+ NO
+
 -11.70 -12.19 -11.49 -11.98 

NO+ e
-
 -11.70 -12.19 -11.49 -11.98 
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Table 3 Collision integrals to five chemical species: N, O, 

N2, O2, NO, NO+ and e-. (Continuation) 

 

Pairs  )1,1(
j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

e
-
 N -15.30 -15.30 -15.30 -15.30 

e
-
 O -15.94 -15.82 -15.94 -15.82 

e
-
 N2 -15.11 -15.02 -15.11 -15.02 

e
-
 O2 -15.52 -15.39 -15.52 -15.39 

e
-
 NO -15.30 -15.08 -15.30 -15.08 

e
-
 NO

+
 -11.70 -12.19 -11.49 -11.98 

e
-
 e

-
 -11.70 -12.19 -11.49 -11.98 

 

Modified collision integrals to the species i and j. [1] and [4] 

define the modified collision integrals to the species i and j as: 

 

)1,1(
j,i

j,i)1(
j,i

RT

m2

3

8
)T( 


   and  )2,2(

j,i

j,i)2(
j,i

RT

m2

5

16
)T( 


 , (30) 

 

with: 

 

 jijij,i MMMMm  ,                                          (31) 

 

being the reduced molecular mass. These integrals are given in 

m.s. With the definition of the modified collision integrals to 

species i and j, it is possible to define the mixture transport 

properties (viscosity and thermal conductivities) and the 

species diffusion property (diffusion coefficient). 
 

Mixture molecular viscosity. [4] define the mixture molecular 

viscosity as: 

 

                             









ns

1i
ns

1j

)2(
j,ij

ii
mixt

)T(

m
,                      (32) 

where: 

 

AVii NMm  ,                                                          (33) 

 

being the mass of a species particle under study. NAV = 

6.022045x10
23

 particles/g-mol, Avogadro number. This 

mixture molecular viscosity is given in kg/(m.s). 

 

Vibrational, frozen, rotational and translational thermal 

conductivities. All thermal conductivities are expressed in 

J/(m.s.K). [4] defines the mixture vibrational, rotational and 

translational thermal conductivities, as also the species 

diffusion coefficient, as follows. 

 

(a) Translational thermal conductivity: 

The mode of translational internal energy is admitted 

completely excited; hence, the thermal conductivity of the 

translational internal energy is determined by: 

 

               









ns

1i
ns

1j

)2(

j,ijj,i

i
BoltzmannT

)T(a

k
4

15
k ,           (34) 

in which: 

 

  kBoltzmann = Boltzmann constant = 1.380622x10
-23

J/K; 

  
  

 2ji

jiji

j,i
MM1

MM54.245.0)MM1(
1a




 .                   (35) 

 

(b) Rotational thermal conductivity: 

The mode of rotational internal energy is also considered fully 

excited; hence, the thermal conductivity due to rotational 

internal energy is defined by:  

 

                    









moli
ns

1j

)1(
j,ij

i
BoltzmannR

)T(

kk .                 (36) 

 

(c) Frozen thermal conductivity: 

 

                                         kf = kT+kR.                                  (37) 

 

(d) Thermal conductivity due to molecular vibration: 

The mode of vibrational internal energy, however, is assumed 

be partially excited; hence, the vibrational thermal 

conductivity is calculated according to [3] by: 

 

                     
 











moli
ns

1j

)1(
j,ij

ii,V,v
BoltzmannV

)T(

RC
kk ,                (38) 

with Cv,V,i obtained from Eq. (21). 

 

Species diffusion coefficient. The mass-diffusion-effective 

coefficient, Di, of the species “i” in the gaseous mixture is 

defined by: 

 

           
 









ns

1j

j,ij

iii
2

i

D

M1M
D    and   

)T(p

Tk
D

)1(

j,i

Boltzmann
j,i


 ,         (39) 

 

where: Di,j is the binary diffusion coefficient to a pair of 

particles of the species “i” and “j” and is related with the 

modified collision integral conform described above, in Eq. 

(39). This coefficient is measured in m2/s. 

D. Chemical Model 

The chemical model employed to this case of thermochemical 

non-equilibrium is the seven species model of [46], using the 
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N, O, N2, O2, NO, NO
+
 and e

-
 species. This formulation uses, 

in the calculation of the species production rates, a temperature 

of reaction rate control, introduced in the place of the 

translational/rotational temperature, which is employed in the 

calculation of such rates. This procedure aims a couple 

between vibration and dissociation. This temperature is 

defined as: vrrc TTT  , where T is the 

translational/rotational temperature and Tv is the vibrational 

temperature. This temperature Trrc replaces the 

translational/rotational temperature in the calculation of the 

species production rates, according to [25]. 

 

Law of Mass Action. The symbolic representation of a given 

reaction in the present work follows the [26] formulation and 

is represented by: 

 

                  
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

ns

1s

s
''
sr

ns

1s

s
'
sr AA , r = 1,..., nr.                 (40) 

 

The law of mass action applied to this system of chemical 

reactions is defined by: 
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M
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where As represents the chemical symbol of species “s”, “ns” 

is the number of species of the present study (reactants and 

products) involved in the considered reaction; “nr” is the 

number of reactions considered in the chemical model; '
sr  e 

''
sr  are the stoichiometric coefficients to reactants and 

products, respectively; T/CB
fr eATk   and E

br DTk  , 

with A, B, C, D and E being constants of a specific chemical 

reaction under study [“fr” = forward reaction and “br” = 

backward reaction]. 

 

Table 4. Chemical reactions and forward coefficients. 

 

 

Reaction 

Forward reaction rate 

coefficients, kfr, 

cm3/(mol.s) 

Third 

body 

 

O2+M2O+M 

 

3.61x1018T-1.0e(-59,400/T) 
O,  N, O2, 

N2, NO 

 

N2+M2N+M 

 

1.92x1017T-0.5e(-113,100/T) 
O, O2, N2, 

NO 

N2+N2N+N 4.15x1022T-0.5e(-113,100/T) - 

 

NO+MN+O+M 

 

3.97x1020T-1.5e(-75,600/T) 
O,  N, O2, 

N2, NO 

NO+OO2+N 3.18x109T1.0e(-19,700/T) - 

N2+ONO+N 6.75x1013e(-37,500/T) - 

N+ONO++e- 9.03x109e(-32,400/T) - 

 

 

Table 5. Chemical reactions and backward coefficients. 

 

 

Reaction 

Backward reaction rate 

coefficients, kbr, 

cm3/(mol.s) or 

cm6/(mol2.s) 

Third 

body 

 

O2+M2O+M 

 

3.01x1015T-0.5 

O,  N, O2, 

N2, NO 

 

N2+M2N+M 

 

1.09x1016T-0.5 

O, O2, N2, 

NO 

N2+N2N+N 2.32x1021T-0.5 - 

 

NO+MN+O+M 

 

1.01x1020T-1.5 

O,  N, O2, 

N2, NO 

NO+OO2+N 9.63x1011T0.5e(-3,600/T) - 

N2+ONO+N 1.5x1013 - 

N+ONO++e- 1.80x1019Tv-1.0 - 

 

It is important to note that erfrbr kkk  , with ker being the 

equilibrium constant which depends only of the 

thermodynamic quantities. In this work, ns = 7 and nr = 18. 

Table 4 presents the values to A, B, C, D and E for the forward 

reaction rates of the 18 chemical reactions. Table 5 presents 

the values to A, B, C, D and E for the backward reaction rates. 

The eighth equation takes into account the formation of an 

electron from the ionization of the NO. For this case, the 

backward reaction rate depends only of the vibrational 

temperature. 

E.  Vibrational Model 

The vibrational internal energy of a molecule, in J/kg, is 

defined by: 

 

                                  
1e

R
e

Vs,V T

s,vs

s,v






,                            (42) 

 

obtained by the integration of Eq. (21), and the vibrational 

internal energy of all molecules is given by: 

 

                                  
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mols

s,vsV ece .                               (43) 

 

The heat flux due to translational-vibrational relaxation, 

according to [27], is given by: 

 

                         
s

vs,v
*

s,v
ss,VT

)T(e)T(e
q




 ,                (44) 

 

where: 
*

s,ve  is the vibrational internal energy calculated at the 

translational temperature to the species “s”; and s  is the 

translational-vibrational relaxation time to the molecular 

species, in s. The relaxation time is the time of energy 

exchange between the translational and vibrational molecular 

modes. 
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Vibrational characteristic time of [28]. According to [28], the 

relaxation time of molar average of [29] is described by: 

 

                  
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1l

WM
l,sl

ns

1l

l
WM

ss ,            (45) 

 

with: 

 

 WM
l,s
  is the relaxation time between species of [29]; 

  WM
s
  is the vibrational characteristic time of [29]; 

  lAVll mNc    and   AVll NMm  .               (46) 

 

Definition of 
WM

l,s

 . For temperatures inferior to or equal to 

8,000 K, [29] give the following semi-empirical correlation to 

the vibrational relaxation time due to inelastic collisions: 
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where: 

 

  B = 1.013x10
5 
Ns/m

2
 ([30]); 

  pl is the partial pressure of species “l” in N/m
2
; 

  
34
s,v

21
l,s

3
l,s 10x16.1A  

 ([30]);                                 (48) 

  
ls

ls
l,s

MM

MM


 ,                                                    (49) 

being the reduced molecular mass of the collision partners: 

kg/kg-mol; 

  T and s,v  in Kelvin. 

 

[25] correction time. For temperatures superiors to 8,000 K, 

the Eq. (43) gives relaxation times less than those observed in 

experiments. To temperatures above 8,000 K, [25] suggests 

the following relation to the vibrational relaxation time: 

 

                                      
svs

P
s

n

1


 ,                               (50) 

 

where: 

 

  



TR8 s

s ,                                                             (51) 

being the molecular average velocity in m/s; 

  

2
20

v
T

000,50
10 








  ,                                               (52) 

being the effective collision cross-section to vibrational 

relaxation in m
2
; and 

  sss mn  ,                                                               (53) 

being the density of the number of collision particles of 

species “s”. s  in kg/m
3
 and ms in kg/particle, defined by Eq. 

(33). 

 Combining the two relations, the following expression to 

the vibrational relaxation time is obtained: 

 

                               P
s

WM
ss   .                                  (54) 

 

[25] emphasizes that this expression [Eq. (54)] to the 

vibrational relaxation time is applicable to a range of 

temperatures much more vast. 

III. STRUCTURED [17] ALGORITHM TO THERMOCHEMICAL 

NON-EQUILIBRIUM 

Considering the three-dimensional and structured case, the 

algorithm follows that described in [21], considering, however, 

the vibrational contribution ([31]) and the version of the two-

temperature model to the frozen speed of sound [Eq. (23)]. 

Hence, the discrete-dynamic-convective flux is defined by: 
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the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is determined by: 
 

    




  RvLvk,j,2/1ik,j,2/1ik,j,2/1i aeaeM
2

1
SR  

          
LvRvk,j,2/1i aeae

2

1
  .                                 (57) 
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The same definitions presented in [21-22] are valid to this 

algorithm. The time integration is performed employing the 

Runge-Kutta explicit method of five stages, second-order 

accurate, to the three types of convective flux. To the dynamic 

part, this method can be represented in general form by: 
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to the chemical part, it can be represented in general form by: 
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where the chemical source term SC is calculated with the 

temperature Trrc. Finally, to the vibrational part: 
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in which: 
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where: m = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 5 

= 1. This scheme is first-order accurate in space and second-

order accurate in time. The second-order of spatial accuracy is 

obtained by the “MUSCL” procedure (details in [32]). 

 The [17] scheme in its first-order two-dimensional 

unstructured version to an ideal gas formulation is presented in 

[33]. The extension to reactive flow in thermochemical non-

equilibrium can be deduced from the present code. 

 The viscous formulation follows that of [34], which adopts 

the Green theorem to calculate primitive variable gradients. 

The viscous vectors are obtained by arithmetical average 

between cell (i,j,k) and its neighbours. As was done with the 

convective terms, there is a need to separate the viscous flux in 

three parts: dynamical viscous flux, chemical viscous flux and 

vibrational viscous flux. The dynamical part corresponds to 

the first four equations of the Navier-Stokes ones, the chemical 

part corresponds to the following six equations and the 

vibrational part corresponds to the last equation. 

The spatially variable time step technique has provided 

excellent convergence gains as demonstrated in [18-19] and is 

implemented in the code presented in this work. Details in [18-

19; 22]. 

IV. RESULTS 

Tests were performed in one personal computer Notebook 

with Dual Core Intel Pentium processor of 2.30 GHz of 

“clock” and 2.0 GBytes of RAM. As the interest of this work 

is steady state problems, it is necessary to define a criterion 

which guarantees the convergence of the numerical results. 

The criterion adopted was to consider a reduction of no 

minimal four (4) orders of magnitude in the value of the 

maximum residual in the calculation domain, a typical CFD-

community criterion. The residual of each cell was defined as 

the numerical value obtained from the discretized conservation 

equations. As there are twelve (12) conservation equations to 

each cell, the maximum value obtained from these equations is 

defined as the residual of this cell. Hence, this residual is 

compared with the residual of the other cells, calculated of the 

same way, to define the maximum residual in the calculation 

domain. In the simulations, the attack angle was set equal to 

zero. 

A.  Initial and Boundary Conditions to the Studied 

Problem 

The initial conditions are presented in Tab. 6. The Reynolds 

number is obtained from data of [35]. The boundary 

conditions to this problem of reactive flow are detailed in [24], 

as well the geometry in study, the meshes employed in the 

simulations and the description of the computational 

configuration. 

 
Table 6 Initial conditions to the problem of the blunt body. 

 

Property Value 

M 8.78 

 0.00326 kg/m
3
 

p 687 Pa 

U 4,776 m/s 

T 694 K 

Tv, 694 K 

altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

2Oc  0.13400 

cNO 0.05090 

cNO+ 0.0 

ce- 0.0 

L 2.0 m 

Re 2.3885x10
6
 

 
The geometry is a blunt body with 1.0 m of nose ratio and 

parallel rectilinear walls. The far field is located at 20.0 times 

the nose ratio in relation to the configuration nose. The 

dimensionless employed in the Euler and Navier-Stokes 

equations in this study are also described in [24]. 

B. Studied Cases 

Table 7 presents the studied cases in this work, the mesh 

characteristics and the order of accuracy of the [17] scheme. 
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Table 7 Studied cases, mesh characteristics and accuracy order. 

 

Case Mesh Accuracy 

Order 

Inviscid – 3D 63x60x10 First 

Viscous – 3D 63x60x10 (7.5%)
a
 First 

Inviscid – 3D 63x60x10 Second 

Viscous – 3D 63x60x10 (7.5%) Second 
a
 Exponential stretching. 

C.  Results in Thermochemical Non-Equilibrium 

Inviscid, structured and first-order accurate case. Figure 1 

exhibits the pressure contours around the blunt body geometry 

calculated at the computational domain by the [17] scheme, in 

its first-order version, in thermochemical non-equilibrium. The 

non-dimensional pressure peak is equal to 148.46 unities and 

is located at the configuration nose. The solution presents 

good symmetry characteristics. Figure 2 shows the Mach 

number contours calculated at the computational domain. A 

region of subsonic flow is formed behind the normal shock 

wave, at the geometry nose. The shock wave develops 

normally: normal shock wave at the configuration nose, 

decaying to oblique shock waves and finally reaching, far from 

the blunt body, the Mach wave. 

 

 
Figure 1. Pressure contours. 

 

 Figure 3 presents the contours of the translational/rotational 

temperature distribution calculated at the computational 

domain. The translational/rotational temperature reaches a 

peak of 8,103 K at the configuration nose and determines an 

appropriated region to dissociation of N2 and O2. Along the 

blunt body, the translational/rotational temperature assumes an 

approximated value of 6,000 K, what also represents a good 

value to the dissociation firstly of O2 and, in second place, of 

the N2. 

 Figure 4 exhibits the contours of the vibrational temperature 

calculated at the two-dimensional computational domain. Its 

peak reaches a value of 5,415 K and also contributes to the 

dissociation of N2 and O2, since the employed temperature to 

the calculation of the forward and backward reaction rates 

(reaction-rate-control temperature, Trrc) in the thermochemical 

non-equilibrium is equal to VT.T , the square root of the 

product between the translational/rotational temperature and 

the vibrational temperature. 

  

 
Figure 2. Mach number contours. 

 

 
Figure 3. T/R temperature contours. 

 

 
Figure 4. Vibrational temperature contours. 
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Hence, the effective temperature to the calculation of the 

chemical phenomena guarantees the couple between the 

vibrational mode and the dissociation reactions. In this 

configuration nose region, the temperature Trrc reaches, in the 

steady state condition, the approximated value of 6,624 K, 

assuring that the dissociation phenomena described above 

occurs. Good symmetry characteristics are observed. 

 
Figure 5. Mass fraction distribution at the blunt body stagnation line. 

 

 Figure 5 shows the mass fraction distribution of the seven 

chemical species under study, namely: N, O, N2, O2, NO, NO
+
 

and e
-
, along the geometry stagnation line or geometry 

symmetry line. As can be observed from this figure, enough 

dissociation of N2 and O2 occur, with the consequent 

meaningful increase of N and of NO in the gaseous mixture. 

As mentioned early, this behaviour is expected due to the 

effective peak temperature reached at the calculation domain. 

The NO presented the biggest absolute increase in its 

formation, whereas the N presented the biggest relative 

increase. The O has not a meaningful increase due to the 

formation of the NO
+
. The formation of e- is also discrete. 

 

Viscous, structured and first-order accurate case. Figure 7 

shows the Mach number contours calculated at the 

computational domain. The subsonic flow region, which is 

formed behind the normal shock, is well captured and 

propagates by the lower and upper geometry walls, due to the 

transport phenomena considered in the viscous simulations. 

The shock wave presents the expected behaviour: normal 

shock wave at the configuration nose, oblique shock waves 

and a Mach wave far from de blunt body. 

 Figure 8 exhibits the distribution of the 

+translational/rotational temperature calculated at the 

computational domain. The peak of translational/rotational 

temperature reaches the approximated value of 8,797 K at the 

configuration nose and this value is observed along the lower 

and upper surfaces of the geometry. 

 Figure 9 presents the vibrational temperature distribution 

calculated at the computational domain. Its peak, at the 

configuration nose, reaches an approximated value of 5,401 K. 

The effective temperature to the calculation of the dissociation 

and recombination reactions, Trrc, is equal approximately to 

6,893 K, which guarantees that processes of dissociation of O2 

and N2 can be captured by the employed formulation. 

 

 
Figure 6. Pressure contours. 

 

 
Figure 7. Mach number contours. 

 

 
Figure 8. T/R temperature contours. 
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This value of effective temperature to the viscous reactive 

simulations is superior to that obtained in the inviscid case. 

Good symmetry characteristics are observed in these figures. 

 

 
Figure 9. Vibrational temperature contours. 

 

 Figure 10 exhibits the mass fraction distribution of the seven 

chemical species under study along the geometry stagnation 

line. As can be observed, enough dissociation of the N2 and O2 

occurs, with the consequent meaningful increase of the N and 

of the NO, with reduction of the mass fraction of the O, in the 

gaseous mixture. The behaviour of the N and of the NO is 

expected due to the temperature peak reached in the 

calculation domain. The O reduction is also expected due to 

the formation of the NO
+
. The biggest absolute increase in the 

formation of a species was due to the NO, while, in relative 

terms, was due to the N. 

 
Figure 10. Mass fraction distribution at the blunt body stagnation line. 

 

Inviscid, structured and second-order accurate case. Figure 

11 shows the pressure contours obtained by the inviscid 

simulation performed by the second-order [17] scheme 

employing a minmod non-linear flux limiter. The non-

dimensional pressure peak is approximately equal to 146 

unities, slightly inferior to the respective peak obtained by the 

first-order solution. This pressure peak occurs at the 

configuration nose. The solution presents good symmetry 

characteristics. Figure 12 presents the Mach number contours 

obtained at the computational domain. The subsonic region 

which is formed behind the normal shock wave is well 

characterized at the configuration nose. Good symmetry 

characteristics are observed. The shock wave presents the 

expected behavior, passing from a normal shock at the 

configuration stagnation line to a Mach wave far from the 

blunt body. 

 

 
Figure 11. Pressure contours. 

 

 
Figure 12. Mach number contours. 

 

 Figure 13 exhibits the contours of the 

translational/rotational temperature distribution calculated at 

the computational domain. The translational/rotational 

temperature peak occurs at the configuration nose and is 

approximately equal to 8,278 K. Figure 14 presents the 

contours of the vibrational temperature distribution calculated 

at the computational domain. The vibrational temperature peak 

is approximately equal to 2,365 K and is observed at the 

configuration nose. The effective temperature to calculation of 

the reaction rates (reaction rate control temperature, Trrc) is 

approximately equal to 4,425 K, which represents a 
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temperature capable to capture the dissociation phenomena of 

N2 and O2. Good symmetry characteristics are observed in 

both figures. 

 

 
Figure 13. T/R temperature contours. 

 

 
Figure 14. Vibrational temperature contours. 

 
Figure 15. Mass fraction distribution at the blunt body stagnation line. 

 

 Figure 15 exhibits the mass fraction distribution of the seven 

chemical species under study, namely: N, O, N2, O2, NO, NO
+
 

and e
-
, along the geometry stagnation line. As can be observed, 

discrete dissociation of N2 and O2 occur, with consequent 

discrete increase of the N and of the NO, with subsequent 

reduction of the O, in the gaseous mixture. This behaviour is 

expected due to the effective temperature peak reached at the 

computational domain to the calculation of thermochemical 

non-equilibrium and to a second-order numerical formulation, 

which behaves in a more conservative way (see [22]), 

providing minor dissociation of N2 and O2. 

 

Viscous, structured and second-order accurate case. Figure 

16 exhibits the pressure contours calculated at the 

computational domain to the studied configuration of blunt 

body. The non-dimensional pressure peak is approximately 

equal to 164 unities, less than the respective value obtained by 

the first-order solution. The shock is positioned closer to the 

blunt body due to the mesh stretching and the employed-

viscous-reactive formulation. Good symmetry characteristics 

are observed. 

 

 
Figure 16. Pressure contours. 

 

 
Figure 17. Mach number contour. 
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 Figure 17 shows the Mach number contours obtained at the 

computational domain. The subsonic region behind the normal 

shock wave, at the stagnation line, is well captured by the 

solution. This region propagates along the lower and upper 

surfaces of the geometry, due to the transport phenomena 

(viscosity, thermal conductivity and species diffusion). The 

shock wave behaviour is also the expected: normal shock at 

the geometry nose, oblique shock waves close to the 

configuration and Mach wave far from the geometry. 

 

 
Figure 18. T/R temperature contours. 

 

 Figure 18 exhibits the translational/rotational temperature 

distribution calculated at the computational domain. The 

temperature peak at the configuration nose reaches 

approximately 8,491 K. Figure 19 shows the vibrational 

temperature distribution calculated at the computational 

domain. The temperature peak at the nose and along the lower 

and upper surfaces of the geometry is equal to 5,901 K. The 

effective temperature to the calculation of the reaction rates, 

Trrc, was of 7,079 K, superior to that obtained with the first-

order solution, which is representative to the calculation of the 

N2 and O2 dissociations. Both Figs. 18 and 19 exhibit good 

symmetry characteristics. 

 

 
Figure 19. Vibrational temperature contours. 

 Figure 20 presents the mass fraction distribution of the 

seven chemical species under study, namely: N, O, N2, O2, 

NO, NO
+
 and e

-
, along the geometry stagnation line. As can be 

observed, good dissociation of N2 and O2 occur, with 

consequent good increase of N and NO in the gaseous mixture. 

This behavior is expected due to the effective temperature 

peak reached at the computational domain to the calculation of 

thermochemical non-equilibrium and to a second-order 

numerical formulation, which behaves in a more conservative 

way ([22]), providing major dissociation of N2 and O2. In other 

words, this solution provided by the second-order [17] scheme, 

as seen in other cases, tends to provide bigger dissociation of 

N2 and O2. As this solution is more precise (second-order), it 

should be considered as standard to comparison with other 

schemes. The NO
+
 is formed with the subsequent reduction of 

the O species. 

 
Figure 20. Mass fraction distribution at the blunt body stagnation line. 

 

Shock Position. In this section is presented the behaviour of 

the shock position in thermochemical non-equilibrium 

conditions for the five and seven species models. Both first- 

and second-order solutions are compared between them. 

 
Figure 31. Shock position (inviscid). 

 

 The detached shock position in terms of pressure 

distribution, in the inviscid case, and first- and second-order 
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accurate solutions, is exhibited in Fig. 31. It is shown the 

thermochemical non-equilibrium shock position for the five 

and seven species models. As can be observed, the second-

order results yield closer shock positions in relation to the 

blunt body nose. Particularly, the second-order, five species 

model, is the closest solution to the inviscid case. 

 
Figure 32. Shock position (viscous). 

 

 The detached shock position in terms of pressure 

distribution, in the viscous case, first- and second-order 

accurate solutions, is exhibited in Fig. 32. It is shown the 

thermochemical non-equilibrium shock position to the five and 

seven species models. As can be observed, the second-order 

positions are located at 0.48 m, whereas the first-order 

solutions are located at 0.54m, ratifying the best behaviour of 

the second-order results. 

 

Quantitative Analysis. In terms of quantitative results, the 

present authors compared the reactive results with the perfect 

gas solutions. The stagnation pressure at the blunt body nose 

and the shock standoff distance were evaluated assuming the 

perfect gas formulation. Such parameters calculated at this way 

are not the best comparisons, but in the absence of practical 

reactive results, these constitute the best available results. 

 To calculate the stagnation pressure ahead of the blunt 

body, [36] presents in its B Appendix values of the normal 

shock wave properties ahead of the configuration. The ratio 

pr0/pr∞ is estimated as function of the normal Mach number 

and the stagnation pressure pr0 can be determined from this 

parameter. Hence, to a freestream Mach number of 9.0 (close 

to 8.78), the ratio pr0/pr∞ assumes the value 104.8. The value 

of pr∞ is determined by the following expression: 

 

                           
2
initialinitial

initial

a

pr
pr


                              (62) 

 

 In the present study, prinitial = 687 N/m
2
, initial = 

0.004kg/m
3
 and ainitial = 317.024m/s. Considering these 

values, one concludes that pr∞ = 1.709 (non-dimensional). 

Using the ratio obtained from [36], the stagnation pressure 

ahead of the configuration nose is estimated as 179.10 unities. 

Table 9 compares the values obtained from the simulations 

with this theoretical parameter and presents the numerical 

percentage errors. As can be observed, all solutions present 

percentage errors less than 20%, which is a reasonable 

estimation of the stagnation pressure. 

 
Table 9 Comparisons between theoretical and numerical results. 

 

Case pr0 Error (%) 

Inviscid/Structured/1st  Order 148.46 17.11 

Viscous/Structured/1st  Order 170.00 5.08 

Inviscid/Structured/2nd Order 145.76 18.62 

Viscous/Structured/2nd Order 164.36 8.23 

 

Another possibility to quantify the results is the determination 

of the shock standoff distance. [37] presents a graphic in which 

is plotted the shock standoff distance of a pre-determined 

configuration versus the Mach number. Considering the blunt 

body nose approximately as a cylinder and using the value 

8.78 to the Mach number, it is possible to obtain the value 

0.19 to the ratio/d, where  is the position of the normal 

shock wave in relation to the body nose and d is a 

characteristic length of the configuration. In the present study, 

d = 2.0m (diameter of the body nose) and  = 0.38m. Table 10 

presents the values obtained by  for the different cases and 

the percentage errors. This table shows that the best result is 

obtained with the structured, viscous, second order version of 

[17]. As the shock standoff distance presented in [37] is more 

realistic, presenting smaller dependence of the perfect gas 

hypothesis, improved results were expected to obtain in this 

study. Hence, the best solution is obtained by the [17] scheme 

in its second order version. 

 
Table 10 Shock standoff distance obtained from numerical schemes. 

 

Case NUM (m) Error (%) 

Inviscid/Structured/1st  

Order 

0.80 110.53 

Viscous/Structured/1st  

Order 

0.48 26.32 

Inviscid/Structured/2nd 

Order 

0.60 57.89 

Viscous/Structured/2nd 

Order 

0.40 5.26 

 
Computational performance of the studied algorithms. Table 

11 presents the computational data of the reactive simulations 

performed with the [17] scheme to the problem of the blunt 

body in three-dimensions. The reactive simulations involved 

the thermochemical non-equilibrium solutions obtained from 

five [47] and seven chemical species. 

 In this table are exhibited the studied case, the maximum 

number of CFL employed in the simulation, the number of 

iterations to convergence and the number of orders of 

reduction in the magnitude of the maximum residual in relation 

to its initial value. 
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Table 11 Computational data of the reactive simulations 

with the 2D blunt body. 

 

 

Studied case 

 

CFL 

 

Iterations 

Orders of 

Residual 

Reduction 

First-Order / Structured 

 / Inviscid / FS
(a)

 

0.9 373 4 

First-Order / Structured 

 / Viscous / FS 

0.7 1,005 4 

Second-Order / Structured 

 / Inviscid / FS 

0.3 982 4 

Second-Order / Structured 

 / Viscous / FS 

0.3 2,412 4 

First-Order / Structured 

 / Inviscid / SS
(b)

 

0.9 372 4 

First-Order / Structured 

 / Viscous / SS 

0.7 997 4 

Second-Order / Structured 

 / Inviscid / SS 

0.1 2,908 4 

Second-Order / Structured 

 / Viscous / SS 

0.7 1,173 4 

(a)
: Five Species; 

(b)
: Seven Species. 

 

 As can be observed, all test-cases converged with no 

minimal four orders of reduction in the value of the maximum 

residual. The maximum numbers of CFL presented the 

following distribution: 0.9 in two (2) cases (25.00%), 0.7 in 

three (3) cases (37.50%), 0.3 in two (2) cases (25.00%) and 

0.1 in one (1) case (12.50%). The convergence iterations did 

not overtake 3,000, in all studied cases. However, the time 

wasted in the simulations was much raised, taking until days to 

convergence (to four orders of reduction in the maximum 

residual). It is important to emphasize that all two-dimensional 

viscous simulations were considered laminar, without the 

introduction of a turbulence model, although high Reynolds 

number were employed in the simulations. 

V. CONCLUSION 

This work, the first part of this study, presents a numerical tool 

implemented to simulate inviscid and viscous flows employing 

the reactive gas formulation of thermochemical non-

equilibrium flow in three-dimensions. The Euler and Navier-

Stokes equations, employing a finite volume formulation, on 

the context of structured and unstructured spatial 

discretizations, are solved. These variants allow an effective 

comparison between the two types of spatial discretization 

aiming verify their potentialities: solution quality, convergence 

speed, computational cost, etc. The aerospace problem 

involving the “hot gas” hypersonic flow around a blunt body, 

in three-dimensions, is simulated. 

 To the simulations with unstructured spatial discretization, 

a structured mesh generator developed by the first author 

([38]), which creates meshes of hexahedrons (3D), was 

employed. After that, as a pre-processing stage ([39]), such 

meshes were transformed in meshes of tetrahedrons. Such 

procedure aimed to avoid the time which would be waste with 

the implementation of an unstructured generator, which was 

not the objective of the present work, and to obtain a 

generalized algorithm to the solution of the reactive equations. 

 In this work, first part of this study, the structured 

formulation of the three-dimensional Euler and Navier-Stokes 

reactive equations is presented. In [40], the second part of this 

study, it will be presented the unstructured version of the 

calculation algorithm in three-dimensions to complete the 

formulation in structured and in unstructured contexts. 

 The reactive simulations involved an air chemical model of 

seven species: N, O, N2, O2, NO, NO
+
 and e

-
. Eighteen 

chemical reactions, involving dissociation, recombination and 

ionization, were simulated by the proposed model. This model 

was suggested by [46]. The Arrhenius formula was employed 

to determine the reaction rates and the law of mass action was 

used to determine the source terms of each gas specie 

equation. 

 The results have demonstrated that the most correct 

aerodynamic coefficient of lift is obtained by the [17] scheme 

with first-order accuracy, in an inviscid formulation, to a five 

species model. The cheapest algorithm was due to [17], 

inviscid, first-order accurate, structured, and five species 

model. Moreover, the shock position is closer to the geometry 

as using the reactive formulation than the ideal gas 

formulation. It was verified in [22]. Comparing the five 

species model and the seven species model, the second order 

solution of both models present the best behaviour. Errors less 

than 20% were obtained with this version of the [17] algorithm 

in the determination of the stagnation pressure at the body 

nose and an error of 7.89% was found in the determination of 

the shock standoff distance, highlighting the correct 

implementation and good results obtained from the reactive 

formulation. Values of these parameters were evaluated and 

proved the significant potential of the present numerical tool. 

 This work, as also [40], is the continuation of the study 

started at [41], based on the work of [42]. Other references on 

the non-equilibrium reactive flows area are: [43], [44] and 

[45]. 
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